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Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we demonstrate that finite linear combinations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.
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1. Introduction

A number of diverse application areas are concerned with the representation of
general functions of an n-dimensional real variable, x € R”, by finite linear combina-
tions of the form

N
2, 4o(yjx +6), ()

where y; € R" and «;, 6 € R are fixed. ( yT is the transpose of y so that yx is the inner
product of y and x.) Here the univariate function ¢ depends heavily on the context
of the application. Our major concern is with so-called sigmoidal ¢’s:

o(t) > 1 as t— 4o,
0 as t— —oo.

Such functions arise naturally in neural network theory as the activation function
of a neural node (or unit as is becoming the preferred term) [L1], [RHM]. The main
result of this paper is a demonstration of the fact that sums of the form (1) are dense
in the space of continuous functions on the unit cube if ¢ is any continuous sigmoidal
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function. This case is discussed in the most detail, but we state general conditions
on other possible ¢’s that guarantee similar results.

The possible use of artificial neural networks in signal processing and control
applications has generated considerable attention recently [B], [G]. Loosely speak-
ing, an artificial neural network is formed from compositions and superpositions
of a single, simple nonlinear activation or response function. Accordingly, the
output of the network is the value of the function that results from that particular
composition and superposition of the nonlinearities. In particular, the simplest
nontrivial class of networks are those with one internal layer and they implement
the class of functions given by (1). In applications such as pattern classification [L1]
and nonlinear prediction of time series [LF], for example, the goal is to select the
compositions and superpositions appropriately so that desired network responses
(meant to implement a classifying function or nonlinear predictor, respectively) are
achieved.

This leads to the problem of identifying the classes of functions that can be
effectively realized by artificial neural networks. Similar problems are quite familiar
and well studied in circuit theory and filter design where simple nonlinear devices
are used to synthesize or approximate desired transfer functions. Thus, for example,
a fundamental result in digital signal processing is the fact that digital filters made
from unit delays and constant multipliers can approximate any continuous transfer
function arbitrarily well. In this sense, the main result of this paper demonstrates
that networks with only one internal layer and an arbitrary continuous sigmoidal
nonlinearity enjoy the same kind of universality.

Requiring that finite linear combinations such as (1) exactly represent a given
continuous function is asking for too much. In a well-known resolution of Hilbert’s
13th problem, Kolmogorov showed that all continuous functions of n variables have
an exact representation in terms of finite superpositions and compositions of a small
number of functions of one variable [K7], [L2]. However, the Kolmogorov represen-
tation involves different nonlinear functions. The issue of exact representability has
been further explored in [DS] in the context of projection pursuit methods for
statistical data analysis [H].

Our interest is in finite linear combinations involving the same univariate func-
tion. Moreover, we settle for approximations as opposed to exact representations.
It is easy to see that in this light, (1) merely generalizes approximations by finite
Fourier series. The mathematical tools for demonstrating such completeness prop-
erties typically fall into two categories: those that involve algebras of functions
(leading to Stone—-Weierstrass arguments [A]) and those that involve translation
invariant subspaces (leading to Tauberian theorems [R2]). We give examples of
each of these cases in this paper.

Our main result settles a long-standing question about the exact class of decision
regions that continuous valued, single hidden layer neural networks can implement.
Some recent discussions of this question are in [HL1], [HL2], [MSJ], and [WL]
while [N] contains one of the early rigorous analyses. In [N] Nilsson showed that
any set of M points can be partitioned into two arbitrary subsets by a network with
one internal layer. There has been growing evidence through examples and special
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cases that such networks can implement more general decision regions but a general
theory has been missing. In [MSJ] Makhoul et al. have made a detailed geometric
analysis of some of the decisions regions that can be constructed exactly with a
single layer. By contrast, our work here shows that any collection of compact,
disjoint subsets of R” can be discriminated with arbitrary precision. That result is
contained in Theorem 3 and the subsequent discussion below.

A number of other current works are devoted to the same kinds of questions
addressed in this paper. In [HSW] Hornik et al. show that monotonic sigmoidal
functions in networks with single layers are complete in the space of continuous
functions. Carroll and Dickinson [CD] show that the completeness property can
be demonstrated constructively by using Radon transform ideas. Jones [J] out-
lines a simple constructive demonstration of completeness for arbitrary bounded
sigmoidal functions. Funahashi [F] has given a demonstration involving Fourier
analysis and Paley—Wiener theory. In earlier work [C], we gave a constructive
mathematical proof of the fact that continuous neural networks with two hidden
layers can approximate arbitrary continuous functions.

