
DATA DRIVEN TECHNIQUES

Lecture 7
Realization of Random Variables - Generative Models



Generative Modeling

• Realizations of random variables
• Classical Methods 
• Inverse cdf 
• Acceptance-rejection

• Using transformations 
• Generative models 
• Design with adversarial methods 
• Design with non-adversarial methods

• Probability density vs Generative model
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Realizations of Random Variables

Realizations of random variables are needed in Monte-Carlo simulations

When densities of interest are usual then classical methods

Regarding random variables that lie on lower dimensional manifolds 
description using probability densities is not efficient

Generate synthetic data (images, music, videos)

In case of modern datasets classical methods fail miserably in producing 
realizations 
Need alternative techniques that can handle data that are multi-
dimensional and can lie in lower dimensional manifolds
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Classical Methods

Assume we have probability density h(z) for which we can easily generate 
realizations, for example Uniform or Gaussian

For given density f(x) we like to generate realizations

Inverse CDF 
If z1, z2,... independent realizations, uniform in [0,1], apply transformation

xi follows f(x)
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Can we extend this to multi-dimensional densities?

Generate independent uniform realizations z1, z2, z3

then x1,x2,x3 follow f(x1, x2,x3)                            Not practically convenient !!!

If we have joint density f(x1,x2,x3) can we generate triplets? Conditionally 
independent
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Acceptance/Rejection

xi follows f(x)



Using Transformations

Want realizations Xi that follow f(X). Common method using 
transformations

THEOREM: Under general conditions
YES IT EXISTS !!!

Theorem proves existence

Generative Models
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Does G(Z) exist ?
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To design

Target

Why??  To generate realizations of X following f(X) by generating 
realizations of Z following h(Z) and then transforming X = G(Z)
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Adversarial Methods (GANs)

Let us develop our method step-by-step

Suppose we have two probability densities f(X) and g(X)  
How can we test  f(X) = g(X) ?

Goal: Start with Z following h(Z). Find generative transformation G(Z) so 
that X=G(Z) follows f(X). Solve problem without knowing f(X) !!!

Suppose we do not have f(X), g(X) but still desire to test  f(X) = g(X)
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YES !!!

THEOREM:  
Specify strictly increasing function !(r) and positive function ½(z)
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Why insist on averages ?

If we do not have f(X), g(Y) but two sets of realizations

How can we optimize with respect to unknown function D(X) ?
Replace D(X) with neural network  D(X, #). Optimize over network 
parameters #
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Can we use function D(X, #o) to examine the two densities  f(X), g(Y) ?

D(X, #) is known as the Discriminator function

Employ D(X, #o) to discriminate between f(X), g(Y) using only data
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Examples

(Exponential)

(Mean Square)

(Cross Entropy)
Goodfellow et al. (2014), NeurIPS
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What happened to the Generator ?

With Z ~ h(Z) generator G(Z) transforms Z to Y =	G(Z) 
We desire Y ~ f(.) same density as training data {X1,...,Xn}

Naïve Method: Select a G(Z). Test if transformation is the desired 
If not, make another selection
How do we test if selection is any good ?

Generate realizations of Z: {Z1,...,Zm}  
Apply generator to samples, create {Y1,...,Ym} where Yi =	G(Zi)

Test {Y1,...,Ym} against {X1,...,Xn}
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We are looking for function G(Z). Use neural network G(Z, µ)

THEOREM: For fixed µ (generator G(Z, µ)) we have

Equality when  Y =	G(Z,µ) has density g(.)=f(.) same as {X1,...,Xn} 



Adversarial  
Optimization
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Since

we must apply minimization over µ   

G 
A 
N

Generative 
Adversarial  
Networks
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We have Z ~ h(Z)  
Design generator G(Z) so that Y =	G(Z) has the same density as X  
for which we have realizations (training set) {X1,...,Xn}

Approximate generator with neural network G(Z, µ)  
Define second neural network the discriminator D(X, #) 

For realizations of Z: {Z1,...,Zm} consider adversarial problem

then generator G(Z, µo) when applied to realizations of Z yields samples 
following closely the density of {X1,...,Xn}
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Example

High definition CelebA (30 000 high-definition images 1024 X 1024 of 
celebrities)

Extremely hard to control convergence of the adversarial problem 
NVIDIA used progressive growing of GANs (4X4), (8X8),...,(1024X1024) 
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Example

Convergence/Divergence
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Non-Adversarial Method

Interested in Generator  
Discriminator used during generator design, afterwards useless

Possible (at least in theory) to design Generator without Discriminator by 
not employing min-max (adversarial) optimization

We can define optimization criteria involving only maximization or 
minimization with the help of positive definite kernels and design 
successfully Generators

A symmetric scalar function K(X,Y) will be positive definite if for every 
nonzero function '(X) it satisfies
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Validity of the Cauchy-Schwarz inequality

For densities f(X), g(Y)
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We have Z ~ h(Z)  
Design generator G(Z) so that Y =	G(Z) has the same density as X  
for which we have realizations (training set) {X1,...,Xn}

Generate {Z1,...,Zm} from h(Z)

No Convergence/Divergence phenomenon!!!!
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Example
CelebA images 32 X 32
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Probability Density vs Generative Model
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Points in N-D space can be random and lie on a
lower dimensional surface (manifold)
Example red points on sphere (2-D in 3-D space)
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Generative model would describe the random data with input density 
h(z1,z2) and generator vector function G(z1,z2)

h(z1,z2) defined on [0,1] £[0,1] and G(z1,z2) is an ordinary function

Data are representable as X =	G(Z),	Z ~h(Z). Many datasets satisfy

In HD CelebA:      dim(X) = 3 X 1024 X 1024 = 3 X 106 

Input to Generator G(Z):     dim(Z) = 500 (independent Gaussians)

Instead of estimating X, we first estimate Z, then recover X as X=G(Z)


