
T
homas Bayes (1701–1761), shown in
the upper left corner of Figure 1, first
discovered Bayes’ theorem in a paper
that was published in 1764 three
years after his death, as the name

suggests. However, Bayes, in his theorem, used
uniform priors [1]. Pierre-Simon Laplace
(1749–1827), shown in the lower right corner of
Figure 1, apparently unaware of Bayes’ work, dis-
covered the same theorem in more general form
in a memoir he wrote at the age of 25 and
showed its wide applicability [2]. Regarding these
issues S.M. Stiegler writes:

The influence of this memoir was immense.
It was from here that “Bayesian” ideas first
spread through the mathematical world, as
Bayes’s own article was ignored until 1780 and
played no important role in scientific debate
until the 20th century. It was also this article of
Laplace’s that introduced the mathematical
techniques for the asymptotic analysis of poste-
rior distributions that are still employed today.
And it was here that the earliest example of
optimum estimation can be found, the deriva-
tion and characterization of an estimator that
minimized a particular measure of posterior
expected loss. After more than two centuries,
we mathematicians, statisticians cannot only
recognize our roots in this masterpiece of our
science, we can still learn from it. [3]
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Maximum likelihood (ML) estimation is one of the most
popular methodologies used in modern statistical signal pro-
cessing. The expectation maximization (EM) algorithm is an
iterative algorithm for ML estimation that has a number of
advantages and has become a standard methodology for solv-
ing statistical signal processing problems. However, the EM
algorithm has certain requirements that seriously limit its
applicability to complex problems. Recently, a new methodol-
ogy termed “variational Bayesian inference” has emerged,
which relaxes some of the limiting requirements of the EM
algorithm and is gaining rapidly popularity. Furthermore, one
can show that the EM algorithm can be viewed as a special
case of this methodology. In this article, we first present a
tutorial introduction of Bayesian variational inference aimed
at the signal processing community. We use linear regression
and Gaussian mixture modeling as examples to demonstrate
the additional capabilities that Bayesian variational inference
offers as compared to the EM algorithm. 

INTRODUCTION
The ML methodology is one of the basic staples of modern sta-
tistical signal processing. The EM algorithm is an iterative
algorithm that offers a number of advantages for obtaining
ML estimates. Since its formal introduction in 1977 by
Dempster et al. [4], the EM algorithm has become a standard
methodology for ML estimation. In the IEEE community, the
EM is steadily gaining popularity and is being used in an
increasing number of applications. The first publications in
IEEE journals making reference to the EM algorithm

appeared in 1988 and dealt with the problem of tomographic
reconstruction of photon limited images [5], [6]. Since then,
the EM algorithm has become a popular tool for statistical
signal processing used in a wide range of applications, such as
recovery and segmentation of images and video, image model-
ling, carrier frequency synchronization,  and channel estima-
tion in communications and speech recognition. 

The concept behind the EM algorithm is very intuitive and
natural. EM-like algorithms existed in the statistical literature
even before [4], however such algorithms were actually EM
algorithms in special contexts. The first known such reference
dates back to 1886, when Newcomb considers the estimation
of the parameters of a mixture of two univariate normals [7].
However, it was in [4] where such ideas were synthesized and
the general formulation of the EM algorithm was established.
A good survey on the history of the EM algorithm before [4]
can be found in [8]. 

The present article is not a tutorial on the EM algorithm.
Such a tutorial appeared in 1996 in IEEE Signal Processing
Magazine [9]. The present article is aimed at presenting an
emerging new methodology for statistical inference that ame-
liorates certain shortcomings of the EM algorithm. This
methodology is termed variational approximation [10] and
can be used to solve complex Bayesian models where the EM
algorithm cannot be applied. Bayesian inference based on the
variational approximation has been used extensively by the
machine learning community since the mid-1990s when it
was first introduced. 

BAYESIAN INFERENCE BASICS
Assume that x are the observations and θθθ the unknown
parameters of a model that generated x. In this article, the
term estimation will be used strictly to refer to parameters
and inference to refer to random variables. The term estima-
tion refers to the calculated approximation of the value of a
parameter from incomplete, uncertain and noisy data. In con-
trast, the term inference will be used to imply Bayesian infer-
ence and refers to the process in which prior evidence and
observations are used to infer the posterior probability p(θθθ |x)
of the random variables θθθ given the observations x.

One of the most popular approaches for parameter estima-
tion is ML. According to this approach, the ML estimate is
obtained as 

θ̂θθML = arg max
θθθ

p(x; θθθ), (1)

where p(x; θθθ) describes the probabilistic relationship between the
observations and the parameters based on the assumed model
that generated the observations x. At this point, we would like to
clarify the difference between the notation p(x; θθθ) and p(x|θθθ).
When we write p(x; θθθ) we imply that θθθ are parameters and as a
function of θθθ is called the likelihood function. In contrast, when
we write p(x; θθθ), we imply that θθθ are random variables. 

In many cases of interest direct assessment of the likeli-
hood function p(x; θθθ) is complex and is either difficult or

[FIG1] Thomas Bayes (upper left) and Pierre-Simon Laplace
(lower right) discovered similar theorems in mathematics in the
1700s, spreading new techniques throughout the mathematic
world that are still used more than two centuries later.



impossible to compute it directly or optimize it. In such cases
the computation of this likelihood is greatly facilitated by the
introduction of hidden variables z. These random variables act
as links that connect the observations to the unknown param-
eters via Bayes’ law. The choice of hidden variables is problem
dependent. However, as their name suggests, these variables
are not observed and they provide enough information about
the observations so that the conditional probability p(x|z) is
easy to compute. Apart from this role, hidden variables play
another role in statistical modeling. They are an important
part of the probabilistic mechanism that is assumed to have
generated the observations and can be described very succinct-
ly by a graph that is termed “graphical model.” More details on
graphical models is given in the section “Graphic Models.” 

Once hidden variables and a prior probability for them
p(z; θθθ) have been introduced, one can obtain the likelihood or
the marginal likelihood as it is called at times by integrating
out (marginalizing) the hidden variables according to 

p(x; θθθ) =
∫

p(x, z; θθθ) dz =
∫

p(x|z; θθθ)p(z; θθθ)dz. (2)

This seemingly simple integration is the crux of the
Bayesian methodology because in this manner we can obtain
both the likelihood function, and by using Bayes’ theorem,
the posterior of the hidden variables according to

p(z|x; θθθ) = p(x|z; θθθ)p(z; θθθ)

p(x; θθθ)
. (3)

Once the posterior is available, inference as explained above
for the hidden variables is also possible. Despite the simplicity
of the above formulation, in most cases of interest the integral
in  (2) is either impossible or very difficult to compute in
closed form. Thus, the main effort in Bayesian Inference is
concentrated on techniques that allow us to bypass or approx-
imately evaluate this integral. 

Such methods can be classified into two broad categories.
The first is numerical sampling methods also known as Monte
Carlo techniques and the second is deterministic approxima-
tions. This article will not address at all Monte Carlo methods.
The interested reader for such methods is referred to a num-
ber of books and survey articles on this topic, for example [11]
and [12]. Furthermore, maximum posteriori (MAP) inference,
which is an extension of the ML approach, can be considered
as a very crude Bayesian approximation, see “Maximum A
Posteriori: Poor Man’s Bayesian Inference.”

