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Problem Definition

We are given vector X (measurements) and interested in estimating vector Y

We assume X =T(Y)+W where T(Y) general (mostly) known transformation

Basic characteristic:  dim(X) < dim(Y)

Inpainting  Colorization  Super-Res De-Noising De-Quantization Image Separation




Early Efforts

Inpainting




Diffusion based inpainting

No prior information, training data not very useful



Generative Models



Is it possible to generate synthetic data (realizations X) that follow f(X) ?
NOT an easy problem even if density f(X) is known!

Begin with density h(Z): Simple to generate realizations Z,
Find transformation G(Z): Such that X, = G(Z,) follows f(X)

Xi
THEOREM: Under general conditions
a transformation G exists !!! N
2
—

Pair {G(Z),h(Z)} Generative model
G(Z) Generator




X follows f(X)

Z follows h(Z), design G(Z), so that Y=G(Z) follows f(Y)

~

/ THEOREM (Goodfellow et al. 2014): Z follows h(Z), define Y= G(Z) and cost
J(G,D) = Ee[¢(D(X))] +En|v:(D(6(2)) )

then the optimum solution to the adversarial problem

min max J(G, D) = min max {Ef[¢(D(X))} + By [;A(D(G(Z)))H

G D G D

is such that Y= G, (Z) follows f(Y)

(& J

D(X) Discriminator G(Z) Generator



Data Driven Implementation ﬁw‘ij %y% ol okt !
{1X,,X,,...,X, } following f(X), $2,,2,,..., 7 } following h(Z)

D(X) approximated by neural network D(X,) (Discriminator)
Generator function G(Z) approximated by neural network G(Z,0) (Generator)

1 n
=~ 3" 6(D(X,,0)) Zw( G(2;,0),9))
1=1
Adversarial optimization becomes

meinmng(H,ﬁ)—mmmax{ Zqﬁ (X;,9)) %g: ( G(Z;,0), 19))}

= {90,190} = 0, = G(Z,6,) Generative
Adversarial
IFZ follows h(Z) THEN Y= G(Z,0,) follows f(Y) Networks



Example (NVIDIA)
HD-CelebA (30 000 high definition images 1024 X 1024 of celebrities)

NVIDIA used progressive growing of GANs (4X4), (8X8),...,(1024X1024)

{ Y of size 3 X 1086, Z Gaussian vector of length 500 J




Generative Models
VS
Probability Densities
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Points in N-D space can be random and lie on a lower dimensional surface

(manifold)

0.5

05 \ 0.5

" .05

Example red points on sphere (2-D in 3-D space)

Points are random with coordinates Y = |y, ¥y, ¥3]
satisfying the deterministic equation

yi Yy s =1

Then density has the form
f(y1,y2,y3) = 0(yi +y3 + 3 — r*)h(y1, y2)

Dirac d(x) generalized function is defined as

5(33):{ 0 270 /eé(x)da:zl

o x=20 .
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Generative model would describe the random data with input density
h(z,,2,) and generator vector function G(z,,z,)

Y1
Y = G(Zl,ZQ) — Y2

Y3

— Gl(Zl,ZQ) I Y1 = TCOS(27T21)Sin(7T22)
= GQ(Zl,ZQ) = Yo = rsin(27rz1)sin(7er)
— Gg(Zl,ZQ) 1 | Y3 = TCOS(TI'ZQ)

h(z,,2,) defined on [0,1]x|0,1] and G(z,,2,) is an ordinary function

Data are representable as Y = G(Z), Z follows h(Z). Many datasets satisfy

dim(Z) < dim(Y)

In HD CelebA:  dim(Y) = 3 X 1024 X 1024 = 3 X 106

Input to Generator G(Z2):

dim(Z) = 500 (independent Gaussians)
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Application to
Inverse Problems
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Solutions Based on GANs

Available training data {X},...,.X }

Design generator G(Z) so that when applied to Z with Z ~ h(Z)
then Y = G(Z) has same density as training data

Generate {Z,,.. ,Z }with density h(2)

Zcb (X, Zw( G(Z:,6),9))

Discriminator Generator
mein mﬁaxJ(@, V)

Assume known Generative Model {G(Z),h(Z)}, also Discriminator D(X)



General Problem

Given vector X (measurements) we are interested in estimating vector Y
with X =T(Y)+W and T(Y) known transformation

Y follows Generative Model

There exists Z following density h(Z) such that Y=G(Z)
Instead of estimating Y from X we estimate input to generative model Z

Measurements X =T(Y) + W

A

X Y P
| ® Compute estimate Y
- W e -l
y 4 Measurements X = T(G(Z)) + W
T(Y)

Compute estimate 7
andletY = G(2)
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Several image restoration problems in Computer Vision can be formulated as

follows

Measurement =—X = T(Y) + W more general X = T(Y,a) + W

Known transfmm ' Noise | Wparameters]

Problem: Recover (restore) ideal Y from measurements X

|deal Examples of transformatlons
Restore >

6
J
7 7

o AN\ N s
Inpainting Colorization Super-Res De- N0|S|ng De- Quantlzatlon

1

Recovering Y from measurements X is an ill posed problem

16



Y X

ﬂ ‘ (More unknowns
= 7 »  —— than equations

Inpainting

Classical approach: Impose “smoothness” constraints to obtain a (unique)
solution