The main techniques that we use are drawn from standard functional analysis.
The proof of the main theorem goes as follows. We start by noting that finite
summations of the form (1) determine a subspace in the space of all continuous
functions on the unit hypercube of R". Using the Hahn-Banach and Riesz Represen-
tation Theorems, we show that the subspace is annihilated by a finite measure. The
measure must also annihilate every term in (1) and this leads to the necessary
conditions on o. All the basic functional analysis that we use can be found in [A],
[R2] for example.

The organization of this paper is as follows. In Section 2 we deal with prelimi-
naries, state, and prove the major result of the paper. Most of the technical details
of this paper are in Section 2. In Section 3 we specialize to the case of interest in
neural network theory and develop the consequences. Section 4 is a discussion of
other types of functions, o, that lead to similar results while Section 5 is a discussion
and summary.

2. Main Results

Let I, denote the n-dimensional unit cube, [0, 1]". The space of continuous functions
on I, is denoted by C(I,) and we use || f| to denote the supremum (or uniform)
norm of an f € C(I,). In general we use ||- || to denote the maximum of a function
on its domain. The space of finite, signed regular Borel measures on I, is denoted
by M(I,). See [R2] for a presentation of these and other functional analysis construc-
tions that we use.

The main goal of this paper is to investigate conditions under which sums of the
form

N
G(x) = Zl ao(yjx + ;)
=

are dense in C(I,) with respect to the supremum norm.
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Definition. We say that o is discriminatory if for a measure u € M(l,)

J' o(y™x + 0) du(x) = 0
I,
forallyeR"and f e R implies that p = 0.

Definition. We say that o is sigmoidal if

o) 1 as t— 400,
-
0 as t— —oo.

Theorem 1. Let ¢ be any continuous discriminatory function. Then finite sums of
the form

N
G(x) = Zl wo(yix + 6) V)
=
are dense in C(I,). In other words, given any f € C(l,) and ¢ > 0, there is a sum, G(x),
of the above form, for which
|G(x) — f(x)<e  forall xel,.

Proof. Let S < C(I,) be the set of functions of the form G(x) as in (2). Clearly § is

a linear subspace of C(I,). We claim that the closure of S is all of C(I,).
Assume that the closure of S is not all of C(I,). Then the closure of S, say R, is a
closed proper subspace of C(l,). By the Hahn—Banach theorem, there is a bounded
linear functional on C(I,), call it L, with the property that L # 0 but L(R) = L(S) = 0.

By the Riesz Representation Theorem, this bounded linear functional, L, is of the
form

L(h) = _[’ h(x) du(x)

for some u € M(1,), for all h € C(I,). In particular, since o(y"x + @) isin R for all y
and 6, we must have that

f o(y"x + 0) du(x) =0
1,
for all y and 6.

However, we assumed that o was discriminatory so that this condition implies
that 4 = 0 contradicting our assumption. Hence, the subspace S must be dense in
c,). |

This demonstrates that sums of the form

N
G(x) = 21 %0(yjx + 6))
"=

are dense in C(I,) providing that ¢ is continuous and discriminatory. The argument
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used was quite general and can be applied in other cases as discussed in Section 4.
Now, we specialize this result to show that any continuous sigmoidal ¢ of the form
discussed before, namely

© 1 as t— +oo,
g —
0 as t— —oo,

is discriminatory. It is worth noting that, in neural network applications, continuous
sigmoidal activation functions are typically taken to be monotonically increasing,
but no monotonicity is required in our results.

Lemma 1. Any bounded, measurable sigmoidal function, o, is discriminatory. In
particular, any continuous sigmoidal function is discriminatory.

