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Maximum a Posteriori Video Super-Resolution
Using a New Multichannel Image Prior
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Abstract—Super-resolution (SR) is the term used to define the
process of estimating a high-resolution (HR) image or a set of HR
images from a set of low-resolution (LR) observations. In this paper
we propose a class of SR algorithms based on the maximum a pos-
teriori (MAP) framework. These algorithms utilize a new multi-
channel image prior model, along with the state-of-the-art single
channel image prior and observation models. A hierarchical (two-
level) Gaussian nonstationary version of the multichannel prior
is also defined and utilized within the same framework. Numer-
ical experiments comparing the proposed algorithms among them-
selves and with other algorithms in the literature, demonstrate the
advantages of the adopted multichannel approach.

Index Terms—Image restoration, maximum a posteriori (MAP)
framework, motion field estimation, multichannel prior, ob-
servation model, parameter estimation, super-resolution, video
applications.

I. INTRODUCTION

ESOLUTION enhancement of an image or a frame
R of a video sequence based on multiple LR observed
frames, which is also referred to in the literature as super-
resolution (SR), is of critical importance in signal processing
applications, such as video surveillance, remote sensing and
medical imaging (e.g., X-rays). It has also been implemented
in various consumer electronic products, such as, cell phones,
digital video cameras, portable digital versatile disks (DVD),
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portable global positioning systems (GPSs), and high definition
televisions (HDTVs) [1]-[5]. In each of these systems, the
image resolution can be increased by using a higher-resolu-
tion sensor. However, in addition to cost considerations, the
noise increases as the charge-coupled device (CCD) cell size
decreases. Therefore, one must turn to algorithmic techniques
to achieve resolution as well as quality enhancement [6].

A recent review of the SR field can be found in [4] and the
references therein. The idea of SR was first formulated in the fre-
quency domain [7], and it was extended in [8] and [9]. Some of
the most recently proposed frequency domain methods are those
in [10]-[12]. Although such methods are theoretically simple
and computationally efficient, their use is limited by the fact that
they are sensitive to modeling nonglobal translational motion,
and they are not able to incorporate any spatial domain prior
knowledge in their formulation [13].

In addition to these methods, another popular class of SR
methods has been developed in the spatial domain, in order
to overcome the aforementioned drawbacks. Typical examples
of such approaches are based on iterative planar motion esti-
mation algorithms [14], back-projection algorithms (IBP) [15],
projection onto convex sets (POCS) [16], [17], maximum-like-
lihood (ML) [18] and maximum a posteriori (MAP) [19], [20].
However, the spatial domain methods are in general computa-
tionally expensive. Finally, wavelet based SR methods have also
been proposed which are very robust to noise [21].

The SR problem is an ill-posed inverse problem that requires
regularization. The Bayesian framework, used in this work, of-
fers many advantages (see [4], for example). In most of the
Bayesian formulations which have been used for developing
SR algorithms so far, single channel (frame) image priors have
been adopted, based on a Gaussian stationary assumption for the
local image differences [22], [23] whereas there have also been
proposed both non Bayesian [24]-[26] and Bayesian [27] total
variation (TV) regularization techniques. As far as the imaging
models are concerned, many techniques are incorporating the
motion field (MF) information [22], [24], [25], [28], whereas
others do not use this information at all.

The term multichannel [29] in the context of video recovery
implies the use of the between frames correlation. Multichannel
approaches have been used successfully in the past for video
restoration [28]-[30] and compressed video reconstruction ap-
plications [31]. However, most of these approaches were deter-
ministic and the multichannel idea was basically imposed by
using between frame regularization.

In this paper, we address the video SR problem utilizing a
MAP approach. One of the main contributions of this work is
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the introduction of a new multichannel prior that incorporates
registration information between frames. Accurate registration
of each pixel (dense MF) of adjacent frames is critical for the
video SR reconstruction. An additional novelty factor of our
work, consists in using the nonstationary image prior which
was introduced in [32], in the SR problem. Consequently, a new
single frame MAP SR algorithm is derived. Furthermore, this
prior was also incorporated in the video resolution enhancement
algorithm which was proposed in [22] and [23], resulting in a
new proposed MAP SR technique for uncompressed video.

Moreover, we also introduce a nonstationary version of the
aforementioned new multichannel prior within the MAP frame-
work. In particular, we propose a novel SR algorithm that uti-
lizes a hierarchical (two-level) Gaussian type prior which as-
sumes that the residuals of first order differences (FODs) within
each frame in two directions are Gaussian random variables
(RVs) with zero mean and variance that is spatially varying [32].
The same modeling assumption is made for each motion com-
pensation error between every two frames which are used in the
proposed prior. In order to deal with the resulting overparam-
eterization, the spatially varying variances (at each pixel loca-
tion) are considered RVs and a Gamma hyperprior is imposed
on each of them (whose mean and variance is controlled by the
shape and scale parameters). Comparison among all these three
proposed algorithms also indicates the relative advantage of the
MF utilization in the prior term with respect to its use in the ob-
servation term.

The paper is organized as follows. In the next section, we
present the appropriate mathematical background on all ob-
servation models and image priors used. In Section III, we
introduce a general MAP problem formulation for the SR of
uncompressed video regarding the proposed models, along
with the corresponding algorithms. In Section IV, we provide
numerical experiments that test the proposed methods. Finally,
Section V presents the conclusions along with future work
recommendations.

II. MATHEMATICAL BACKGROUND

A. Observation Models

In this paper, we use two different observation models. In the
first one the relationship between the M N x 1 LR observation
frame g; and its LM LN x 1 (L denotes the resolution enhance-
ment factor) HR counterpart f; is given in matrix-vector form by
(all images have been lexicographically ordered)

gi =DHf;, + n;, fori=1,2...P @9)

where D is the M N x LM LN down-sampling matrix, H is the
LMLN x LM LN known blurring matrix, n; of size M N x 1,
represents the additive white Gaussian noise (AWGN) term, and
P represents the total number of frames used.

