
DATA DRIVEN TECHNIQUES

Lecture 11
Data-Driven Decision Making



Outline
• Hypothesis Testing 
• Mathematical Formulation 
• Data Driven Approach 
• The Consistency Property

• Detection in Time Series 
• I.i.d. processes 
• Markov processes

• Likelihood Ratio Estimation 
• Optimization Problems with Consistent Solutions 
• Data Driven Implementation
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Hypothesis Testing

For a random vector X we assume the following two hypotheses

Plethora of applications in diverse scientific fields!!!

Mathematical Formulation
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Bayesian Approach

Minimize decision error probability

For !(r) strictly increasing
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Neyman-Pearson Approach

For !(r) strictly increasing
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Data Driven Approach
Sampled from f0

Sampled from f1

Design border to separate the two datasets

What is the best border ?
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Instead of a “border”, design a decision like function v(X)

Use parametric family of functions u(X, µ) and optimize µ solving

For every X to test decide as follows:
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Works “well”!!  Why??

Understanding using Asymptotic Analysis
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minimize for each X

Consistency (with respect to the Bayes test)

Equivalence in the limit
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Consistent tests eventually prevail over inconsistent tests

Develop data driven methods for estimation of  !(r(X)) for other !(r)



Likelihood Ratio Estimation

For function !(r) can we define cost

so that                                                          ?
11



Consider W(r) strictly increasing .

Demote with To the range of

a(r) .

THEOREM and define two
en

For zEIw
Select P( strictly negative

function PSA , PAL ferzeIm
as follow :

P(z) = -w e(z), f(x) = p(t)

Hen

min S4CH)# . (4(V(X))]+
* (1) E . S4(v(x)3]

accepts a unique minimizer vo(X) that
satisfies

vo(x) = w(r(x)

where we reall : f(x) =(x) Proof -
(fox)

⑫



I (v) = E(P(H) p(v(x>)] + E . (H(1)4(V(x) &(x)]
((x) = (x)

f(x)
-rangeofensure

= (1) E - [S4(r(x) +
4)((x)4(r(x)3] =P(I)-(4x)4(rx)

ICAO) Ffix
* ex)

for each
edX

-

v(x) = D((t)

For fixed X V(x)-V ,
BGT-530 and interested in

min S, (*) * B .4 (r)]
of 4iN'

W

Take derivative with
respect to and use definite

->

p( + r4(v)
= 0 -

>
- w()f(u) + wp(v) =

-> p(V)[w] = 0 ->
Unique solution

It is
also a minimum because

wir)= -> V= w(r) ~

desinative is negative for
v No and positive for VaVo
- 013



EXAMPLES OF FUNCTIONS
Estimate likelihood ratio ⑪
e-

W(r) = r> 0
aud du = R + W

1+2En 2+ - 1 , - 2

22
+2

+(H =
= FI>

Al : GCH
=- E .

Hen P(E)=2

special arce :

2 = 0
, y(1) =b
- 4(x) = E ,

+(t) = w

Al : 9(z) ==
- Hen PC-hy(1+) ,

↑(A) log(HE)
=(1 + z)

-log-likelihood nato
Ia = R

-
27

B
and

(1-24
-
1

e - 1

C 2-92
Hen &C =
- ,

41 --

B1= g(t) =
- e 1- 2

I the 41A-log(n e) , + (x--log(1
e)

z

1 + 2

andZa= (0 , 1) Estimate Rustener prbabiee
W w

C1= g() =- I (12)
Her 4(7)=-log(1- z) , 4(H)=-logz



ATTENTION ②
e

We have to make sure
that the output of the network

M(X , 80) is
ansistent with the rauge

Iw .

This means
that

at its output me
must add a proper monlinearitygC

.

x
A) WIrl= N

with 10 = (0 ,x)
Hen g(x)

= was(X ,
d Rebu

B) Wal-loge
with ZweR

then q(x-x
(no nahmenmity)

-

diamzacoHer8ex as
we

ee
↓ + 1

we are going
to incorporate the

actual output morhnearity :

directly in our euelysis .

-
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Examples of functions

Mean  
Square

Exponential

Cross 
Entropy

③

⑰@⑳



Data Driven Implementation
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⑭

If instead me define

them

⑳



NIMPLEMENTATIO ⑤

Gradient Descent .

O +

= & - (2p(u(xi ,a)+ 8a4(u(x; ,a) I

=

O - - (n(xe ,0 P(ulti ,Mall Jau(X: ,
fu

- pluxi , al) JaU(X ;,Oral

#f(x)
ther n(x ,fe)

= ar (PCH)fo(x)C
If we normalize

each sun with the number of its samples

then u(x ,
0.) = wi(,)



STOCHASTIC GRADIENT DESCEN ⑥
-

we xx randomly
the two detest S dining Heir

labele (0ar1)

I we use Xt

Hen of iteration

- (n(x+ ,
0x) P(4(x+ ,

0x )) JaU(x+, Re) of X+ = xi

①= O -t E plu(x+, )) JaU(x+ &)
if x+ = xI

them Ucx
,
00-Wire)

I

If we multiply the upper term
with no

and the lower

with I Mem
es

w(x ,
00) = w()
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Example: Classification Problem

From dataset MNIST isolate handwritten numerals 4 and 9 

Neural network 784 X 300 X 1 

Mean square   go(x)= ReLU,    u1(X, µ1) 

Exponential     go(x)= x,    u2(X, µ2)

Cross entropy  go(x)= sigmoid,    u3(X, µ3)

# of parameters 
235801

go(x)

g(x)=	ReLU

78
4

30
0

Gray scale images 28 X 28 = 784 pixels. Design classifier using training 
data. Examine performance using testing data. 

⑦

⑧
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Training set: 5500 “4” and 5500 “9”. Testing set: 982 “4” and 1009 “9”

⑧

⑨



Detection in Time Series
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More practically interesting case: Testing of time series { X1 , X2 ,..., Xn }  
The whole set of measurements under H0 or H1

For testing we need likelihood ratio

When i.i.d. under each hypothesis

Test to be used

89

&
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⑩

⑮



(Cross Entropy)
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⑪

&
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Example: Testing i.i.d. sequences
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⑫
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Markovian processes
Consider Markovian processes with “memory” m

Can we estimate likelihood ratio of conditional densities?

a) Through data dynamics (classical)

b) Directly (proposed)

⑬

⑲
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Classical Approach

Most common model, Autoregressive

⑭

⑱
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Not purely data driven 
Gaussian assumption arbitrary, not necessarily suitable for all data!

⑭

&
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Proposed Approach
⑯

⑳
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Example: Testing Markov sequences (proof of concept)
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⑰

⑨