Proof. To demonstrate this, note that for any x, y, 8, ¢ we have

-1 for y"™x+808>0 as A- +oo,
a(A(y™x +0) + 9) < =0 for y'x+0<0 as A- +oo,
=g(p) for y"™x+6=0 forall A

Thus, the functions a,(x) = a(A(y"x + 8) + ¢) converge pointwise and boundedly
to the function

=1 for y"™x+60>0,
y(x)< =0 for y"™x+6<0,
=a(p) for y'x+6=0
as A — +o0.
Let I, , be the hyperplane defined by {x|y"x + 6 = 0} and let H, , be the open

half-space defined by {x|y"x + 6 > 0}. Then by the Lesbegue Bounded Convergence
Theorem, we have that

0= L a,(x) du(x)

= J {x) du(x)

I,
= a(@)u(lly ¢) + u(H, q)

for all ¢, 6, y.
We now show that the measure of all half-planes being O implies that the measure
pitself must be 0. This would be trivial if 4 were a positive measure but here it is not.
Fix y. For a bounded measurable functon, h, define the linear functional, F,
according to

F(h) = J; h(y"x) du(x)

and note that F is a bounded functional on L™(R) since u is a finite signed measure.
Let h be the indicator funcion of the interval [, o) (that is, h(u) = 1 if u > 6 and
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h(u) = 0 if u < 6) so that

F(h) = L h(y™x) dpu(x) = u(Tl,, o) + p(H,, ) = 0.

Similarly, F(h) = 0 if h is the indicator function of the open interval (6, o). By
linearity, F(h) = O for the indicator function of any interval and hence for any simple
function (that is, sum of indicator functons of intervals). Since simple functons are
dense in L*(R) (see p. 90 of [A]) F = 0.

In particular, the bounded measurable functions s(u) = sin(m-u) and c(u) =
cos(m- u) give

F(s +1ic) = J cos(mTx) + i sin(mx) du(x) = f exp(im™x) du(x) = 0
I, 1n A

for all m. Thus, the Fourier transform of g is 0 and so 4 must be zero as well [R2,
p. 176]. Hence, ¢ is discriminatory. ]

3. Application to Artificial Neural Networks

In this section we apply the previous results to the case of most interest in neural
network theory. A straightforward combination of Theorem 1 and Lemma 1 shows
that networks with one internal layer and an arbitrary continuous sigmoidal func-
tion can approximate continuous functions wtih arbitrary precision providing that
no constraints are placed on the number of nodes or the size of the weights. This is
Theorem 2 below. The consequences of that result for the approximation of decision
functions for general decision regions is made afterwards.

Theorem 2. Let ¢ be any continuous sigmoidal function. Then finite sums of the
form

N
G(x) = jz ao(y;x + 6))
=1
are dense in C(1,). In other words, given any f € C(l,) and & > 0, there is a sum, G(x),
of the above form, for which
|G(x) — f(x)| < ¢ forall xel,.

Proof. Combine Theorem 1 and Lemma 1, noting that continuous sigmoidals
satisfy the conditions of that lemma. L

We now demonstrate the implications of these results in the context of decision
regions. Let m denote Lesbegue measure in I,. Let P, P,, ..., P, be a partition of
I, into k disjoint, measurable subsets of I,. Define the decision function, f, according
to

f)y=j ifand only if xe€ P;

This function f can be viewed as a decision function for classification: if f(x) = j,
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then we know that x € P; and we can classify x accordingly. The issue is whether
such a decision function can be implemented by a network with a single internal
layer.

We have the following fundamental result.

Theorem 3. Let o be a continuous sigmoidal function. Let f be the decision func-
tion for any finite measurable partition of I,. For any ¢ > 0, there is a finite sum of the
form

N
G(x) = Zl wa(yjx + 6;)
=

and aset D < I, so that m(D) > 1 — e and
|G(x) — f(x)] < ¢ Jor xeD.

Proof. By Lusin’s theorem [R1], there is a continuous function, h, and a set D with
m(D) > 1 — gsothat h(x) = f(x)for x € D. Now h is continuous and so, by Theorem
2, we can find a summation of the form of G above to satisfy |G(x) — h(x)| < & for
all x € I,. Then for x € D, we have

1G(x) — f(x)] = 1G(x) — h(x)] <e. L

Because of continuity, we are always in the position of having to make some
incorrect decisions about some points. This result states that the total measure of
the incorrectly classified points can be made arbitrarily small. In light of this,
Thoerem 2 appears to be the strongest possible result of its kind.

We can develop this approximation idea a bit more by considering the decision
problem for a single closed set D < I,. Then f(x) = 1if x € D and f(x) = 0 otherwise;
f is the indicator function of the set D < I,. Suppose we wish to find a summation
of the form (1) to approximate this decision function. Let

A(x, D) = min{|x — y|, y € D}
so that A(x, D) is a continuous function of x. Now set

— Afx, D)}

€

f.(x) = max {

so that f,(x) = O for points x farther than ¢ away from D while f,(x) = 1 for x € D.
Moreover, f,(x) is continuous in x.