Equation (1) can be rewritten as

g=DHf +n ()

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 6, JUNE 2010

where

. T
g= [g{—m7gg7gg+n]

F= (6]

. T

n= [nz_m,...,nf,...,nf_i_n] 3)

n, m indicate, respectively, the number of frames used in the
forward and backward temporal directions with respect to the
kth frame (n + m + 1 = P), T denotes the transpose of a
matrix or vector, and

H = diag{H,...,H,...,H},D = diag{D,...,D,..., D}
“)
are respectively of dimensions PLM LN x PLMLN and
PMN x PLMLN.
The second imaging model (warp-blur model [4]) used in this
paper, is defined as

gi=DHM(d, i )fr+w, s, fori=k-m,....k,....k+m

(%)
with w; 1, = n; + DHn, ; a column vector of size M N x 1
representing the total contribution of the noise term (including
both registration and acquisition errors) which is again modelled
as AWGN (without lack of generality we have assumed that
m = n). Moreover, M(d; ;) is the 2-D motion compensation
matrix of size LM LN x LM LN, mapping frame f}, into frame
f; with the use of d; ; (displacements at each pixel location).
Here, using the imaging model in (5) we are using only the mo-
tion information that is relevant for the resolution enhancement
of the kth frame. The assumption of AWGN is also adopted in
[33] and [34], where a similar observation model is used. At this
point, it is also mentioned that the non-AWGN assumption em-
ployed in [18] for the respective noise term is valid only for the
special case of global motion [33]. This is not a restriction we
are imposing in this work.

B. Image Prior Models

Although deterministic approaches have been developed in
the past for video SR applications [24], [25], [35], the Bayesian
formulation, which utilizes an image prior, offers many advan-
tages. A simultaneously autoregressive (SAR) model has been
used as an image prior for video SR [22]. This model is based
on the assumption that the local image differences follow the
same statistics all over the image. This assumption induces a
prior for the image which has been used extensively in image
recovery problems. It is very effective because it contains only
one parameter (the within channel inverse variance/precision)
resulting in easy analytical calculations. However, because of
this (one parameter) it cannot capture the local properties of the
image. One way to bypass this difficulty, as we shall see in what
follows, is to introduce a prior with a spatially varying preci-
sion paremeter [32], [36]. In order to avoid the over parameter-
ization problem, all of them are assumed to originate from the
same conjugate Gamma probability density function (pdf).

In this work, we extend these ideas to the video SR problem.
We, thus, propose a new spatially adaptive (nonstationary)
multichannel prior. This model takes into account both the
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within frame smoothness (spatial residuals) and the be-
tween-frame smoothness (temporal residuals). In this case, the
respective regularization parameters are assumed to be spatially
varying RVs and a Gamma hyperprior is imposed on each of
them.

More specifically, based on [32], we introduce a hierarchical
(two-level) Gaussian prior to model both its within channel
and between-channel smoothness The first step is to define
the within channel FODs as e Qdf 7, where d =1, 2
denotes the directions of 0° and 90°, respectively, and Q¢ is
the LMLN x LMLN directional difference operators for
each frame. We now assume that the FODs at each spatial
location and direction have Gaussian statistics (a commonly
used assumption even in the case of spatially invariant FODs,
see [37], for example) according to €} , ~ N(0,(af H)_l),
where ;o defines the pixel location and a? , is the inverse

I
variance. For compactness of the presentation, we set

T
of = [0 .00 paa] ey = (@) (a7
and e = [al . ak,....aﬂ_m]T. Moreover, we
introduce the notation Ad = diag{af,, a5, ..., 0 prnts
where each matrix A;l for d = 1, 2 is of dimensions
LMLN x LMLN.

Assuming that the errors at each direction and at each pixel
location are independent we obtain the following improper pdf

[32]:
2 /LMLN 1/a
p(fjla;) o H< H d ) )
pn=1

X exp (—% ((Qdfj)Tqudfj)> . (6)

The independency assumption is based on the fact that at each
pixel location an edge can occur in any direction independently
of what happens in adjacent pixels and it also makes subsequent
calculations tractable. Furthermore, improper priors are used on
a routinely basis with success in Bayesian modeling (see [38],
for example).
Moreover, a Gamma hyperprior is placed on each inverse
variance (precision) aj > according to
142

p(afuivy 1) < (af,) 7 exp (—vf (If —2) aj,) (D

where E[ad ] = 142u1?-2)"", Varlal,] =
l?(Z(yj) (1 ~2)%) ", and v§, I} are the scale and shape

parameters, respectively, per frame and per direction [37],
[39]. The rationale for using a Gamma prior on each inverse
variance is threefold. First, it is “conjugate” for the variance
of a Gaussian [40]. Second, similar hierarchical models have
been used successfully in Bayesian formulations of other
statistical learning problems [41]. Finally, as we shall see in
the following, it produces compact equations for the inverse
variances. Assuming also that the variances of the Gaussians
modeling the residual errors are statistically independent, we
have from (7)

2 LMLN

H H p( ]l“VJ’l;i) ®)

d=1 p=1

p a_77u_]7
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where v; = [vf=, (1:2]T and l; = [lfj-l:17lfj-l:2]T. This as-

sumption allows these variances to scale down the differences
of adjacent pixels not only in smooth areas, but also in regions
of image discontinuities (e.g., edges). Therefore, combining (6)
and (8), we obtain

(£, a;:v5,1;) = p(fjla;)p(a;;v;, 1)) )

representing the proposed within channel nonstationary prior.

We now define the proposed between-channel nonstationary
prior. More specifically, we define each motion compensated
error (residual) between two frames (8,; = (f; — M(d; ;)f;),
for j # i) per pixel as 6;5,, ~ N(0,(B;j,)""). We also
set B;; = [Bij1Bij2s -, Bijearn]”, which is a column
vector of size LMLN x 1 and also 8" = [ﬂLT]]JT# which
is also a column vector of size 2m(2m + 1)LMLN x 1
containing all possible precisions of the motion compen-
sation errors and 2m(2m + 1) equals the number of all
possible channel combinations. Furthermore, we denote by

B, = d1ag{ﬂ,] 1,[371, ..... . Bij,mrn }, for j # 4, where each
such matrix is of size LM LN x LMLN.

