DATA DRIVEN TECHNIQUES

Lecture 7
Realization of Random Variables - Generative Models
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Realizations of Random Variables

Realizations of random variables are needed in Monte-Carlo simulations
Generate synthetic data (images, music, videos)

When densities of interest are usual then classical methods

In case of modern datasets classical methods fail miserably in producing
realizations

Need alternative techniques that can handle data that are multi-
dimensional and can lie in lower dimensional manifolds

Regarding random variables that lie on lower dimensional manifolds
description using probability densities is not efficient



Classical Methods

For given density f(x) we like to generate realizations

Assume we have probability density h(z) for which we can easily generate
realizations, for example Uniform or Gaussian

Inverse CDF

If 2,,25,... Independent realizations, uniform in [0,1], apply transformation
Ly — F_l(Zi)

where F(x) = [~ __f(w) dw is the cumulative distribution function (cdf)

and F~1(z) its inverse function (F~'(z) = x & z = F(x))
E\(“\S % GSQMC&% AR

[a:i follows f(x)}




P(z <x) =P(F '(2) <x) =P(z < F(x)) = F(x)

Can we extend this to multi-dimensional densities?

If we have joint density f(x,,z,,25) can we generate triplets? Conditionally
_ independent
Bayes Rule: f(.il?l, X2, 333) — f(333|$2, $1)f($2|$1)f($1)
Generate independent uniform realizations z,, z,, 2,

f(z1) = F(z1) = x%
flxa|z1) = F(az|ry) = 20 = F_l(zglxﬂ

f(zslee, x1) = F(as|leg,z1) = x5 =F ' (23]22, 1)

then z,,z,,z, follow f(x,,z,,z;) Not practically convenient !!!



Acceptance/Rejection

We are given f(x), cannot compute F(z) or F~1(z), can evaluate f(x)

Assume another density h(z) for which we can generate realizations
(e.g. Gaussian)

f ;
Assume we know L such that % <L < oo forall x @ ““’i/”_;‘iﬁ;>d>
Generate pair (z;, t;), independent with z; ~ h(z) and t; ~ U(]0, 1]) = =~ L=~
f(2;
If (%) > Lt; then accept and set z; = z;

h(z;) [ZI?Z follows f(x)}

Otherwise reject pair and try again with a new one Om  everege oy

oMe€ QNW% L reads tehos
True for vector densities f(X') when can generate h(Z) s —coept




Using Transformations

Generative Models

Want realizations X, that follow f(X). Common method using
transformations

Start with Z ~ h(Z), find G(Z) deterministic so that
X = G(Z) follows f(X) Does G(Z) exist ?
THEOREM: Under general conditions

YES IT EXISTS !l

Pair {G(Z),h(Z)} called Generative Model
Theorem proves existence




Scalar z ~ h(z), strictly increasing G(z), then density of x = G(2)
can be found

P(z <x) =P(G(z) <x) =P(2 <G '(x)) =H(G ' (x))

z(x) = G~ 1(x) is the unique solution to G(z) = x

= f(z) = h(G'(2)) X G’(G—ll(:z:)) = h(z(z)) x |G/(Zl(x))
If G(2z) not monotone then G(z) = x may have multiple solutions:
21(X), .., Zp(X) = v p o e dumehon shoe
1 1
f(x) = h(z1(x)) + -+ h(z,(2))

“ 16 (@ @) 16 (2 ()]



Vector Z ~ h(Z) and vector transformation G(Z)

Random vector X = G(Z), how to compute density?

Equation G(Z) = X has multiple solutions Z;(X), ..., Z,(X)

@) bz
Al det{JzG(Z1(X)) } T det{JzG(Z,(X)) }
Target
I gl(zl,...,zk) | i g—ii
G(Z) = ; , 126(2)=|
To design Cgk(z1,- o, 2k) i g;i

Why?? To generate realizations of X following f(X) by generating
realizations of Z following h(Z) and then transforming X = G(Z%)




Adversarial Methods (GANS)

Goal: Start with Z following h(Z). Find generative transformation G(Z) so
that X=G(Z) follows f(X). Solve problem without knowing f(X) !!!