As it will be shown in what follows, the EM algorithm is a
Bayesian inference methodology that assumes knowledge of
the posterior p(z|x; θθθ) and iteratively maximizes the likelihood
function without explicitly computing it. A serious shortcom-
ing of this methodology is that in many cases of interest this
posterior is not available. However, recent developments in

One of the most commonly used methodologies in the sta-
tistical signal processing literature is the maximum a poste-
riori (MAP) method. MAP is often referred to as Bayesian,
since the parameter vector θθθ is assumed to be a random
variable and a prior distribution pθθθ is imposed on θθθ . In this
appendix, we would like to illuminate the similarities and
differences between MAP estimation and Bayesian infer-
ence. For x the observation and θθθ an unknown quantity the
MAP estimate is defined as

θ̂θθMAP = arg max
θθθ

p(θθθ |x) (A.1)

Using Bayes’ theorem, the MAP estimate can be obtainedfrom

θ̂θθMAP = arg max
θθθ

p(x|θθθ)pθθθ (A.2)

where p(x|θθθ) is the likelihood of the observations. The MAP
estimate is easier to obtain from (A.2) than (A.1). The posteri-
or in (A.1) based on Bayes’ theorem is given by 

p(θθθ |x) = p(x|θθθ)p(θθθ)∫
p(x|θθθ)p(θθθ) dθθθ

(A.3)

and requires the computation of the Bayesian integral in the
denominator of (A.3) to marginalize θθθ.

From the above, it is clear that both MAP and Bayesian esti-
mators assume that θθθ is a random variable and use Bayes’ theo-
rem, however, their similarity stops there. For Bayesian

inference, the posterior is used and thus θθθ has to be marginal-
ized. In contrast, for MAP the mode of the posterior is used.
One can say that Bayesian inference, unlike MAP, averages over
all the available information about θθθ. Thus, it can be stated that
MAP is more like “poor man’s” Bayesian inference. 

The EM can be used to also obtain MAP estimates of θθθ. Using
Bayes’ theorem we can write 

ln p(θθθ |x) = ln p(θθθ |x) − ln p(x)

= ln p(x|θθθ) + ln p(θθθ) − ln p(x). (A.4)

Using a similar framework as for the ML-EM case in the section
“An Alternative View of the EM Algorithm,” we can write

ln p(θθθ |x) = F(q, θθθ) + KL(q||p) + ln p(θθθ) − ln p(x)

≥ F(q, θθθ) + ln p(θθθ) − ln p(x), (A.5)

where in this context ln p(x) is a constant. The right-hand side
of (A.5) can be maximized in an alternating fashion as in the
EM algorithm. Optimization with respect to q(z) gives an iden-
tical E-step as for the ML case previously explained.
Optimization with respect to θθθ gives a different M-step since
the objective function now contains also the term ln p(θ)(θ)(θ). In
general, the M-step for the MAP-EM algorithm is more complex
than in its ML counterpart, see for example [30] and [31].
Strictly speaking, in such a model MAP estimation is used only
for the θθθ random variables, while Bayesian inference is used for
hidden variables z.
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Bayesian inference allow us to bypass this difficulty by approxi-
mating the posterior. They are termed “variational Bayesian”
and they will be the focus of this tutorial. 

GRAPHICAL MODELS
Graphical models provide a framework for representing depend-
encies among the random variables of a statistical modelling
problem and they constitute a comprehensive and elegant way
to graphically represent the interaction among the entities
involved in a probabilistic system. A graphical model is a graph
whose nodes correspond to the random variables of a problem
and the edges represent the dependencies among the variables.
A directed edge from a node A to a node B in the graph denotes
that the variable B stochastically depends on the value of the
variable A. Graphical models can be either directed or undirect-
ed. In the second case they are also known as Markov random
fields [13], [14], [15]. In the rest of this tutorial, we will focus on
directed graphical models also called Bayesian Networks, where
all the edges are considered to have a direction from parent to
child denoting the conditional dependency among the corre-
sponding random variables. In addition we assume that the
directed graph is acyclic (i.e., contains no cycles).

Let G = (V, E ) be a directed acyclic graph with V being the
set of nodes and E the set of directed edges. Let also xs denote
the random variable associated with node s and π(s) the set of
parents of node s. Associated with each node s is also a condi-
tional probability density p(xs|xπ(s)) that defines the distribu-
tion of xs given the values of its parent variables. Therefore,
for a graphical model to be completely defined, apart from the
graph structure, the conditional probability distribution at

each node should also be specified. Once these distributions
are known, the joint distribution over the set of all variables
can be computed as the product:

p(x) =
∏

s
p(xs|xπ(s)). (4)

The above equation constitutes a formal definition of a
directed graphical model [13] as a collection of probability
distributions that factorize in the way specified in the above
equation (which of course depends on the structure of the
underlying graph).

In Figure 2 we show an example of a directed graphical
model. The random variables depicted at the nodes are a, b, c,
and d. Each node represents a conditional probability density
that quantifies the dependency of the node from its parents.
The densities at the nodes might not be exactly known and can
be parameterized by a set of parameters θi. Using the chain
rule of probability we would write the joint distribution as:

p(a, b, c, d; θθθ) = p(a; θ1)p(b|a; θ2)p(c|a, b; θ3)p(d|a, b, c; θ4).

(5)

However, we can simplify this expression by taking into
account the independencies that the graph structure implies.
In general, in a graphical model each node is independent of
its ancestors given its parents. This means that node c does
not depend on node a given node b, and node d does not
depend on a given nodes b and c. Thus, from (4) we can write:

p(a, b, c, d; θθθ) = p(a; θθθ1)p(b |a; θθθ2)p(c|a; θθθ3)p(d |b, c; θθθ4).

(6)

Another useful characterization arising in graphical mod-
eling is that in the presence of some observations, usually
called dataset, the random variables can be distinguished as
observed (or visible) for which there exist observations and
hidden for which direct observations are not available. A use-
ful consideration is to assume that the observed data are pro-
duced through a generation mechanism, described by the
graphical model structure, which involves the hidden vari-
ables as intermediate sampling and computational steps. It
must also be noted that a graphical model can be either para-
metric or nonparametric. If the model is parametric, the
parameters appear in the conditional probability distributions
at some of the graph nodes, i.e., these distributions are para-
meterized probabilistic models.

Once a graphical model is completely determined (i.e., all
parameters have been specified), then several inference prob-
lems could be defined such as computing the marginal distri-
bution of a subset of random variables, computing the
conditional distribution of a subset of variables given the val-
ues of the rest variables and computing the maximum point
in some of the previous densities. In the case where the
graphical model is parametric, then we have the problem of

[FIG2] Example of directed graphical model. Nodes denoted with
circles correspond to random variables, while nodes denoted
with squares correspond to parameters of the model. Doubly
circled nodes represent observed random variables, while single
circled nodes represent hidden random variables.
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learning appropriate values of the parameters given some
dataset with observations. Usually, in the process of parameter
learning, several inference steps are involved. 

AN ALTERNATIVE VIEW OF THE EM ALGORITHM
In this article, we will follow the exposition of the EM in [16]
and [13]. It is straightforward to show that the log-likelihood
can be written as 

ln p(x; θθθ) = F(q, θθθ) + KL(q‖p) (7)

with 

F(q, θθθ) =
∫

q(z) ln
(

p(x, z; θθθ)

q(z)

)
dz (8)

and 

KL(q‖p) = −
∫

q(z) ln
(

p(z|x; θθθ)

q(z)

)
dz (9)

where q(z) is any probability density function. KL(q‖p) is
the Kullback-Leibler divergence between p(z|x; θθθ) and q(z),
and since KL(q‖p) ≥ 0, it holds that ln p(x; θθθ) ≥ F(q, θθθ). In
other words, F(q, θθθ) is a lower bound of the log-likelihood.
Equality holds only when KL(q‖p) = 0, which implies
p(z|x; θθθ) = q(z) .  The EM algorithm and some recent
advances in deterministic approximations for Bayesian infer-
ence can be viewed in the light of the decomposition in (7)
as the maximization of the lower bound F(q, θθθ) with respect
to the density q and the parameters θθθ .