Following the framework in [32] and assuming that the mo-
tion compensation errors are independent at each spatial loca-
tion, given that each pixel of one frame is predicted by a pixel of
another frame independently of (the predictions of) its adjacent
pixels, we obtain the following Gaussian motion compensation
error pdf:

p(filf, B;;) < H (ﬂi’j’”)l/Z)

p=1
1
X exp <—§ ((ﬂ — M,JfJ)TBU(ﬁ — M1]f]))> (10)
with the assumption

Mj; = (My;)" = M(d;,) (11)
where matrix (M;;)” represents the backward motion compen-
sation operation along the motion vectors (mapping frame f;
into frame f; with the use of d; ;). Note that (11) holds when
the assumption of integer pixel accuracy MF holds, along with
the one-to-one mapping through motion. In this case the motion
compensation matrices are indicator matrices of full rank thus
it also holds that (MLJ)TMLJ =11[30], or M]LMLJ =1L

A Gamma hyperprior is imposed on each such spatially
varying precision, expressed as

P(Bijus Tijs &ig) o< (Biju) ™7
(12)

where E[B;; ] &ij(2m5(&; — 2))7" and VarBi;,] =
& (2(mi5)%(&; — 2)%) ", and 75, &;; are the parameters per
motion compensation error (j # ). Based on the assumption
that the variances of the Gaussians modeling the errors are
statistically independent and on (12), we obtain

£i5—2

exp (=7 (&ij — 2)Biju)

LMLN

H p BL],[L7T1] fzg)

pn=1

p(ﬂ7_]17-1_]7£1_] (13)

This assumption also stems from the fact that these variances
scale down the compensation errors of adjacent pixels which
can be located either in smooth areas or in edges, textures, etc.
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In this new prior the value of each parameter l;l and &;; is in-
terpreted as the level of confidence on the information provided
by each Gamma hyperprior. ThlS is attributed to the fact that as
14 — oo, E[af ul = (21/ ) Var[ ] — 0,andas §;; — oo,
E'[,BL] W — (277t Var[ﬂLj x] — 0, which means that the
prior becomes stationary. In contrast, as both parameters l;»i and
&ij — 2thenall E[of ], E[Bij ], Var[af ] and Var[f;;,.] go
to infinity, thus the prior becomes totally nonstationary (unin-
formative) in both its within and cross-channel parts and does
not influence at all the values of a;{ u and 3;;, ., which as a result
follow only the data and the motion compensation trajectories,
respectively. Consequently, the values of the parameters l;-i and
&;; can be viewed as the only way to regulate the degrees of
freedom (nonstationarity) of the proposed prior.

Combining (9), (10), and (13), the proposed spatially adaptive
multichannel prior can be expressed as

P total total total
p(f, atotal7ﬂ ota ;ytotal,l ota 7,’_tota17€ ota )

k+m k+m

« 11 1I

i=k—mm i=k—m
J#i
k+m  k+m

IT II w5, 8:)p(Ele;)p(e;;v;,15)
i=k—m j=k-—m
J#i

X p(ﬂiﬁ Tijr &ij)

total ltOtal

£, a;,B;;;vi, 1, 7ij, ij)

(14)
where v are defined similarly to atotal  and
rtotal - — [Tij];i, and ¢! [fij];i are column vec-
tors of size 2m(2m + 1) x 1 containing the hyperparameters
for each motion compensation error.

If we write out (14), the term containing fis given by

k+m  k+m
o(f)=exp|— Z Z [ ((f: =M, £5) " Bij (f; — M;;))
k—m ] k—m

2
+3((Q;) T A% Qdf))] . (15)
d=1

In order to facilitate subsequent derivations, @(f‘) can be
rewritten in a more compact form as
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where

2
—(M;;)"Bi; { > [(Qd)TA?Qd} +(M

d=1
_ | Wi Wiy
_{ Wi ‘*’2,1'1} '

The construction of € from €;; is a simple algebraic task
based on (15), (16), and (17). For k = 2 and m = 1, it is
easy to verify that € is given by the expression in (18), shown
at the bottom of the page. The presence of the compact term
exp[—(1/2)fT Qf] makes calculations tractable as far as the es-
timation of f is concerned using the MAP algorithm, as dis-
cussed in the next section. Finally, €2 is a symmetric matrix of
size PLM LN x PLM LN which can be easily computed for
any k and m.

The stationary version of the proposed prior is discussed
next. As already mentioned, such a prior can be obtained in
the asymptotic case when lj — 00 and &;; — oo. In this case,
the new proposed spatially adaptive prior becomes stationary
in the sense that both spatial (within channel) and temporal
(between-channel) smoothness is uniformly enforced across the
entire frame and across the motion compensation trajectories.
The stationary version of (6) is expressed by

0.
p(j505) x exp (- 1QE 1)

where Q represents a linear high-pass convolutional operator
(e.g., discrete Laplacian) of size LM LN x LMLN, || - || de-
notes the [, norm and the parameter o; accounts for the within
channel inverse variance. Moreover, the stationary formulation
of (10) can be obtained as

Mijfj||2> :

Bij
p(£ilf); Bij) oc exp <— 7] lIf; —
Thus the stationary version of the proposed new multichannel
prior is expressed as

Q-
! i) Bij M

7)

19)

(20)

k+m

pr| ﬂzj ( )

m j=k—m

i

p(f: B, &) 1)

« 1

k+m
i=k—

where p(f;; a;) is given by (19), with B and & being column
vectors that contain the parameters 3;; and o, respectively.

k+ k+ . . .
(f) = exp - Zm an (£ £]] fi Equation (21) can also be rewritten in a more compact form fol-
2 — TIf; lowing the same algebraic steps as we did in the case of (14).
ko In this case also, parameter 3;; represents the inverse variance
| recision) of the motion compensation error between frames ¢
— exp [ e f} (16) (Precision) p
2 and j.
~ w112 + W1,13 + w221 + W2 31 w12 + wy) w13 + w3y
Q= wa1 + wiy w121 + w123 + w212 + w2 32 wa3 + Wiy (18)
w31 + wis w32 + why w1,31 + W1,32 + w213 + W2 23
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Finally, it is mentioned that in both versions of the new pro-
posed priors expressed by (14) and (21), not all relations among
frames in the (2m + 1) window are utilized. More specifically,
each frame is conditioned on only one of the rest of the frames at
a time and not on all of them. The use of more than one frames
upon which to condition the current frame, on one hand it clearly
introduces additional computations, while on the other hand it
has been shown experimentally not to provide any additional
performance benefits.