Let us develop our method step-by-step

Suppose we have two probability densities f(X) and g(X)
How can we test f(X) =g(X)?

e(Xx) g(X)\ _
Sufficient: ) 1 = w (16(7)> = w(1)

for ANY w(-) strictly increasing

Suppose we do not have f(X), g(X) but still desire to test f(X) = g(X)

Weve U5 ek
For every function 5(XWrFe?hanismWovides [Ef[5(X)], E, [5(X)ﬂ
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X
Can we compute D(X) = w (%) using averages ? YES !l

THEOREM:
Specify strictly increasing function w(r) and positive function p(z)

Define: ¢(2),9(2) 1 ¢'(2) = p(2), ¢'(2) = —w " (2)p(2)
and for any scalar function D(X) the cost
J(D) = E¢[¢(D(X))] + Eg [¢ (D(X))]

Then the optimum solution to the maximization problem maxp x) J(D) satisfies

[DO<X> — (f((—ﬁﬁ)))}




Why insist on averages ?

If we do not have f(X), g(Y) but two sets of realizations
1 n
]Ef (X)) ~ — (X

X1, Xo,. . X~ f(X) 9(X) n; ()
Y17Y27°"7Ym ™~ g(Y) 1 —

Eg |6(Y)] = —~ > 5(v)
t=1

How can we optimize with respect to unknown function D(X) ?

Replace D(X) with neural network D(X,?). Optimize over network
parameters 9

J(D) = E¢[6(D(X))] + Eg[¢:(D(X))
i) = =3 6(D(X0,0)) +

n



Solve mng(ﬁ) = 9, = D(X,V,)

Expect D(X,¥,) ~ Do(X) = w (%)

Can we use function D( X, ) to examine the two densities f(X), g(Y) ?

Employ D(X,9, ) to discriminate between f(X), g(Y) using only data
Xl,Xz,...,Xn ~ f(X) Yl,YQ,...,Ym ~ g(Y)

If D(X,J,) % w(l) = the two datasets have different densities

If D(X,4J,) ~ w(1l) = the two datasets have similar densities

D(X,9) is known as the Discriminator function



Examples

Ar w(r)=r
22 (Mean Square)

ple) =1, = o(z) =—7 ¥(z) ==z

B w(r) = log(r)
pe) = 0% = g(2) = 2607, Y(z) = —2e70

(Exponential)

/C: w(r) = r Goodfellow et al. (2014), NeurlPS A

(Cross Entropy)

, = &(2) =log(l —z), ¥(z)=log(z)
J




What happened to the Generator ?

With Z ~ h(Z) generator G(Z) transforms Zto Y = G(Z)
We desire Y ~ f(.) same density as training data {X},...,X}

Naive Method: Select a G(Z). Test if transformation is the desired
If not, make another selection

How do we test if selection is any good ?

Generate realizations of Z: {Z,,...,Z }
Apply generator to samples, create {Y},....,Y } where Y. = G(Z))
Test {Y},...,Y, } against {X,...,X } A(ﬁ)

qu (X, 9)) + — ) w(D(Y2, )



Z¢ Xta qub }/t?

\

Z¢ X0 9) + — > 0 (D(6(2).9))

We are looking for function G(Z). Use neural ne\work G(Z,0)

Z¢ (X,,0) Zw( G(Z1,0) ).0))

THEOREM: For fixed 6 (generator G(Z,6)) we have
mﬁaxJA(H,ﬁ) 2 d(w(1)) + ¢ (w(1))
Equality when Y = G(Z,0) has density g(.)=f(.) same as {X

------

X, ]



Since mng(ﬁ,ﬁ) 2 d(w(1)) + ¢ (w(1))

to bring maxy J(6,9) as close as possible to ¢ (w(1)) + 1 (w(1))

we must apply minimization over 6

min max J(6, 9)
6 9

( n m

. 1 1
= min max <\ﬁ ; o (D(X¢,0)) + — ;w(D(G(Zt, 9)719))
Adversarial G Generative

Optimization A A Adversarial
N Networks



We have Z ~ h(Z)

Design generator G(Z) so that Y = G(Z) has the same density as X
for which we have realizations (training set) {X,..., X, }

Approximate generator with neural network G(Z,0)
Define second neural network the discriminator D( X 1)