In particular, the EM is a two step iterative algorithm that
maximizes the lower bound F(q, θθθ) and hence the log-likeli-
hood. Assume that the current value of the parameters is
θθθOLD. In the E-step the lower bound F(q, θθθOLD) is maximized
with respect to q(z). It is easy to see that this happens when
KL(q‖p) = 0, in other words, when q(z) = p(z|x; θθθOLD). In
this case the lower bound is equal to the log-likelihood. In the
subsequent M-step, q(z) is held fixed and the lower bound
F(q, θθθ) is maximized with respect to θθθ to give some new value
θθθNEW. This will cause the lower bound to increase and as a
result, the corresponding log-likelihood will also increase.
Because q(z) was determined using θθθOLD and is held fixed in
the M-step, it will not be equal to the new posterior
p(z|x; θθθNEW) and hence the KL distance will not be zero. Thus,
the increase in the log-likelihood is greater than the increase
in the lower bound. If we substitute q(z) = p(z|x; θθθOLD) into
the lower bound and expand (8) we get 

F(q, θθθ) =
∫

p(z|x; θθθOLD) ln p(x, z; θθθ) dz

−
∫

p(z|x; θθθOLD) ln p(z|x; θθθOLD) dz

= Q(θθθ, θθθOLD) + constant (10)

where the constant is simply the entropy of p(z|x; θθθOLD)

which does not depend on θθθ . The function 

Q(θθθ, θθθOLD) =
∫

p(z|x; θθθOLD) ln p(x, z; θθθ) dz

= 〈ln p(x, z; θθθ)〉
p(z|x;θθθOLD

)
(11)

is the expectation of the log-likelihood of the complete data
(observations + hidden variables) which is maximized in the
M-step. The usual way of presenting the EM algorithm in the
signal processing literature has been via use of the Q(θθθ, θθθOLD)

function directly, see for example [9] and [17].
In summary, the EM algorithm is an iterative algorithm

involving the following two steps: 

E-step : Compute p(z|x; θθθOLD) (12)

M-step : Evaluate θθθNEW = arg max
θθθ

Q (θθθ, θθθOLD). (13)

Furthermore, we would like to point out that the EM algo-
rithm requires that p(z|x; θθθ) is explicitly known, or at least
we should be able to compute the conditional expectation of
its sufficient statistics 〈ln p(z|x; θθθ)〉

p(z|x;θθθOLD
)
, see (11). In

other words, we have to know the conditional pdf of the hid-
den variables given the observations in order to use the EM
algorithm. While p(z|x; θθθ) is in general much easier to infer
than p(x; θθθ), in many interesting problems this is not possible
and thus the EM algorithm is not applicable. 

THE VARIATIONAL EM FRAMEWORK
One can bypass the requirement of exactly knowing p(z|x; θθθ)

by assuming an appropriate q(z) in the decomposition of (7).
In the E-step q(z) is found such that it maximizes F(q, θθθ)

keeping θθθ fixed. To perform this maximization, a particular
form of q(z) must be assumed. In certain cases it is possible to
assume knowledge of the form of q(z;ωωω), where ωωω is a set of
parameters. Thus, the lower bound F(ωωω, θθθ) becomes a func-
tion of these parameters and is maximized with respect to ωωω
in the E-step and with respect to θθθ in the M-step, see for
example [13].

However, in its general form the lower bound F(q, θθθ) is a
functional in terms of q, in other words, a mapping that takes
as input a function q(z), and returns as output the value of
the functional. This leads naturally to the concept of the func-
tional derivative, which in analogy to the function derivative,
gives the functional changes for infinitesimal changes to the
input function. This area of mathematics is called calculus of
variations [18] and has been applied to many areas of mathe-
matics, physical sciences and engineering, for example fluid
mechanics, heat transfer, and control theory. 

Although there are no approximations in the variational
theory, variational methods can be used to find approximate
solutions in Bayesian inference problems. This is done by
assuming that the functions over which optimization is per-
formed have specific forms. For example, we can assume only
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quadratic functions or functions that are linear combinations
of fixed basis functions. For Bayesian inference, a particular
form that has been used with great success is the factorized
one, see [19] and [20]. The idea for this factorized approxima-
tion stems from theoretical physics where it is called mean
field theory [21].

According to this approximation, the hidden variables z are
assumed to be partitioned into M partitions zi with
i = 1, . . . , M . Also it is assumed that q(z) factorizes with
respect to these partitions as 

q(z) =
M∏

i =1

qi(zi). (14)

Thus, we wish to find the q(z) of the form of (14) that maxi-
mizes the lower bound F(q, θθθ). Using (14) and denoting for
simplicity qj (zj ) = qj we have 

F(q, θθθ) =
∫ ∏

i

qi

[
ln p(x, z; θθθ −

∑
i

ln qi

]
dz

=
∫ ∏

i

qi ln p(x, z; θθθ
∏

i

dzi

−
∑

i

∫ ∏
j

qj ln qi dzi

=
∫

qj

⎡
⎣ln p(x, z; θθθ

∏
i �= j

(qi dzi)

⎤
⎦ dzj

−
∫

qj ln qj dzj −
∑
i �= j

∫
qi ln qi dzi

=
∫

qj ln p̃(x, zj ; θθθ dzi −
∫

qj ln qj dzj

−
∑
i �= j

∫
qi ln qi dzi

= −KL(qj ‖ p̃) −
∑
i �= j

∫
qi ln qi dz (15)

where

ln p̃(x, zj ; θθθ) = 〈ln p(x, z; θθθ)〉i �= j =
∫

ln p(x, z; θθθ)
∏
i �= j

(qi dzi).

Clearly the bound in (15) is maximized when the Kullback-
Leibler distance becomes zero, which is the case for
qj(zj ) = p̃(x, zj ; θθθ) , in other words the expression for the
optimal distribution q∗

j (zj ) is 

ln q∗
j (zj ) = 〈ln p(x, z; θθθ)〉i �= j + const. (16)

The additive constant in (16) can be obtained through nor-
malization, thus we have 

q∗
j (zj ) = exp

(〈ln p(x, z; θθθ)〉i �= j
)

∫
exp

(〈ln p(x, z; θθθ)〉i �= j
)

dzj
. (17)

The above equations for j = 1, . . . , M are a set of consistency
conditions for the maximum of the lower bound subject to the
factorization of (14). They do not provide an explicit solution
since they depend on the other factors qi(zi) for i �= j. Therefore,
a consistent solution is found by cycling through these factors
and replacing each in turn with the revised estimate. 

In summary, the variational EM algorithm is given by the
following two steps:

Variational E-Step: Evaluate qNEW(z) to maximize
F(q, θθθOLD) solving the system of (17).

Variational M-Step: Find θθθNEW = arg max
θθθ

F(qNEW, θθθ).
At this point it is worth noting that in certain cases a

Bayesian model can contain only hidden variables and no
parameters. In such cases the variational EM algorithm has
only an E-step in which q(z) is obtained using (17). This func-
tion q(z) constitutes an approximation to p(z|x) that can be
used for inference of the hidden variables.

LINEAR REGRESSION
In this section, we will use the linear regression problem as
an example to demonstrate the Bayesian inference methods of
the previous sections. Linear regression was selected because
it is simple and constitues an excellent introductory example.
Furthermore, it occurs in many signal processing applications
ranging from deconvolution, channel estimation, speech
recognition, frequency estimation, time series prediction, and
system identification. 