III. PROPOSED ALGORITHMS

In this paper the MAP point estimate is utilized for recov-
ering HR information from a sequence of low resolution obser-
vations. The MAP formulation for the SR problem of uncom-
pressed video, is specified for each one of the proposed algo-
rithms. It is given by

~ total

% étotal
= argmax p(f', a'otal ﬂmtal|§; é)
f-7acota17ﬂtofn1
~ = 1. p
p(g7 f7 atotal7ﬂt0ta ’0)
p(g)
(g|f atotal ﬂtOtal 0) (

p(8)

= argmax
£ atotal _ﬂtonl

atotal Btotal. é)
7 )

= argmax
£ atotal _ﬂtoml

(22)

where 8 denotes the column vector that contains all the parame-
ters ptotal giotal ptotal gtotal g1on0 with the noise inverse vari-
ance parameters, whereas the RVs a'°t*!, 8! are jointly esti-
mated with the HR frames f. Instead of the maximization in (22)
the negative of the logarithm of p(f, a*ot2! ,B°*|g: 8) with re-
spect to £, a*® B*°**! and to the noise parameters is typically
minimized.

By utilizing the observation models (1) and (5) and the prior
models (9) and (14) (along with their respective stationary ver-
sions), we propose three formulations of the HR problem and
derive the corresponding MAP algorithms. For each algorithm,
we first provide its nonstationary formulation followed by the
limiting stationary one.

A. Algorithm 1

The simplest observation model we can use is the one in (1),
in which case no MF information is used. More specifically,
each frame in the sequence is recovered independently from the
other frames. The fidelity pdf then is defined as

MN Yi 2
p(gilfi;vi) ocv; 2 exp (—EHgi — DHf; || ) (23)

where the parameter ;- ! is the acquisition noise variance and
the prior model is defined by (9).
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The objective functional to be minimized for obtaining a
MAP estimate is given by

JMAP(f aL|gL7rYL Vul ) X _210gp(gt7fl7a"7"uL lt)
= — 2logp(gilfi, ai; Vi)

—2logp(fi, a3 v, l;).  (24)

Taking its partial derivatives with respect to f;, @; and ; and
setting them equal to zero results in the following linear system
of equations

Y 2
(3 (ed,)" + 0 (10 - 2))
MN
" = g — DHL,|? (20

2
(HTDTDH—m;l Z (Qd)TAde> f,=H'DTg,. 27)

d=1

For the stationary algorithm, (25) and (27) reduce respec-
tively to the following expressions:

(LMLN —1)
Q= —— " (28)
1Qf; |2
and
(HTDTDH + %QTQ) f;=H"D"g; (29)

while (26) remains the same. These equations, are obtained
based on the previous analysis and more specifically on the fact
that as [¢ — oo, E[ 41— (v~ " and Var[ef ,] — 0 and
consequently E[a¢ equals «; (stationary prior model) and
A;l = oL

The aforementioned algorithm is illustrated step by step as
follows.

Qi

Algorithm 1: Single frame SR

Given an initial estimate for each HR image
while Convergence criterion is not met do
1) Estimate o ., using (25) -nonstationary prior- or «; using
(28) -stationary prior-
2) Estimate -; using (26)
3) Based on steps 1) and 2), estimate HR image using (27)
-nonstationary prior- or (29) -stationary prior-

B. Algorithm 2

This algorithm is based on [22], where the observation model
is now described by (5) and the prior model is also given by (9)
as in Algorithm 1. That is, in this case the correlation between
frames is captured by the observation model only, since the prior
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model only considers one frame at a time. The fidelity pdf is
given by

(gz|fk7'7zk) X 7Lk €xXp (__” gi — DHMzkka ) (30)

where the parameters -y, are the inverse noise variances (pre-
cisions) related to both the motion compensation errors and
the acquisition noise and as expected for ¢ = k it holds that
Yik = Yi = Y& in (23). Moreover, when f;, (and the MF ma-
trices) are given, the RVs g, (observations), or the respective
error terms, are assumed to be statistically independent. Thus,
we have

p(glfr:y) = P(&ilfr, di g dic,is Yik) (31)

1=k—m

where 4 denotes the column vector that contains all (scalar) pa-
rameters ;.

As far as the nonstationary form of this particular algorithm is
concerned, the objective function that is minimized with respect
to fi, a and ;1 is given by

Jyvap (fr, ax|g;9)
oc —2log [p(g|fk, ar; ¥)p(fk, ar; v, 1)

k+m
= —QIOgl IT peilfe, an, di, dis;vie)

i=k—m

(£, ap; vi, lk)]

o T

gL|fk7ak7dL k7dk 1,7Lk)‘|

—2log [p(flm v, 1)) (32)
resulting in
MN
ik = 33
T llg: — DHM;.f,[|? &)
2
- T . .
<J +)(QY) A‘,ﬁQd> f. =7 (34)
d=1
with
~ k+m
J= [vir. (M H' D"DHM;;, )] (33)
i=k—m
~ k+m
Z= [vir (M H D g;)] (36)
i=k—m
where o¢ ., t0 be used in Ad is given by the right-hand side of

(29). Clearly with this algorlthm only the MFs which are rel-
evant to the HR frame fj, are used. Moreover, as expected, the
nonstationarity of Algorithms 1 and 2 is exclusively determined
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by the within channel nonstationary part of the respective pro-
posed prior, which is expressed by (9). Based on the same argu-
ments made in reference to Algorithm 1, the stationary version
of Algorithm 2 (34) reduces to

(J+ QT Q)fr = Z 37)
where the estimation of the parameter ay, is given by (28) and
(33) remains unaffected.

The corresponding algorithm can be given in a compact form

as follows.

Algorithm 2

Given an initial estimate for each HR image
1) Estimate the required MFs
2) Estimate o ., Using (25) -nonstationary prior- or oy, using
(28) statlonary prior-
3) Estimate ;3 using (33)
4) Based on steps 1), 2) and 3) estimate HR image using (34)
-nonstationary prior- or (37) -stationary prior-

C. Algorithm 3

Utilizing this algorithm the observation term described by (2)
is combined with the new multichannel prior described by (14).
That is, in this case the frame correlation as described by the
MF, is captured by the prior model and not in the observation
model.