For realizations of Z: {Z,,...,Z,} consider adversarial problem

min maxj(H,ﬁ)
6 0

— m@in m§x< —Zgb (X¢, ) %;w(D(G(Zt,H),ﬁ))

then generator G(Z,0,) when applied to realizations of Z yields samples
following closely the density of {X,,...,X ]}

\

V

/



Example

High definition CelebA (30 000 high-definition images 1024 X 1024 of
celebrities)

Extremely hard to control convergence of the adversarial problem
NVIDIA used progressive growing of GANs (4X4), (8X8),...,(1024X1024)

\J
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Non-Adversarial Method

Interested in Generator
Discriminator used during generator design, afterwards useless

Possible (at least in theory) to design Generator without Discriminator by
not employing min-max (adversarial) optimization

We can define optimization criteria involving only maximization or
minimization with the help of positive definite kernels and design
successfully Generators

A symmetric scalar function K(X,Y) will be positive definite if for every
nonzero function (X)) it satisfies

1

// K(X,Y)o(X)p(Y)dX dY > 0 Gaussian Kernel: K(X,Y) = ¢~ #zIX=YIF



Validity of the Cauchy-Schwarz inequality

( / / K(X,Y)o(X)(Y)dX dY>2
< ( / K(X,Y)¢(X)¢(Y)dXdY) ( / K(X,Y)¢(X)¢(Y)dXdY>

For densities f(X), g(Y)

(J] KO Y)R(X)g(Y) dX dY
/ K(X,Y)f

[ KX, Y)g(X)g(Y)dX dY Y)dX dY

with equality if and only if f(X) = g(Y)



(JfKexY dXdY
TROCY dXdY / K(X, V)F(X)f(Y) dX dY

(wa v])

E[K(Yl, Yz)}
where X!, X? independent with the same density f(X)
and Y'!, Y2 independent with the same density g(Y)

. (E[K(X,G(Z,H))D2
0= E[K(G(Z',0),G6(22,0))]
where Z!, Z? independent and follow h(Z)

max J(0)

<E[K(X', X?)

<E[K(X,X?)]




We have Z ~ h(Z)

Design generator G(Z) so that Y = G(Z) has the same density as X
for which we have realizations (training set) {X,..., X, }

Generate {Z,,...,Z, } from h(Z)
2
(nm Zz 123 1K( (ZJ79)))

J(0) =
m(fn%, 1) Zi—l Zj—l,j;éi ( (ZZ,Q) G( 379))
S - S‘ S‘ K(Xi, X;)
1=1 j=1,7#1
max J(0)

0

No Convergence/Divergence phenomenon!!!!

44



Example
CelebA images 32 X 32
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Probability Density vs Generative Model

05
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Points in N-D space can be random and lie on a
lower dimensional surface (manifold)

Example red points on sphere (2-D in 3-D space)

Points are random with coordinates |z, x2, 3]
related through a deterministic equation

To lie on a sphere of radius 7 : 22 + z2 + 22 = r*

f(x1, 29, 23) = 0(x3 + 25 + 25 — %) h(x1, z2)

Dirac () generalized function is defined as
0 z#£0 ) B
5(:6)—{ o r—0 /_65(£E)Cl513—1
5‘,6



Generative model would describe the random data with input density
h(z,,2,) and generator vector function G(zl,,zQ)

X = G(Zl, ZQ) —

L1 =
Lo =

Gy (Zla <2
Go (217 <2
G3(21, 22

)
)
)

=

Preample . aphreneal < sdnales
r1 = 17 C0S(2mz1 ) Sin(mzs)
To = rSin(2mz;)sin(mza)

w3 = rcos(mz2)

— h(z,2,) defined on [0,1]x[0,1] and G(z,,2,) is an ordinary function

Data are representable as X = G(Z), Z~h(Z). Many datasets satisfy
dim(Z) < dim(X)

In HD CelebA:

dim(X)

Input to Generator G(Z):

Instead of estimating X, we first estimate Z, then recover X as X=G(Z%)

dim(Z2)

\gr e e A \ka QSHMW

=3X1024X1024 =3 X106
=500 (independent Gaussians)