For this problem, we consider an unknown signal
y(x) ∈ 	, x ∈ � ⊆ 	N and want to predict its value t∗ = y(x∗)
at an arbitrary location x∗ ∈ � ,  using a vector
t = (t1, . . . , tN)T of N noisy observations tn = y(xn) + εn, at
locations x = (x1, . . . , xN)T, xn ∈ �, n = 1, . . . , N. The addi-
tive noise εn is commonly assumed to be independent, zero-
mean, Gaussian distributed: 

p(εεε) = N(εεε|0, β−1I), (18)

where β is the inverse variance and εεε = (ε1, . . . , εN)T.
The signal y is commonly modeled as the linear combina-

tion of M basis functions φm(x): 

y(x) =
M∑

m=1

wmφm(x), (19)

where w = (w1, . . . , wM)T are the weights of the linear combi-
nation. Defining the design matrix 			 = (φ1, . . . , φM), with
φm = (φm(x1), . . . , φm(xN))T, the observations t are modeled as

t = 			w + εεε (20)

and the likelihood is 
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p(t; w, β) = N(t|			w, β−1I). (21)

In what follows we will apply the theory from earlier sec-
tions to the linear regression problem and demonstrate three
methodologies to compute the unknown weights w of this
linear model. First, we apply typical ML estimation of the
weights which are assumed to be parameters. As it will be
demonstrated, since the number of parameters is the same as
the number of our observations, the ML estimates are very
sensitive to the model noise and over fit the observations.
Subsequently, to ameliorate this problem a prior is imposed
on the weights which are assumed to be random variables.
First, a simple Bayesian model is used which is based on a
stationary Gaussian prior for the weights. For this model,
Bayesian inference is performed using the EM algorithm and
the resulting solution is robust to noise. Nevertheless, this
Bayesian model is very simplistic and does not have the abili-
ty to capture the local signal properties. For this purpose it is
possible to introduce a more sophisticated spatially varying
hierarchical model which is based on a nonstationary
Gaussian prior for the weights and a hyperprior. This model
is too complex to solve using the EM algorithm. For this pur-
pose, the variational Bayesian methodology described in the
section “Variational EM Framework” is used to infer values
for the unknowns of this model. Finally, the three methods
are used to obtain estimates of a simple artificial signal, in
order to demonstare that the added complexity in the
Bayesian model improves the solution quality. In Figure 3(a),
(b), and (c) we show the graphical models for the three
approaches to Linear Regression.

The simplest estimate of the weights w of the linear model
is obtained by maximizing the likelihood of the model. This
ML estimate assumes the weights w to be parameters, as
shown in the graphical model of Figure 3(a). The ML estimate
is obtained by maximizing the likelihood function

p(t; w, β) = (2π)−
N
2 β

N
2 exp

(
−β

2
‖t − 			w‖2

)
.

This is equivalent to minimizing ELS(w) = ‖t − 			w‖2 . Thus,
in this case the ML is equivalent with the least squares (LS)
estimate 

wLS = arg max
w

p(t; w, β) = arg min
w

ELS(w) = (			T			)−1			Tt.

(22)

In many situations (and depending on the basis functions
that are used), the matrix 			T			 may be ill-conditioned and
difficult to invert. This means that if noise εεε is included in
the signal observations, it will heavily affect the estimation
wLS of the weights. Thus, when using ML linear regression
(MLLR), the basis functions should be carefully chosen to
ensure that matrix 			T			 can be inverted. This is generally
achieved by using a sparse model with few basis functions,
which also has the advantage that only few parameters have
to be estimated. 

EM-BASED BAYESIAN LINEAR REGRESSION
A Bayesian treatment of the linear model begins by assign-
ing a prior distribution to the weights of the model. This
introduces bias in the estimation but also greatly reduces
its variance, which is a major problem of the ML estimate.
Here, we consider the common choice of independent,
zero-mean, Gaussian prior distribution for the weights of
the linear model:

p(w;α) =
M∏

m=1

N(wm|0, α−1). (23)

This is a stationary prior distribution, meaning that the distri-
bution of all the weights is identical. The graphical model for
this problem is shown in Figure 3(b). Notice that here the
weights w are hidden random variables and the model param-
eters are the parameter α of the prior for w and the inverse
variance β of the additive noise.

Bayesian inference proceeds by computing the posterior
distribution of the hidden variables: 

p(w|t;α, β) = p(t|w;β)p(w;α)

p(t;α, β)
. (24)

[FIG3] Graphical models for linear regression solved using (a)
direct ML estimation (model without prior), (b) EM (model with
stationary prior),  and (c) variational EM (model with
hierarchical prior).

(a) (b)

(c)

t

N

N

M

W

W

a b

M

N d

c
t

W

t

α

β

β

α

β



IEEE SIGNAL PROCESSING MAGAZINE [138] NOVEMBER 2008

Notice that the marginal likelihood p(t;α, β) that appears on
the denominator can be computed analytically: 

p(t;α, β) =
∫

p(t|w;β)p(w;α) dw = N(t|0, β−1I + α−1						T).

(25)

Then, the posterior of the hidden variables is

p(w|t;α, β) = N(w|μμμ,���), (26)

with 

μμμ = β�	�	�	Tt, (27)

��� = (β			T			 + αI)−1. (28)

The parameters of the model can be estimated by maximizing
the logarithm of the marginal likelihood p(t;α, β):

(αML, βML) = arg min
α,β

{
log |β−1I + α−1						T |

+ tT(β−1I + α−1						T)−1t
}
. (29)

Direct optimization of (29) presents several computation-
al difficulties, since its derivatives with respect to the param-
eters (α, β) are difficult to compute. Furthermore, the
problem requires a constrained optimization algorithm since
the estimates of (α, β) have to be positive since they repre-
sent inverse variances. Instead, the EM algorithm described
earlier, provides an efficient framework to simultaneously
obtain estimates for (α, β) and infer values for w. Notice, that
although the EM algorithm does not involve computations
with the marginal likelihood (25), the algorithm converges to
a local maximum of it. After initializing the parameters to
some values (α(0), β(0)), the algorithm proceeds by iteratively
performing the following steps:

■ E- step
Compute the expected value of the logarithm of the com-
plete likelihood :

Q(t)(t, w;α, β) = 〈ln p(t, w;α, β)〉p(w|t;α(t),β(t))

= 〈ln p(t|w;α, β)p(w;α, β)〉p(w|t;α(t),β(t)).

(30)

This is computed using (21) and (23) as 

Q(t)(t, w;α, β) =
〈

N
2

ln β − β

2
(‖t − 			w‖2)

+ M
2

ln α − α

2
(‖w‖2)

〉
+ const

= N
2

ln β − β

2
〈‖t − 			w‖2〉 + M

2
ln α

− α

2
(〈‖w‖2〉) + const. (31)

These expected values are with respect to p(w|t;α(t), β(t))

and can be computed from (26), giving

Q(t)(t, w;α, β) = N
2

ln β − β

2

(
‖t − 	μ	μ	μ(t)‖2 + tr[			T���(t)			]

)
+ M

2
ln α − α

2

(
‖μμμ(t)‖2 + tr[���(t)]

)
+ const

(32)

where μμμ(t) and ���(t) are computed using the current esti-
mates of the parameters α(t) and β(t): 

μμμ(t) = β(t)���(t)			Tt, (32)

���(t) = (β(t)			T			 + α(t)I)−1. (34)

■ M- step
Maximize Q(t)(t, w;α, β) with respect to the parameters α
and β :

(α(t+1), β(t+1)) = arg max
(α,β)

Q(t)(t, w;α, β). (35)

The derivatives of Q(t)(t, w;α, β) with respect to the
parameters are: 

∂Q(t)(t, w;α, β)

∂α
= M

2α
− 1

2

(
‖μμμ(t)‖2 + tr[���(t)]

)
, (36)

∂Q(t)(t, w;α, β)

∂β
= N

2β
− 1

2

(
‖t − 	μ	μ	μ(t)‖2 + tr[			T���(t)			]

)
.