In this case, the fidelity term is given by

p(@lE:A)  (derfE})

X exp {—%(g _ DH)T (g - f)f{f)} (38)

where T = dlag{fyk ml Vi e fyk_i_mI} is the covari-
ance matrix of size PM N x PMN, I is the identity matrix of

size MN x MN and y = [vk,m7...,'yk7...7'yk+m]T is the

column vector that contains the inverse noise variances for each
one of the channels that are used.
Consequently, the objective function is expressed as

P total pgtotal|~ total gtotal _total etotal =~
JMAP(fvaoavﬂ |g;yoa7l 7T0a7€ )
total pgtotal, . total jtotal __total etotal

BTV £77)

o<—210gp(§./f',a T

7

= —2log p(g|f, @', B )

total gtotal  total jtotal __total etotal
) ﬂ v ) l » T ) é )

(39)

—2logp(f',a

d

Its minimization with respect to 3;;,,,, f, a s and ; yields

Y
(3 + 1 -2)
g = 40
P (3(6ij0)? + 7i(&5 — 2)) 40
and
(G +Q)f = Ag (41)
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where

G -H"D'T 'DH

= diag{v_..H' D'DH, ..., vH' D'DH,
e Yeem H DTDHY, 42)
A=H'DTT
=diag{—m H'DT ... +HTDT,
s Ve HIDTY, (43)

Q can be constructed when k, and m are known as shown in
(18) and a;{ . 1s given by the right-hand side of (25). In this al-
gorithm, the MF information is taken into account only through
the prior and not through the observation term, whereas (26)
also holds as far as the estimation of -; is concerned (for both
the stationary and the nonstationary versions of the proposed
prior). Moreover, in Algorithm 3 simultaneous SR (and restora-
tion) of all the HR frames is taking place, which is not the case
with Algorithms 1 and 2. More specifically, the main difference
between Algorithms 2 and 3 is that in the former one only the
part of the motion information which is relevant to the middle,
kth, frame is incorporated in the fidelity term, whereas in the
latter one all possible combinations of the motion field are used
in the prior term. Consequently, in Algorithm 2, (2m+1) frames
are used in order to achieve SR (and restoration) of the middle
frame only, whereas in Algorithm 3 all observed frames are si-
multaneously super-resolved (and restored).

As far as the stationary version of this algorithm is concerned,
the minimization of the objective function results in

(LMLN —1) 5 LMILN 4
g = EMEN 1) 5 LMLN
! |Qf; |2 T — M2
(G + Quar)f = Ag (45)

where ﬁstat is the stationary limiting case of Q which results
from setting l;l — oo and §;; — oo in (25) and (40). Based
on the aforementioned analysis, in this case A;’ = o1, By; =
Bi;1, and Q reduces to Q (discrete Laplacian).

The proposed algorithm can be illustrated step by step as
follows.

Algorithm 3: Proposed/New SR method
Given an initial estimate for each HR image
1) Estimate all possible MFs
2) Estimate oz;{ ., using (25) -nonstationary prior- or a; based
on the left-hand side of (44) -stationary prior-
3) Estimate (3;; , using (40) -nonstationary prior- or 3;; based
on the right-hand side of (44) -stationary prior-
4) Estimate +y; using (26)
5) Based on steps 1), 2), 3) and 4) simultaneously estimate
all HR frames using (41) -nonstationary prior- or (45)
-stationary prior-

Since matrices D, D7, M;;, A‘ji, and B;; are not block-cir-
culant, and therefore they cannot be easily inverted due to their
sizes, we resorted to numerical solutions of (27), (29), (34), (37),
(41), and (45) using a conjugate-gradient (CG) algorithm [42].
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IV. EXPERIMENTAL RESULTS

In this section, we assess experimentally the performance of
the proposed novel (state-of-the-art) MAP SR Algorithms 1, 2,
and 3 in both their stationary and nonstationary forms and com-
pare the proposed nonstationary Algorithm 3 with three other
SR techniques in [10], [14], and [15]. Consecutive frames of
the video sequences “Mobile” and “Bus” were used in exper-
iments 1 and 2, similarly to [22] and [24]. More specifically,
in the former case we use the central 316 x 316 region of each
frame, whereas in the latter one we also utilize the central 256 x
256 region of each image. Moreover, all of the presented results
were achieved by setting m = 2 for both sequences; frames
“0187-*022” were used for the “Mobile” sequence and frames
“1117-*115" for the “Bus” sequence.

For all sets of experiments 1 and 2, two cases were consid-
ered. In the first one, the selected frames of both sequences were
degraded by uniform 9 x 9 blur, whereas in the second one no
blur was used (H = I). For this latter case, we also compared
the performance of the nonstationary Algorithm 3 to that of the
SR algorithms proposed by [10], [14], and [15] (which is a rep-
resentative IBP SR algorithm used in several frequently cited
publications), which were implemented using the software pro-
vided by their authors. After blurring, subsampling by a factor
of two (L = 2) in both spatial dimensions took place and white
Gaussian noise was added such that the blurred signal-to-noise
ratio (BSNR) defined (in decibels) as

BSNR = 10log,, (|DHE; — DHf;|%/ (MN~;Y))  (46)
or, equivalently, the SNR when H = 1, for each LR frame
equals to 20, 30, and 40 dB (DHTf; denotes the spatial mean
of DHf,).

The objective metric used to quantify the quality of the re-
sults in the aforementioned experiments, is the improvement in
signal-to-noise ratio (ISNR). This metric (in decibels) is defined
as

ISNR = 10logyq (1If; — i, /Ilf — £2)  @7)
where g; 1 denotes the bicubic interpolation of the ith LR ob-
servation and f; is the respective estimated HR image.
Furthermore, we conducted experiment 3 in order to com-
pare our proposed Algorithm 3 with respect to three existing
SR techniques [10], [14], and [15] using two real datasets/se-
quences. The first one is the aforementioned “Bus” sequence,
where frames “111”-“115" were also used (a central 128 x 128
region of each frame) and served directly as the LR observa-
tions of our algorithm (without being synthetically degraded)
and also of the IBP SR algorithm which is proposed in [15].
The latter one is the “Disk” dataset taken from [18] where im-
ages “13”—“17” (whose central part with spatial dimension 49 x
49 was chosen) were used as the LR frames of both Algorithm
3 and the algorithm in [15]. We also note that based on [10]
and [14], those SR methods utilize frames “113”-“116" from
the “Bus” sequence (for the estimation of HR frame “113”) and
frames “15”-“18” from the “Disk” sequence (for the estimation
of HR frame “15). For both sequences, no blur [the unknown
camera point spread function (PSF)] was used for our proposed
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TABLE 1
ISNR VALUES AND NUMBER OF CG ITERATIONS FOR MOBILE AND BUS FOR THE CASE OF 9 X 9 UNIFORM BLUR