Available generative model {G(Z),h(2)}: Y = G(Z)

Since Y = G(Z), instead of estimating Y, estimate input to generator Z
then recover Y as the output of the generator

Because dim(Z) < dim(Y), significant computational gain and stable processing
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Ad-Hoc Approaches
Select Z so that measurement X and T(G(Z)) are “close”

mZinHX—T(G(Z))H2 = Zo = Y, = G(Z,)

Well defined optimization, computationally stable
Y X G(Zo)

F < Failure |
Generative model is a pair {G(Z),h(Z)}

Even for T(G(Z)) “close” to X, if likelihood h(Zo) is very small
then Y, = G(Z,) is a bad solution

Must take into account input density h(Z)




Yeh et al. (2017), (2018)
)(Z) = |1X = T(6(2))] ) Regularizer } [ log h(Z) }
[{ log (1 _ D(G(Z))) _ Iog( (G(Z))) _ 1|]Z||2}J

man (Z) = Zo = Yo =

Parameter needs tuning

Asim et al. (2019) Success ?

J(Z) =X - T H2—|—)\HZH2 minJ(Z) = Zy, = Y, =G(Z

[Both methods require exact knowledge of T(Y)}




Applying Statistical Estimation

Given densities f(X'| Z) and prior h(Z), for measurement X estimate Z

MAP estimator is of the form
7 = arg mZaxf(Z|X) = arg mZaxf(X, Z) = arg mZaxf(X|Z)h(Z)

Let Z={Z,,Z,} where there is prior for Z, but not for Z,
Treat non-existing prior as degenerate uniform

arg max f(Zl, ZQ‘X) — arg max f(X Zl, ZQ)

Zl ZQ Zl ZQ
— argénazx f(X|Zla Q)h(Zla Z2)
= arg max f(X|Z1, Z2)h1(Z1]22)h2(Z2)
hy(Z2) degenerate uniform = arg max f(X|Z1, Z2)h1(Z1|Z2)

Zl,ZQ



If interested in estimating Z; and Z5 are nuisance parameters then

Zl — arg mZax {mZaxf(X|Zl,Z2)h1(Zl\Zg)}

where h,(Z,| Z,) prior of Z, given Z,

If Z, does not depend on Z, then h,(Z,|Z,)=h,(Z,) and

7, = arg max {mZaxf(X]Zl,Zg)hl(Zl)}



We are given vector X (measurements) and interested in estimating vector Y
We assume X =T(Y,a) + W=T(G(Z),) + W

T(Y,a): transformation of known mathematical form possibly containing
unknown parameters «. Can be different per measurement X

W: additive noise with density g, (W,/3) possibly containing unknown
parameters (. Can be different per measurement X
Z: follows density h(Z) from generative model {G(Z), h(Z)}

Z.=7, Z={a,8) f(X|Z,7%)=f(X|Z,a,p) :gw(X—T(G(Z),a),ﬁ)

Z = arg mZax{ rg%xf(X\Z,a,B)h(Z)}

= arg max{ max g, (X — T(G(Z),a),ﬁ)h(Z)}

Z o,



Z = arg mZax{ max max gy, (X — T(G(Z),a),ﬁ)h(Z)}

W additive noise is Gaussian mean O and covariance (321

—IX—T(G(2),0)|2/26°
mMax g, (X — T(G(Z),a),ﬁ) = max

B B (\/2762%)N

N: length of measurement vector X

B C
X =T(G(Z), )V

. Ch(Z)
Z = arg mZax{m X — T(G(Z),Oé)HN}
— arg max 7)
(

Z (ming [| X — T(G(Z), a)||2)N/?



Z: If input of generative model is Gaussian with mean O and covariance
identity

. C’ o 11Z1%/2
~ 8 M ing [ X — T(G(2), ) |2)V/2

A

- | N L L
Z = arg min {Iog(moln | X —T(G(Z), a)| ) T NHZH }

& min {Iog (I1X = T(6(2), a)|) + %IIZH?}

Z,x



If transformation satisfies
TY,a)=a1T1(Y)+ -+ a,Tn(Y)
then T(G(Z),a) =a1T1(G(Z2)) 4+ 4+ anTm(G(2)) = 5(2)A
oy

where G(Z) = [Tl (G(2)) ---Tm(G(Z))}, A=

min||X — $(2)A|* = | X|P - XTS(2)(37(2)5(2)) " '97(2)X

7 = arg mZin {Iog (HXH2 — XTS(Z)(9T(Z)9(Z))_19T(Z)X) + %HZHZ}



Examples
Blurring with 3 X 3 mask Colorization (green channel)
Known Unknown Y Yeh Asim  Known Unknown

Yy X Yeh  Asim_







De-Quantization

3 levels per RGB channel, 2

v

colors
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Data Mixtures

Unknown

Known




Nonlinear Data Mixtures

We assume two independent data vectors Y, Y, that are combined as
X =T(Y,Y,0)+ W

Y;: generative model {G,(Z,),h,(Z;)}
Y,: generative model {G,(Z,),h,(Z,)}
W: additive noise with density g (W,3) containing unknown parameters g

{Zla ZA2} —

1
arg. min {'Og(min IX = T(61(21).G2(Z2), ) [*) + 1 (1 Z0]* + ||Zz||2)}

1
> min {108 (1X = T(G1(20).Go(Za).0) ) + 5 (1:F + 12217) |