(37)

Setting these to zero, we obtain the following formulas to
update the parameters α and β : 

α(t+1) = M

‖μμμ(t)‖2 + tr[���(t)]
, (38)

β(t+1) = N

‖t − 	μ	μ	μ(t)‖2 + tr[			T���(t)			]
. (39)

Notice that the maximization step can be analytically per-
formed in contrast to direct maximization of the marginal
likelihood in (25), which would require numerical optimiza-
tion. Furthermore, (38) and (39) guarantee that positive esti-
mations for the parameters α and β are produced, which is a
requirement since these represent inverse variance parame-
ters. However, the parameters should be initialized with care,
since depending on the initialization a different local maxi-
mum may be attained. Inference for w is obtained directly
since the sufficient statistics of the posterior p(w|t;α, β) are
computed in the E-step. The mean of this posterior (33) can
be used as Bayesian linear minimum mean square error
(LMMSE) inference for w.
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VARIATIONAL EM-BASED
BAYESIAN LINEAR REGRESSION
In the Bayesian approach described in the previous section,
due to the use of a stationary Gaussian prior distribution for
the weights of the linear model, exact computation of the
marginal likelihood is possible and Bayesian inference is per-
formed analytically. However, in many situations, it is impor-
tant to allow the flexibility to model local characteristics of
the signal, which the simple stationary Gaussian prior distri-
bution is unable to do. For this reason, a nonstationary
Gaussian prior distribution with a distinct inverse variance
αm for each weight is considered:

p(w|ααα) =
M∏

m=1

N
(

wm |0, α−1
m

)
. (40)

However, such a model is over-parameterized since there are
almost as many observations as parameters to be estimated. For
this purpose, the precision parameters ααα = (α1, . . . , αM)T are
constrained by treating them as random variables and imposing
a Gamma prior distribution to them according to

p(ααα; a, b) =
M∏

m=1

Gamma(αm |a, b). (41)

This prior is selected because it is conjugate to the Gaussian
[13]. Furthermore, we assume a Gamma distribution as prior
for the noise inverse variance β

p(β; c, d) = Gamma(β|c, d ). (42)

The graphical model for this Bayesian approach is shown in
Figure 3(c) where the dependence of the hidden variables w
on the hidden variables ααα is apparent. Also, the parameters
a, b, c, and d of this model and the hidden variables that
depend on them are also apparent. 

Bayesian inference requires the computation of the poste-
rior distribution 

p(w, ααα, β|t) = p(t|w, β)p(w|ααα)p(ααα)p(β)

p(t)
. (43)

However, the marginal likelihood p(t) = ∫
p(t|w, β)p(w|ααα)p(ααα)

p(β)dwdαααdβ cannot be computed analytically, and thus the nor-
malization constant in (43) cannot be computed. Thus, we resort
to approximate Bayesian inference methods and specifically to the
variational inference methodology. Assuming posterior independ-
ence between the weights w and the variance parameters ααα and β,

p(w, ααα, β|t; a, b, c, d) ≈ q(w, ααα, β) = q(w)q(ααα)q(β), (44)

the approximate posterior distributions q can be computed
from (16) as follows. Keeping only the terms of ln q(w) that
depend on w, we have

ln q(w) = 〈ln p(t, w, ααα, β)q(ααα)q(β)〉+ const

= 〈ln p(t |w, β)p(w|ααα)q(ααα)q(β)〉+ const

= 〈ln p(t |w, β) + ln p(w|ααα)q(ααα)q(β)〉+ const

=
〈
−β

2
(t − 			w)T(t − 			w) − 1

2

M∑
m=1

αmw2
m

〉
+ const

= −〈β〉
2

[tTt − 2tT			w + wT			T			w]

− 1
2

M∑
m=1

〈αm〉w2
m + const

= −1
2

wT(〈β〉			T			 + 〈A〉)w − 〈β〉wT			Tt + const

= −1
2

wT���−1w − wT���−1μμμ + const (45)

where A = diag(α1, . . . , αM).
Notice that this is the exponent of a Gaussian distribution

with mean μμμ and covariance matrix ��� given by 

μμμ = 〈β〉�	�	�	Tt, (46)

��� = (〈β〉			T			 + 〈A〉)−1. (47)

Therefore, q(w) is given by

q(w) = N(w|μμμ,���). (48)

The posterior q(ααα) is similarly obtained by computing the
terms of ln q(ααα) that depend on ααα

ln q(ααα) = 〈ln p(t, w, ααα, β)〉q(w)q(β)

= 〈ln p(w|ααα)p(ααα)〉q(w)

= 1
2

M∑
m=1

ln αm −
M∑

m=1

αm

〈
w2

m

〉

+ (a − 1)

M∑
m=1

ln αm − b
M∑

m=1

αm

=
(

a − 1
2

) M∑
m=1

ln αm −
M∑

m=1

(
1
2

〈
w2

m

〉
+ b

)

= ã
M∑

m=1

ln αm −
M∑

m=1

b̃mαm + const. (49)

This is the exponent of the product of M independent Gamma
distributions with parameters ã and b̃m, given by 

ã = a + 1/2, (50)

b̃m = b + 1
2

〈
w2

m

〉
. (51)

Thus, q(ααα) is given by
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q(ααα) =
M∏

m=1

Gamma(αm |ã, b̃m). (52)

The posterior distribution of the noise inverse variance can
be similarly computed as

q(β) = Gamma(β |c̃, d̃m), (53)

with 

c̃ = c + N/2, (54)

d̃ = d + 1
2
〈‖t − 			w‖2〉. (55)

The approximate posterior distributions in (48), (52),
and (53) are then iteratively updated until convergence,
since they depend on the statistics of each other, see [22]
for details.

Notice here, that the true prior distribution of the
weights can be computed by marginalizing the hyper-
parameters ααα

p(w; a, b) =
∫

p(w|ααα)p(ααα; a, b) dααα

=
∫ M∏

m=1

N
(

wm |0, α−1
m

)
Gamma(αm |a, b) dαm

=
m∏

m=1

St(wm |λ, ν) (56)

and is a student-t pdf,

St(x |μ, λ, ν) = �((ν + 1)/2)

�(ν/2)

(
λ

πν

)1/2

×
[

1 + λ(x − μ)2

ν

]−(ν+1)/2

,

with mean μ = 0, parameter λ = a/b and degrees of freedom
ν = 2a. This distribution, for small degrees of freedom ν ,
exhibits very heavy tails. Thus, it favours sparse solutions,
which include only few of the basis functions and prunes the
remaining basis functions by setting the corresponding weights
to very small values. Those basis functions that are actually
used in the final model are called relevance basis functions.

For simplicity, we have assumed fixed the parameters a, b, c,
and d of the student-t distributions. In practice, we can often
obtain good results by assuming uninformative distributions,
which are obtained by setting these parameters to very small
values, i.e., a = b = c = d = 10−6 . Alternatively, we can esti-
mate these parameters using a variational EM algorithm. Such
an algorithm would add an M-step to the described method, in
which the variational bound would be maximized with respect
to these parameters. However, the typical approach in Bayesian
modeling is to fix the hyperparameters to define uninformative
hyperpriors at the highest level of the model.