Mobile Bus

BSNR Stationary Algorithm | ISNR (dB) iterations 4, 1| ISNR (dB) iterations Y B

20dB 1 1.55 415 13.46 1.96 506 16.90
’yk_,irue—mob. = 11.98 2 2.04 41 11.62 2.28 30 13.57
Vi trwe—bus = 13.77 3 2.58 20 11.62 2.89 22 13.57
30dB 1 3.44 286 1.29 3.65 220 1.33

Vi true—mob, = 1.19 2 3.55 21 0.83 3.75 22 0.94
Ve true—bus = 1.37 3 4.17 19 0.83 4.07 20 0.94
40dB 1 4.76 165 0.14 4.37 180 0.10
PYk_,il;rue~mob. =0.12 2 4.82 21 0.14 4.42 20 0.08
'y,;}me_bus =0.13 3 5.46 18 0.14 4.72 19 0.08

TABLE II
ISNR VALUES AND NUMBER OF CG ITERATIONS FOR MOBILE AND BUS FOR THE CASE OF NO BLUR/H =1
Mobile Bus

SNR Stationary Algorithm | ISNR (dB) iterations 4, 1| ISNR (dB) iterations Y E
20dB 1 1.93 245 17.93 2.05 267 20.04
'y,;;me_mob' =14.19 2 2.28 18 12.39 2.57 15 17.57
wk‘jme_bm = 19.55 3 2.89 20 12.39 3.18 20 17.57
30dB 1 3.68 356 1.68 3.70 450 2.13
'yk‘;we_mob‘ =1.42 2 3.80 16 1.12 3.80 10 1.54
’Y;:,ime—bus =1.96 3 4.31 20 1.12 4.33 19 1.54
40dB 1 4.13 650 0.50 3.84 650 0.35

Vi true—mob, = 0-14 2 4.15 14 0.14 3.87 8 0.17
’Y):;me—bus =0.20 3 4.54 20 0.14 441 17 0.17

Algorithm 3 and for the IBP SR method in [15] (i.e., H = I),
whereas the formulation in [10] and [14] does not account for
the possible presence of blur at all. Moreover, in this experi-
mental set, all reconstructed HR images have also a resolution
enhancement factor of two (L = 2). Clearly, in this set of exper-
iments we cannot define objective metrics of performance such
as the ISNR, given that the original frames are unknown. There-
fore, the evaluation of the results provided by the SR methods
is purely based on visual inspections.

In all experiments with Algorithms 2 and 3, the MF com-
putation was performed using a three-level hierarchical block
matching algorithm (HBMA) with integer pixel accuracy at
each level [43]-[45], with exhaustive search for the motion
vector computation at every pixel. The block dimensions were
selected to be 5 x 5 at each resolution level, whereas an exhaus-
tive search over an 11 x 11 area was used at each level, with
matching metric the mean absolute difference (MAD). In all
experiments, the convergence criterion used for the termination
of the CG algorithm was |[f}*" — f,;’ld||2/||f,§,’1d||2 < 1075,
where eV — !4 represents the difference between two
consecutive HR estimates. In the experiments that an itera-
tive scheme was adopted, the entire process terminated when
[Fr—— f',ict||2/||f,i,t||2 < 1077, where it denotes the iteration
index. Moreover, for all algorithms, the results are presented
with respect to the middle (kth) frame.

1) Experiment 1: In the first set of experiments, we tested
the performance of the three algorithms in their stationary
form. For Algorithm 1, the bicubically interpolated LR obser-
vations served as initial conditions. In all experiments with Al-

gorithms 2 and 3 they (including the estimation of the param-
eters) are initialized by the results of Algorithm 1. Tables I
and II report the ISNR values, the number of iterations and
the values of the estimated noise variances for three different
noise levels BSNR/SNR values, for the uniform blur and no
blur cases, respectively. It has been experimentally demon-
strated that when (28) is used for the estimation of the pa-
rameters a; in Algorithms 1 and 2 for both cases of blur and
also for both sequences, we obtain the best results in terms of
ISNR when the aforementioned equation is scaled by a con-
stant whose order of magnitude is 10~2. Moreover, the same
scaling is employed in Algorithm 3, where parameters «; and
B;; are given by (44). The procedure of choosing the proper
scaling constants has been also used in the past with success
in video SR problems and also in image recovery problems
[22], [46], [47].

Referring to Table I at low BSNR levels the improvement
that Algorithm 3 provides over Algorithm 1, is much higher
than the one at higher BSNR values. This can be attributed to
the fact that the role of the prior becomes more important at
low BSNRs [48]. Moreover, the lower the BSNR, the higher the
margin of improvement which is achieved using Algorithms 2
and 3 with respect to Algorithm 1.