By Theorem 2, find a G(x) as in (1) so that |G(x) — f,(x)] < % and use this G as an
approximate decision function: G(x) < % guesses that x € D€ Whl]e G(x) > 4 guesses
that x € D. This decision procedure is correct for all x € D and for all x at a dlstance
at least ¢ away from D. If x is within ¢ distance of D, its classification depends on
the particular choice of G(x).

These observations say that points sufficiently far away from and points inside
the closed decision region can be classified correctly. In contrast, Theorem 3 says
that there is a network that makes the measure of points incorrectly classified as
smat as desired but does not guarantee their location.
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4. Results for Other Activation Functions

In this section we discuss other classes of activation functions that have approxima-
tion properties similar to the ones enjoyed by continuous sigmoidals. Since these
other examples are of somewhat less practical interest, we only sketch the corre-
sponding proofs. )

There is considerable interest in discontinuous sigmoidal functions such as hard
limiters (o(x) = 1 for x > 0 and o(x) = 0 for x < 0). Discontinuous sigmoidal func-
tions are not used as often as continuous ones (because of the lack of good training
algorithms) but they are of theoretical interest because of their close relationship to
classical perceptrons and Gamba networks [MP].

Assume that o is a bounded, measurable sigmoidal function. We have an analog
of Theorem 2 that goes as follows:

Theorem 4. Let o be bounded measurable sigmoidal function. Then finite sums of
the form

N
G(x) = Zl ao(yjx + 6))
I

are dense in L'(1,). In other words, given any f e L'(I,) and ¢ > 0, there is a sum,
G(x), of the above form for which

IG = fllw = J; 1G(x) — f(x)| dx < &.

The proof follows the proof of Theorems 1 and 2 with obvious changes such as
replacing continuous functions by integrable functions and using the fact that L*([,)
is the dual of L*(I,). The notion of being discriminatory accordingly changes to the
following: for h € L(I,) the condition that

f o(y™x + O)h(x)dx =0
In

for all y and 6 implies that h(x) = 0 almost everywhere. General sigmoidal functions
are discriminatory in this sense as already seen in Lemma 1 because measures of
the form h(x) dx belong to M(l,).

Since convergence in L' implies convergence in measure [A], we have an analog
of Theorem 3 that goes as follows:

Theorem 5. Let o be a general sigmoidal function. Let f be the decision function
Jfor any finite measurable partition of 1,. For any € > 0, there is a finite sum of the
Jorm

N
G(x) = 21 ao(yix + 6;)
J=

and aset D < I, so that m(D) > 1 — ¢ and
|G(x) — f(x)| < ¢ Jor xeD.

A number of other possible activation functions can be shown to have approxima-
tion properties similar to those in Theorem 1 by simple use of the Stone—Weierstrass
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theorem [A]. Those include the sine and cosine functions since linear combinations
of sin(mt) and cos(mt) generate all finite trigonometric polynomials which are
classically known to be complete in C(I,). Interestingly, the completeness of trigono-
metric polynomials was implicitly used in Lemma 1 when the Fourier transform’s
one-to-one mapping property (on distributions) was used. Another classical example
is that of exponential functions, exp(mt), and the proof again follows from direct
application of the Stone—Weierstrass theorem. Exponential activation functions
were studied by Palm in [P] where their completeness was shown.

A whole other class of possible activation functions have completeness properties
in L*(I,) as a result of the Wiener Tauberian theorem [R2]. For example, suppose
that ¢ is any L!(R) function with nonzero integral. Then summations of the form
(1) are dense in L'(R") as the following outline shows.

The analog of Theorem 1 carries through but we change C(1,) to L(I,) and M(l,)
to the corresponding dual space L™(1,). The analog of Theorem 3 holds if we can
show that an integrable ¢ with nonzero integral is discriminatory in the sense that

f a(y™x + 0)h(x)dx =0 3)

for all y and 8 implies that h = 0.
To do this we proceed as follows. As in Lemma 1, define the bounded linear
functional, F, on L*(R) by

F(g) =f g(y"x)h(x) dx.
I
(Note that the integral exists since it is over I, and h is bounded. Specifically, if
g € LY(R), then g(y"x) € L*(I,) for any y.)
Letting g, ,(t) = a(st + 0), we see that