LINEAR REGRESSION EXAMPLES
Next, we present numerical examples to demonstrate the prop-
erties of the previously described linear regression models. We
also demonstrate the advantages that can be reaped by using
the variational Bayesian inference. An artificially generated
signal y(x) is used, so that the original signal which generated
the observations is known and therefore the quality of the esti-
mations can be evaluated. We have obtained N = 50 samples of
the signal and added Gaussian noise of variance
σ 2 = 4 × 10−2 , which corresponds to signal to noise ratio
SNR = 6.6 dB. We used N basis functions and, specifically, one
basis function centred at the location of each signal observa-
tion. The basis functions were Gaussian kernels of the form 

φi(x) = K(x, xi) = exp

(
− 1

2σ 2
φ

‖x − xi‖2

)
. (57)

In this example we set a = b = 0, in order to obtain a very
heavy-tailed, uninformative Student-t distribution. 

We then used the observations to predict the output of the
signal, using i) ML estimation (22), ii) EM-based Bayesian
inference (33), and iii) variational EM-based Bayesian infer-
ence (46). Results are shown in Figure 4(a). Notice that the ML
estimate follows exactly the noisy observations. Thus, it is the
worst in terms of mean square error. This should be expected,
since in this formulation we use as many basis functions as the
observations and there is no constraint on the weights. The
Bayesian methodology overcomes this problem since the
weights are constrained by the priors. However, since this sig-
nal contains regions with large variance and some with very
small variance, it is clear that the stationary prior is not capa-
ble of accurately modeling its local behavior. In contrast, the
hierarchical nonstationary prior is more flexible and seems to
achieve better local fit. Actually, the solution corresponding to
the latter prior, uses only a small subset of the basis functions,
whose locations are shown as circled observations in Figure 4.
This happens because we have set a = b = 0, which defines an
uninformative Student-t distribution. Therefore, most weights
are estimated to be exactly zero and only few basis functions
are used in the signal estimation. Those basis functions that
are actually used in the final model are called relevance basis
function and the vectors where they are centered are called
relevance vectors (RV) and are shown in Figure 4. 

In the same spirit as this example, a hierarchical nonstationary
prior has been proposed for the image restoration, image super-
resolution, and image blind deconvolution problems in [23], [24],
and [25], respectively. In image reconstruction problems, such pri-
ors demonstrated the ability to preserve image edges and at the
same time suppress noise in flat areas of the image. In addition,
priors of this nature have also been used with success to design
watermark detectors when the underlying image is unknown [26].

GAUSSIAN MIXTURE MODELS
Gaussian mixture models (GMM) are a valuable statistical tool
for modeling densities. They are flexible enough to approximate



any given density with high accu-
racy and in addition, they can be
interpreted as a soft clustering
solution. They have been widely
used in a variety of signal process-
ing problems ranging from
speech understanding, image
modeling, tracking, segmenta-
tion, recognition, watermarking,
and denoising. 

A GMM is defined as a convex
combination of Gaussian densi-
ties and is widely used to
describe the density of a dataset
in cases where a single distribu-
tion does not suffice. To define a
mixture model with M compo-
nents we have to specify the
probability density pj (x) of each
component j as well as the prob-
ability vector (π1, . . . , πM) con-
taining the mixing weights π j of
the components (π j ≥ 0 and 

∑M
j=1 π j = 1). 

An important assumption when using such a mixture to
model the density of a dataset X is that each datum has been
generated using the following procedure: 

1)  We randomly sample one component k using the prob-
ability vector π1, . . . , πM . 
2)  We generate an observation by sampling from the den-
sity pk(x) of component k.

The graphical model corresponding to above generation process
is presented in Figure 5(b), where the discrete hidden random
variable Z represents the component that has been selected to
generate an observed sample x, i.e., to assign the value X = x to
the observed random variable X. In this graphical model, the node
distributions are P(Z = j) = π j and P(X = x|Z = j) = pj (x).
For the joint pdf of X and Z it holds that 

p(X, Z ) = p(X|Z )p(Z ) (58)

and through marginalization of Z we obtain the well-known
formula for mixture models 

p(X = x) =
M∑

j=1

p(X = x|Z = j)p(Z = j) =
M∑

j=1

π j pj (x). (59)

In the case of GMMs, the density of each component j is
pj(x) = N(x;μμμ j,��� j ) where μμμ j ∈ 	d denotes the mean and ��� j

is the d × d covariance matrix. Therefore 

p(x) =
M∑

j=1

π j N(x;μμμ j,��� j ). (60)

A notable convenience in mixture models is that using
Bayes’ theorem it is straightforward to compute the posterior

probability P( j|x) = p(Z = j|x) that an observation x has
been generated by sampling from the distribution of mixture
component j

P( j|x) = p(x|Z = j)p(Z = j)
p(x)

= π j N(x|μμμ j,��� j )∑M
l =1 πl N(x|μμμl,��� l )

.

(61)

This probability is sometimes referred to as the responsibility of
component j for generating observation x. In addition, by assign-
ing a data point x to the component with maximum posterior, it
is easy to obtain a clustering of the dataset X into M clusters,
with one cluster corresponding to each mixture component. 

EM FOR GMM TRAINING
Let X = {xn| xn ∈ 	d, n = 1, . . . , N} denote a set of  data
points to be modeled using a GMM with M components:
p(x) = ∑M

j=1 π j N(xn |μμμ j,��� j ) . We assume that the number
of components M is specified in advance. The vector θ of

[FIG5] Graphical models (a) for a single Gaussian component, (b)
for a Gaussian mixture model.
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[FIG4] Linear regression solutions obtained by ML estimation, EM-based Bayesian inference and
variational-EM Bayesian inference.
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mixture parameters to be estimated consists of the mixing
weights and the parameters of each component, i .e.,
θθθ = {π j,μμμ j,��� j | j = 1, . . . , M } . 

Parameter estimation can be achieved through the maxi-
mization of the log-likelihood 

θθθML = arg max
θθθ

log p(X; θθθ), (62)

where assuming independent and identically distributed
observations the likelihood can be written as 

p(X; θθθ) =
N∏

n=1

p(xn; θθθ) =
N∏

n=1

M∑
j=1

π j N(xn;μμμ j,��� j ). (63)

From the graphical model in Figure 5(b) it is clear that to
each observed variable xn ∈ X corresponds a hidden variable
zn representing the component that was used to generate xn.
This hidden variable can be represented using a binary vector
with M elements zjn, such that zjn = 1 if xn has been generat-
ed from mixture component j and zjn = 0 otherwise. Since
zjn = 1 with probability π j and 

∑M
j=1 π j = 1, then zn follows

the multinomial distribution. Let Z = {zn, n = 1, . . . , N }
denote the set of hidden variables. Then p(Z|θθθ) is written 

p(Z; θθθ) =
N∏

n=1

M∏
j=1

π
zjn

j (64)

and 

p(X|Z; θθθ) =
N∏

n=1

M∏
j=1

N(xn;μμμ j,��� j )
zjn . (65)

As previously noted, the convenient issue with mixture models is
that we can easily compute the exact posterior p(zjn = 1|xn; θθθ)

of the hidden variables given the observations using (61).
Therefore application of the exact EM algorithm is feasible. 

More specifically, if θθθ(t) denotes the parameter vector at
EM iteration t, the expected value of the posterior p(z|x; θθθ(t))

of hidden variables zjn is given as 

〈
z(t)

jn

〉
=

π
(t)
j N

(
xn;μμμ(t)

j ,���
(t)
j

)
∑M

j=1 π
(t)
j N

(
xn;μμμ(t)

j ,���
(t)
j

) . (66)

The above equation specifies the computations that should be
performed in the E-step for j = 1, . . . , M and n = 1, . . . , N. 