Finally, given Table II, all qualitative conclusions regarding
the three algorithms also hold in the absence of blur as they have
already been presented in the first set of experiments, proving
that the use of the new multichannel prior is also efficient when
addressing the SR problem by itself, i.e., there is no need for
blur removal.
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TABLE III
ISNR VALUES AND NUMBER OF CG ITERATIONS FOR MOBILE AND BUS FOR THE CASE OF 9 x 9 UNIFORM BLUR
Mobile Bus
BSNR | Non-Stationary Algorithm | ISNR (dB) iterations l ¢ | ISNR (dB) iterations l
20dB 1 2.02 400 2.10 - 2.42 380 2.10
2 2.33 40 2.10 - 2.63 42 2.10
3 2.83 20 201 5 3.14 22 2.01
30dB 1 4.44 250 210 — 4.21 250 2.10
2 4.45 28 210 - 4.25 26 2.10
3 4.81 19 201 5 4.44 21 2.01
40dB 1 5.86 200 2.10 - 4.97 210 2.10
2 5.93 19 2.10 — 5.07 10 2.10
3 6.30 18 201 5 5.25 19 2.01
TABLE 1V
ISNR VALUES AND NUMBER OF CG ITERATIONS FOR MOBILE AND BUS FOR THE CASE OF NO BLUR/H = 1
Mobile Bus
SNR | Non-Stationary Algorithm | ISNR (dB) iterations l & | ISNR (dB) iterations l
20dB 1 2.97 300 2.10 — 2.95 380 2.10
2 3.20 26 210 — 3.16 26 2.10
3 3.71 19 201 5 3.86 21 2.01
SR Algorithm in [14] 2.85 - — — -0.35 — -
SR Algorithm in [10] 2.86 - - - —0.12 - -
IBP SR Algorithm in [15] 1.51 30 - - —0.05 30 -
30dB 1 4.48 180 210 -— 4.30 190 2.10
2 4.58 24 210 - 4.40 20 2.10
3 5.00 20 201 5 4.65 20 2.01
SR Algorithm in [14] 3.22 - - - —0.50 - -
SR Algorithm in [10] 3.19 — — — —0.33 — —
IBP SR Algorithm in [15] 2.42 25 - - —0.10 26 —
40dB 1 4.94 150 210 - 4.45 155 2.10
2 5.02 22 210 — 4.50 20 2.10
3 5.31 20 201 5 4.70 20 2.01
SR Algorithm in [14] 3.28 — - - —0.55 — —
SR Algorithm in [10] 3.32 — - - -0.37 — —
IBP SR Algorithm in [15] 2.55 25 — — —-0.15 24 —
TABLE V

PERFORMANCE LIMITS IN TERMS OF ISNR VALUES FOR MOBILE FOR THE CASE OF 9 X 9 UNIFORM BLUR

Mobile Mobile
BSNR | Stationary Algorithm | ISNR (dB) | Non-Stationary Algorithm | ISNR (dB)
20dB 3 3.42 3 4.63
30dB 3 5.76 3 7.36
40dB 3 6.85 3 9.71

2) Experiment 2: In the second set of experiments, we evalu-
ated the performance of the nonstationary versions of the three
proposed algorithms. More specifically, the CG algorithm for
each nonstationary algorithm was initialized by its respective
stationary results based on which the MFs were also computed.
As far as the hyperparameters are concerned, parameters z/;l
were obtained as l/;-l = 1/(20jstat), Where ajstat are the within
channel parameters obtained by the respective stationary algo-
rithms. These parameters were assumed to be equal for the two
selected directions. As far as the 7;;s in Algorithm 3 are con-
cerned, they are expressed as 7;; = 1/(20;jstat), Where [3;jstat
are the cross-channel precisions given by the respective sta-

tionary algorithms. The parameters l;’ were selected to be all
equal to a value denoted by [ and within the same context pa-
rameters &;; were equal to the value &. Using trial and error,
values in the interval | = [2.01 — 2.5] and £ = [2.01 — 5] were
found to provide the best SR (and restoration) results based on
both visual criteria and the adopted ISNR metric.

The results of this set of experiments (with respect to the kth
frame) are summarized in Tables III and IV. Commenting on
these tables in more detail, we come up with the same quali-
tative conclusions that we have already mentioned for Tables I
and II. Overall, the experimental results demonstrate that Al-
gorithm 3 in its nonstationary version clearly outperforms all
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other algorithms for both cases of severe blur and no blur, for
both sequences. Moreover, it is clear that the proposed multi-
channel prior yields high performance, proving that incorpo-
rating the MF information in the prior knowledge is much more
helpful than using it in the observation term. Furthermore, the
experiments proved that even when comparing the stationary al-
gorithms among themselves, Algorithm 3 is clearly better and
serves as a framework of initial conditions for the respective
nonstationary algorithm. Finally, referring to Table IV, our pro-
posed nonstationary Algorithm 3 clearly provides a superior
performance as compared to the SR algorithms in [10], [14],
and [15]. This is established quantitatively by the negative ISNR
values that both algorithms exhibit in the case of “Bus” se-
quence, while in the case of “Mobile” sequence these values are
lower even when compared to the respective values of stationary
Algorithm 3. Moreover, based on the aforementioned table, the
IBP SR method in [15] converges slower than the proposed Al-
gorithm 3.

In order to test the performance limits of the proposed prior
in both its stationary and nonstationary versions, we indica-
tively implemented the two versions of Algorithm 3 estimating
the MFs and the precision parameters from the original images,
whereas the CG algorithm was initialized by the restored frames
exactly as it was done previously. For these experiments, we
utilized the “Mobile” sequence in the 9 X 9 uniform blur case.
From the SR frames shown in Figs. 1 and 2 along with the results
shown in Table V, it is clear that the proposed nonstationary
algorithms provide both higher ISNR values (by up to almost
3 dB for the case of 40 dB BSNR) and visually much more
accurate and pleasing results than the corresponding stationary
algorithms.

Some indicative visual proof of the aforementioned conclu-
sions are presented in the figures of this paper. As far as the effi-
cacy of the stationary Algorithm 3 is concerned, as can be seen
in Figs. 1(e), 2(d), and 4(c), several areas of the middle frame of
the “Mobile” sequence benefit from the recovery i.e., the num-
bers in the calendar are sharper and all other image areas are
also improved. Based also on the visual results, of Figs. 1(f),
2(e), 3(e), and 4(d), the nonstationary version of Algorithm 3
further improves the image in the sense that ringing artifacts are
removed at all noise levels and the edges become sharper. Fur-
thermore, resolution enhancement is increased (especially for
high (B)SNR values) due to the better utilization of the MF in-
formation. Moreover, comparison among Fig. 4(c)—(g) further
establishes the efficacy of our proposed algorithm with respect
to the SR techniques in [10], [14], and [15]. Finally, the su-
periority of nonstationary Algorithm 3 becomes more clear by
the comparison of Fig. 3(e)—(h) where the aforementioned al-
gorithms obviously fail to accurately estimate the motion, espe-
cially in the iron fence region. In all cases, the results obtained
by the IBP method have more noise and artifacts, compared to
all the other methods. Based on [49], the same conclusions are
drawn for the POCS SR algorithms described in [17] and [50].