F(go.s) = J; a((sy)'x + O)h(x) dx = 0

so that F annihilates every translation and scaling of g, ,. Let f be the Fourier trans-
form of f. By standard Fourier transform arguments, g, (z) = exp(iz0/s)g(z/s)/s.
Because of the scaling by s, the only z for which the Fourier transforms of all the
ge,s can vanish is z = 0 but we are assuming that _\'R a(t) dt = §o,,(0) # 0. By the
Wiener Tauberian theorem [R2], the subspace generated by the functions gy , is
dense in L' (R). Since F(g, ;) = 0 we must have that F = 0. Again, this implies that

F(exp(imt)) = J exp(imt)h(t)dt =0
1

for all m and so the Fourier transform of h is 0. Thus h itself is 0. (Note that although

the exponential function is not integrable over all of R, it is integrable over bounded

regions and since h has support in I, that is sufficient.)

The use of the Wiener Tauberian theorem leads to some other rather curious
activation functions that have the completeness property in L(1,). Consider the
following activation function of n variables: o(x) = 1 if x lies inside a finite fixed
rectangle with sides parallel to the axes in R” and zero otherwise. Let U beann x n
orthogonal matrix and y € R". Now o(Ux + y) is the indicator funciton of an
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arbitrarily oriented rectangle. Notice that no scaling of the rectangle is allowed —
only rigid-body motions in Euclidean space! We then have that summations of the
form

N
,-Zi wo(Uix + y))

are dense in L*(R"). This follows from direct application of the Wiener Tauberian
theorem [R2] and the observation that the Fourier transform of ¢ vanishes on a
mesh in R" that does not include the origin. The intersection of all possible rotations
of those meshes is empty and so ¢ together with its rotations and translations
generates a space dense in L!(R").

This last result is closely related to the classical Pompeiu Problem [BST] and
using the results of [BST] we speculate that the rectangle in the above paragraph
can be replaced by any convex set with a corner as defined in [BST].

5. Summary

We have demonstrated that finite superpositions of a fixed, univariate function that
is discriminatory can uniformly approximate any continuous function of n real
variables with support in the unit hypercube. Continuous sigmoidal functions of
the type commonly used in real-valued neural network theory are discriminatory.

This combination of results demonstrates that any continuous function can be
uniformly approximated by a continuous neural network having only one internal,
hidden layer and with an arbitrary continuous sigmoidal nonlinearity (Theorem 2).
Theorem 3 and the subsequent discussion show in a precise way that arbitrary
decision functions can be arbitrarily well approximated by a neural network with
one internal layer and a continuous sigmoidal nonlinearity.

Table 1 summarizes the various contributions of which we are aware.

Table 1
Function type and
transformations Function space References
o(y"x + 8), ¢ continuous Cc(I,) This paper
sigmoidal, ye R", 0 e R
a(y"x + 8), ¢ monotonic c(l,) [FJ, (HSW]
sigmoidal, ye R", e R
o(y'x +0),0 c(1,) 0]
sigmoidal, ye R, 8 e R
a(y'™x + 8),0 ¢ L'(R) L\(1,) This paper
fo(dt#0,yeR" 0eR
a(y"x + 0), o continuous L*(1) [CD]
sigmoidal, ye R", 8 e R
o(Ux + y), U e R™", LY(1,) This paper
y € R", g indicator of a rectangle
a(tx + y), te R, 0 € L'(R") LY(R") Wiener Tauberian

yeR, [o(x)dx #0 theorem [R2]
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While the approximating properties we have described are quite powerful, we
have focused only on existence. The important questions that remain to be answered
deal with feasibility, namely how many terms in the summation (or equivalently,
how many neural nodes) are required to yield an approximation of a given quality?
What properties of the function being approximated play a role in determining the
number of terms? At this point, we can only say that we suspect quite strongly that
the overwhelming majority of approximation problems will require astronomical
numbers of terms. This feeling is based on the curse of dimensionality that plagues
multidimensional approximation theory and statistics. Some recent progress con-
cerned with the relationship between a function being approximated and the number
of terms needed for a suitable approximation can be found in [MSJ] and [BH],
[BEHW], and [ V] for related problems. Given the conciseness of the results of this
paper, we believe that these avenues of research deserve more attention.

Acknowledgments. The author thanks Brad Dickinson, Christopher Chase, Lee
Jones, Todd Quinto, Lee Rubel, John Makhoul, Alex Samarov, Richard Lippmann,
and the anonymous referees for comments, additional references, and improvements
in the presentation of this material.
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