The expected value of the complete log-likelihood log P(X, Z)

with respect to the posterior p(Z|X; θθθ(t)) is given by 

Q(θθθ, θθθ(t)) = 〈log p(X, Z; θθθ)〉
p(z|x;θθθ (t)

)

= 〈log p(X|Z; θθθ)〉+ 〈log p(Z; θθθ)〉
p(z|x;θθθ (t)

)

=
N∑

n=1

M∑
j=1

〈
z(t)

jn

〉
log π j

+
N∑

n=1

M∑
j=1

〈
z(t)

jn

〉
log N (xn;μμμ j ,��� j). (67)

In the M-step the expected complete log-likelihood Q
is maximized with respect to the parameters θθθ . Taking
the corresponding partial derivatives equal to zero and
us ing  a  Lagrange  mul t ip l i ers  for  the  constra int∑M

j=1 π j = 1, we can derive the following equations for
the updates of the M-step: 

π
(t+1)
j = 1

N

N∑
n=1

〈
z(t)

jn

〉
(68)

μμμ
(t+1)
j =

∑N
n=1

〈
z(t)

jn

〉
xn∑N

n=1

〈
z(t)

jn

〉 (69)

���
(t+1)
j =

∑N
n=1

〈
z(t)

jn

〉 (
xn − μμμ

(t)
j

) (
xn − μμμ

(t)
j

)T

∑N
n=1

〈
z(t)

jn

〉 . (70)

The above update equations for GMM training are quite
simple and easy to implement. They constitute a notable
example on how the employment of EM may facilitate the
solution of likelihood maximization problems. 

A possible problem of the above approach is related to the
fact that the covariance matrices may become singular, as
shown in the example presented Figure 6. This figure pro-
vides the contour plot of a solution obtained when applying
EM to train a GMM with 20 components on a two-dimen-
sional (2-D) dataset. It is clear that some of the GMM com-
ponents are singular, i.e., their density is concentrated
around a data point and their variance along some principal
axis tends to zero. Another drawback of the typical ML
approach for GMM training is that it cannot be used for
model selection, i.e., determination of the number of com-
ponents. A solution to those issues may be obtained by using
Bayesian GMMs. 

VARIATIONAL GMM TRAINING

FULL BAYESIAN GMM
Let X = {xn} be a set of N observations, where each xn ∈ 	d is
a feature vector. Let also p(x) be a mixture with M Gaussian
components 

p(x) =
M∑

j=1

π j N(x ;μμμ j , T j ), (71)

where πππ = {π j } are the mixing coefficients (weights),
μμμ = {μμμ j } the means (centers) of the components, and
T = {T j } the precision (inverse covariance) matrices (it must
be noted that in Bayesian GMMs it is more convenient to use
the precision matrix instead of the covariance matrix). 

A Bayesian Gaussian mixture model is obtained by impos-
ing priors on the model parameters πππ,μμμ and T. Typically con-
jugate priors are used, that is Dirichlet for πππ and
Gauss-Wishart for (μμμ, T). The Dirichlet prior for πππ with
parameters {α j} is given by 



Dir(πππ |α1, . . . , αM) =
�

(∑M
j=1 α j

)
∏M

j=1 �(α j )

M∏
j=1

π
α J −1
j ,

where �(x) denotes the Gamma function. Usually, we assume
that all α j are equal, i.e., α j = α0, j = 1, . . . , M. 

The Gauss-Wishart prior for (μμμ, T) is p(μμμ, T) =∏M
j=1 p(μμμ j , T j ) = ∏M

j=1 p(μμμ j |T j )p(T j ) ,  where p(μμμ j |T j ) =
N(μμμ j;μμμ0, β0 T j ) (with parameters μμμ0 and β0) and p(T j ) is the
Wishart distribution 

W(T j|ν, V) =
|T j|(ν−d−1)/2 exp tr

{
− 1

2 VTj

}
2νd/2π d(d−1)/4|V|−n/2

∏d
i =1 �((ν + 1 − i)/2)

,

with parameters ν and V denoting the degrees of freedom and
the scale matrix respectively. Notice that the Wishart distribu-
tion is the multidimensional generalization of the Gamma
distribution. In linear regression, we used the Gauss-Gamma
prior, assuming independent precisions αi and thus assigning
them independent Gamma prior distributions. Here, however,
because there may be significant correlations between data,
we could use the Wishart prior to capture these correlations.

The graphical model corresponding to this Bayesian GMM
is presented in Figure 7(a). This is a full Bayesian GMM and if
all the hyperparameters (i.e., the parameters α,μ0, β0, ν and
V of the priors) are specified in advance, then the model does
not contain any parameter to be estimated, but only hidden
random variables h = (Z, πππ,μμμ, T) whose posterior p(h|x)
given the data must be computed. It is obvious that in this
case the posterior cannot be computed analytically, thus an
approximation q(h) is computed by applying the variational
mean field (16) to the specific Bayesian model [27]. 

The mean-field approximation assumes q to be a product
of the form 

q(h) = qZ(Z) qπ (πππ) qμT (μμμ, T), (72)

and the solution is given by (16). After performing the
necessary calculations, the result is the following set of
densities: 

qZ(Z) =
N∏

n=1

M∏
j=1

r
zjn

jn (73)

qπ (πππ) = Dir(πππ |{λ j }) (74)

qμT (μμμ, T) =
M∏

j=1

qμ(μμμ j |T j )qT (T j ) (75)

qμ(μμμ j |T) =
M∏

j=1

N(μμμ j ; m j , β j T j ) (76)

qT (T) =
M∏

j=1

W(T j ; η j , U j ) (77)

and the detailed formulas for updating the parameters
(rjn, λ j, m j, β j, η j, U j ) of the densities can be found in [27]. By
solving the above system of equations using a simple iterative

update procedure, we obtain an optimal approximation q(h)

to the true posterior p(h |x) under the mean-field constraint. 
The typical approach in Bayesian modeling is to specify the

hyperparameters α , ν , V, μ0 , and β0 of the model so that
uninformative prior distributions are defined. We follow this
approach, although it would be possible to incorporate an M-
step to the algorithm, in order to adjust these parameters.
However, this is usually not followed.

One advantage of the full Bayesian GMM compared to
GMM without priors is that it does not allow the singular
solutions often arising in the ML approach where a Gaussian
component becomes responsible for a single data point. A sec-
ond advantage is that it is possible to use the Bayesian GMM
for directly determining the optimal number of components
without resorting to methods such as cross-validation.
However, the effectiveness of the full Bayesian mixture is lim-
ited for this problem, since the Dirichlet prior does not allow
mixing weight of a component to become zero and to be elim-
inated from the mixture. Also, in this case the final result
depends highly on the hyperparameters of the priors (and
especially of the parameters of the Dirichlet prior) that must
be specified in advance [13]. For a specific set of hyperparame-
ters, it is possible to run the variational algorithm for several
values of the number M of mixture components and keep the
solution corresponding to the best value of the variational
lower bound. 

[FIG7] (a) Graphical model for the full Bayesian GMM. (b) Graphical
model for the Bayesian GMM of [27]. Notice the difference in the
role of π in the two models. Also, the parameters of the priors on
π,μ,� are fixed, thus they are not shown.
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[FIG6] EM-based GMM training using 20 Gaussian components.
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REMOVING THE PRIOR FROM THE MIXING WEIGHTS
In [28], another example of a Bayesian GMM model has been
proposed that does not assume a prior on the mixing weights
{π j }, which are treated as parameters and not as random vari-
ables. The graphical model for this approach is depicted in
Figure 7(b).

