Fully Connected NN Model

1.1 Derivatives with respect to model parameters and input

Consider a fully connected neural network (FNN) model, with £ — 1 hidden layers, with input Z
and output Y of the form

Wi=A1Z+B
Zy = f1(Wr)
Wi—1 =Ap—1Z—2+ Bi—1 (1.1)

Zi—1= fo1(Wi—1)
Wi =ArZi—1+ By

Y = fr.(Wk),
where f;(W),i = 1,...,k are scalar functions applied to each elements of the vector W. The
parameters of the network are § = {A, By, ..., Ay, By} and the goal is to compute the derivative

with respect to each elements of these matrices and vectors and, also, with respect to the input
Z. In fact as we will see we can group the derivatives into matrices for each level separately and
compute them recursively.

Let us start our derivations. For (stochastic) gradient type algorithms we usually have some
form of scalar cost function ¢(Y") that we like to compute its gradient with respect to the network
parameters and input. Therefore, starting from the output and going backwards, we can write

Via,3)0(Y) = (Vyo(Y) O fr (Wi)) (2], 1] (12)
V2, 0(Y) = AL (Vyo(Y) © f1.(We)), (1.3)

where f'(W) denotes the derivative of the scalar function f(-) applied to each element of the
vector W and © denotes element-by-element multiplication. Let us now go one step deeper into
the network. We then have

0Z)—1

B T 94k
V[Ak—lgk—l]ijdj(y) = (Vz,9(Y)) OAk-1Bi-1lij’

2 1: Fully Connected NN Model

from which we conclude that

Viae 18, 100) = (Vz, ,0(Y) O froy(We1))[Z]_, 1]. (1.4
Similarly
Vi 2, 0(Y) = (Vzquﬁ(Y))T(;?ZZ:;i’
therefore
V2 20(Y)=A] ,(Vz, ,0(Y)O fioi(Wi—1)). (1.5)

We can now deduce the following recursion formula (adopting the engineering induction). For
i=k,k—1,...,1define
Vi = U ® fi(W;), initializing with 2, = Vy ¢(Y),

1.6
%—1 :AI%7 ()

which generates {¥%,..., 71} and {%—1,...,%}. Then

Via,310(Y) = %21 1]

(1.7)
VoY) = %.

1.1.1 Example

Let us apply these formulas to the simple case of one hidden layer. We have that the neural
network equations are of the form

Wi =A1Z+ B
Zy = fi(Wh)

Wy =A2Z1+ B>
Y = f2(W2),

Suppose we are interested in some function ¢(Y") of the output. According to our formulas we
define:

U =Vyd(Y), V=20 (W), % =ATV, Vi=2%0fi(W), %=AT"N,
that allows us to compute the gradients

Vi) 0(Y) = 1[ZT 1], Via 5 0(Y) =N[ZT1], V2(Y) = %.

1.2 Update of Network Parameters

If for example our goal is to select the network parameters to minimize the expectation of ¢(Y")
then we can apply a stochastic gradient descent of the form

Ak Bili = [AkBrli—1 — uV (s, By, (Y2)

However it has been observed in practice that normalizing the derivatives produces more stable
solutions. In particular we can use the ADAM scheme (Kingma, D. P, Ba, J. L. (2015). Adam:

1.2: Update of Network Parameters 3

a Method for Stochastic Optimization. International Conference on Learning Representations,
1-13) which consists in computing an estimate of the power of each derivative element

P, 3] (t)=(1—)\)P[Akgk](t —1+A (V[Ak@k]t—l ¢(Yt))('2)

where for a matrix Q we denote with Q(-2) the element-by-element raise to the power 2 and
A < 1. We initialize with

P, 3,(1) = (V[Ak@k]oéi’(yﬁ)('z)-

The power estimate must be updated after we compute the gradient V5, 3,), o(Yy).

When updating the network parameters, we can normalize each gradient element using the
corresponding power estimate as follows

[Ax Bt = [ArBrli-1 — 1V (a8, 2(Ye)./y/c+Pa,3,(t)

where ./ denotes element-by-element division, ¢ is a small number to avoid division by 0, and the
square-root (/") is again applied element-by element onto the matrix ¢+ Py, 3, (t). This way
we normalize each derivative and make the elements of the same order of magnitude which then
allows for the use of a single step size p for all adaptations. Otherwise, if we do not normalize,
and use a single p then we experience completely different convergence rates per parameter
element!

	Fully Connected NN Model
	Derivatives with respect to model parameters and input
	Update of Network Parameters