In this Bayesian GMM, which we will call CB model from
the initials of the two authors of this work, Gaussian and
Wishart priors are assumed for μμμ and T, respectively, 

p(μμμ) =
M∏

j=1

N(μμμ j |0, βI) (78)

p(T) =
M∏

j=1

W(T j |ν, V). (79)

This Bayesian model is capable (to some extent) to estimate
the optimal number of components. This is achieved through
maximization of the marginal likelihood p(X;πππ) obtained by
integrating out the hidden variables h = {Z,μμμ, T}

p(X;πππ) =
∫

p(X, h;πππ) d h (80)

with respect to the mixing weights πππ that are treated as
parameters. The variational approximation suggests the
maximization of a lower bound of the logarithmic marginal
likelihood 

F [q, πππ] =
∫

q(h) log
p(X, h;πππ)

q(h)
dh ≤ log p(X;πππ), (81)

where q(h) is an arbitrary distribution approximating the pos-
terior p(h|X). A notable property is that during maximization
of F, if some of the components fall in the same region in the
data space, then there is strong tendency in the model to
eliminate the redundant components (i.e., setting their π j

equal to zero), once the data in this region are sufficiently
explained by fewer components. Consequently, the competi-
tion between mixture components suggests a natural
approach for addressing the model selection problem: fit a
mixture initialized with a large number of components and let
competition eliminate the redundant. 

Following the variational methodology, our aim is to maxi-
mize the lower bound F of the logarithmic marginal likeli-
hood log p(X;πππ)

F [q, πππ] =
∑

z

∫
q(Z,μμμ, T) log

p(X, Z,μμμ, T;πππ)

q(Z,μμμ, T)
dμμμ d T,

(82)

where q is an arbitrary distribution that approximates the pos-
terior distribution p(Z,μμμ, T|X;πππ). The maximization of F is
performed in an iterative way using the variational EM algo-
rithm. At each iteration two steps take place: first maximiza-
tion of the bound with respect to q and, subsequently,
maximization of the bound with respect to πππ . 

To implement the maximization with respect to q, the
mean-field approximation has been adopted (14) that assumes
q to be a product of the form 

q(h) = qZ(Z) qμ(μμμ) qT (T). (83)

After performing the necessary calculations in (16), the result
is the following set of densities: 

qZ(Z) =
N∏

n=1

M∏
j=1

r
zjn

jn (84)

qμ(μμμ) =
M∏

j=1

N(μμμ j |m j , S j ) (85)

qT (T) =
M∏

j=1

W(T j |η j , U j ), (86)

where the parameters of the densities can be computed as

rjn = r̃jn∑M
k=1 r̃jn

(87)

r̃jn = π j exp
{

1
2
〈log |T j |〉 − 1

2
tr

{
〈T j 〉

(
xnxT

n − xn〈μμμ j 〉T

+ 〈μμμ j 〉xT
n +

〈
μμμ jμμμ

T
j

〉)}}
(88)

m j = S−1
j 〈T j 〉

N∑
n=1

〈zjn〉 xn (89)

S j = βI + 〈T j 〉
N∑

n=1

〈zjn〉 (90)

η j = ν +
N∑

n=1

〈zjn〉 (91)

U j = V +
N∑

n=1

〈zjn〉
(

xnxT
n − xn〈μμμ j 〉T + 〈μμμ j 〉xT

n +
〈
μμμ jμμμ

T
j

〉)
.

(92)

The expectations with respect to q(h) used in the above equa-
tions satisfy the equations: 〈T j 〉 = η j U

−1
j , 〈log |T j |〉 =∑d

i=1 ψ(0.5(η j +1 − i)) +d ln 2 − ln |U j |, 〈μμμ j〉= m j, 〈μμμ jμμμ
T
j 〉=

S−1
j + m j mT

j [Here ψ denotes the digamma function, defined as
d/dx ln �(x) = �′(x)/�(x)] and 〈zjn〉 = rjn. It can be observed
that the densities are coupled through their expectations, thus an
iterative estimation of the parameters is needed. However, in prac-
tice a single pass seems to be sufficient for the variational E-step. 

After the maximization of F with respect to q, the second
step of each iteration of the training method requires maxi-
mization of F with respect to πππ , leading to the following sim-
ple update equation for the variational M-step: 

π j =
∑N

n=1 rjn∑M
k=1

∑N
n=1 rk n

. (93)

The above variational EM update equations are applied itera-
tively and converge to a local maximum of the variational
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bound. During the optimization some of the mixing coeffi-
cients converge to zero thus the corresponding components
are eliminated from the mixture. In this way complexity con-
trol is achieved. This happens because the prior distribution
on μμμ and T penalizes overlapping components. Qualitatively
speaking, the variational bound can be written as a sum of
two terms: the first one is a likelihood term (that depends on
the quality of data fitting) and the other is a penalty term due
to the priors that penalizes complex models.

Figure 8 provides an illustrative example of the perform-
ance on this method using the 2-D dataset already presented in
Figure 6. The method starts with 20 components and, as the
number of iterations increases, the number of components
gradually decreases (some π j become zero) and, finally, a good
GMM model for this dataset is attained. It can also be observed,
that the existence of the prior on the covariance matrices, does
not allow to reach singular solutions in contrast to the GMM
solution without priors presented in Figure 6.

In general, the CB  constitutes an effective method exhibiting
good performance in the case where the components are well sep-
arated. However, its performance exhibits sensitivity on the speci-
fication of the scale matrix V of the Wishart prior imposed on the
precision matrix. An incremental method for building the above
mixture model has been proposed in [29]. At each step, learning is
restricted in the data region occupied by a specific mixture com-

ponent j, thus a local precision prior can be specified based on the
precision matrix T j. In order to achieve this behavior, a modifica-
tion to the generative model of Figure 7 was made that restricts
the competition in a subset of the components only.

SUMMARY
The EM algorithm is an iterative methodology that offers a
number of advantages for ML estimation. It provides simple iter-
ative solutions, with guaranteed local convergence, for problems
where direct optimization of the likelihood function is difficult.
In many cases it provides solutions that satisfy several con-
straints for the estimated parameters, for example covariance
matrices are positive definite, probability vectors are positive,
and sum to one, etc. Furthermore, the application of EM does
not require explicit evaluation of the likelihood function. 

However, to apply the EM algorithm we must have knowledge
of the posterior of the hidden variables given the observations.
This is a serious drawback since the EM cannot be applied to
complex Bayesian models. However, complex Bayesian models
can be very useful since, if properly constructed, they have the
ability to model salient properties of the data generation mecha-
nism and provide very good solutions to difficult problems. 

The variational methodology is an iterative approach that
is gaining popularity within the signal processing community
to ameliorate this shortcoming of the EM algorithm.

[FIG8] Variational Bayesian GMM training using the model presented in [28]. (a) Initialization with 20 Gaussian components, (b), (c)
model evolution during EM iterations, and (d) final solution. Notice the avoidance of singularities.
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According to this methodology an approximation to the poste-
rior of the hidden variables given the observations is used.
Based on this approximation, Bayesian inference is possible by
maximizing a lower bound of the likelihood function which
also guarantees local convergence. This methodology allows
inference in the case of complex graphical models, that in cer-
tain cases provide significant improvements as compared to
simpler ones that can be solved via the EM. 

This issue was demonstrated in this article within the context
of linear regression and Gaussian mixture modeling, which are
two fundamental problems for signal processing applications.
More specifically, we demonstrated that complex Bayesian mod-
els that were solved by the variational methodology, in the con-
text of linear regression were able to better capture local signal
properties and avoid ringing in areas of signal discontinuities. In
the context of Gaussian mixture modeling, the models solved by
the variational methodology were able to avoid singularities and
to estimate the number of the model components. These results
demonstrate the power of the variational methodology to provide
solution to difficult problems that have plagued signal processing
applications for a long time. The main drawback of this method-
ology is the lack of results that allow (at least for the time being)
assessing the tightness of the bound that is used. 
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