3) Experiment 3: In this experimental set, we compare the re-
sults of our proposed method (nonstationary Algorithm 3) with
three other SR techniques [10], [14], and [15], using two real se-
quences, the “Bus” and the “Disk” sequences. As far as our al-
gorithm is concerned it was implemented as it has already been
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Fig. 1. (a) Original middle frame (central segment) of the “Mobile” sequence.
SR estimates of the respective frame with a 9 X 9 uniform PSF (Case of
BSNR =20 dB). Result after (b) bicubic interpolation of the LR observa-
tion, (c) stationary Algorithm 1 method (ISNR =1.55dB), (d) stationary
Algorithm 2 method (ISNR =2.04 dB), (e) stationary Algorithm 3 method
(ISNR = 2.58 dB), (f) nonstationary Algorithm 3 method (ISNR =2.83 dB),
and (g) testing the performance limits of the nonstationary Algorithm 3
(ISNR =4.63 dB/Table V).

explained (it is noted that parameters [ and ¢ were chosen to be
equal to 2.01 and 5, respectively). Moreover, in the implemen-
tation of the techniques proposed in [10], [14], and [15], up-
sampling was performed using bicubic interpolation. As men-
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Fig. 2. Middle frame (central segment) SR estimates of the “Mobile” sequence
with a 9 X 9 uniform PSF (Case of BSNR =40 dB). Result after (a) bicubic
interpolation of the LR observation, (b) stationary Algorithm 1 method
(ISNR =4.76 dB), (c) stationary Algorithm 2 method (ISNR =4.82 dB),
(d) stationary Algorithm 3 method (ISNR =5.46dB), (e) nonstationary
Algorithm 3 method (ISNR = 6.30 dB), and (f) testing the performance limits
of the nonstationary Algorithm 3 (ISNR =9.71 dB/Table V).

tioned previously our algorithm can estimate nonuniform mo-
tion, whereas the algorithms in [10], [14], and [15] assume uni-
form motion and rotation (the method in [15] tracks multiple
independent motions assuming an affine motion model). The
motion in the “Bus” sequence is not uniform, while the motion
in the “Disk” is. As a result the motion model of our algorithm
fits well to the “Bus” sequence, while the motion model of [10],
[14], and [15] fits well the “Disk” sequence.

The results of this experiment are shown in Figs. 5 and 6.
From these results, we observe that the proposed method clearly
outperforms the methods in [10], [14], and [15] for the “Bus”
sequence. As far as the “Disk” sequence is concerned whose
motion clearly favors the SR algorithms in [10], [14], and [15],
our method provided comparable performance with them. In all
cases, our algorithm outperforms bicubic interpolation.

In terms of computational cost, all proposed algorithms were
quite fast. Typically, the CG algorithm required about 2040 it-
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Fig. 3. (a) Original middle frame (central segment) of the “Bus” sequence. SR
estimates of the respective frame with no blur/H = I (Case of SNR =20 dB).
Result after (b) bicubic interpolation of the LR observation, (c) nonstationary
Algorithm 1 method (ISNR = 2.05 dB), (d) nonstationary Algorithm 2 method
(ISNR = 2.57 dB), (e) nonstationary Algorithm 3 method (ISNR =3.18 dB),
(f) SR algorithm proposed in [14] (ISNR =-0.35 dB), (g) SR algorithm pro-
posed in [10] (ISNR =-0.12 dB), and (h) IBP SR algorithm proposed in [15]
(ISNR =-0.05 dB).

erations to converge. In the experiments that an iterative scheme
was adopted, the entire process terminated after about 1015 it-
erations. All experiments were performed using MATLAB on a
2.33 GHz personal computer. All calculations for the implemen-
tation of the CG method for all algorithms required 1-1.5 min,
whereas the total time required for the computation of the MFs
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Fig.4. Middle frame SR estimates of the “Mobile” sequence with no blur/H =
I (Case of SNR = 30 dB). Result after (a) bicubic interpolation of the LR ob-
servation, (b) stationary Algorithm 1 method (ISNR = 3.68 dB), (c) stationary
Algorithm 3 method (ISNR = 4.31 dB), (d) nonstationary Algorithm 3 method
(ISNR =5.00 dB), (e) SR algorithm proposed in [14] (ISNR = 3.22 dB), (f) SR
algorithm proposed in [10] (ISNR = 3.19 dB), and (g) IBP SR algorithm pro-
posed in [15] (ISNR = 2.42 dB).

(20 of them for the five-channel window used in Algorithm 3)
is almost 20 min. This time depends on the frame size. The esti-
mation of the inverse variance parameters took less than 1 min.
Finally, we also tested both sequences (“Mobile” and “Bus”)
by implementing the experiments not only for a five-frame se-
quence, but also using 3, 7, and 9 frames. The best results in
terms of ISNR and visually were obtained for the five-channel
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Fig. 5. (a) LR middle frame (central segment) of the “Bus” sequence. Corre-
sponding frame SR estimates. Result after (b) bicubic interpolation of the LR
observation, (c) SR algorithm proposed in [14], (d) SR algorithm proposed in
[10], (e) our proposed SR algorithm (nonstationary Algorithm 3), and (f) IBP
SR algorithm proposed in [15].

case when using all possible combinations (|i — j| < 4), for the
seven-channel case when |i — j| £ 3 and for the nine-channel
case when |7 — j| < 2. These results were similar among them-
selves and clearly better than the three-channel case. These ex-
periments demonstrated that the larger the frame window size,
the smaller the maximum neighborhood size of the pairs of
frames which are used in the proposed prior should be.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we presented a MAP approach that utilizes a
new multichannel image prior, and both its nonstationary and
stationary forms were applied to the digital video SR problem.
We also compared the novel proposed algorithm with two other
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Fig. 6. (a) LR middle frame (central segment) of the “Disk” sequence. Corre-
sponding frame SR estimates. Result after (b) bicubic interpolation of the LR
observation, (c) SR algorithm proposed in [14], (d) SR algorithm proposed in
[10], (e) our proposed SR algorithm (nonstationary Algorithm 3), and (f) IBP
SR algorithm proposed in [15].

algorithms we propose. Moreover, we tested our new algorithm
with the three SR techniques in [10], [14], and [15], for certain
experimental cases, using also real video data. The proposed al-
gorithms were tested for different cases (presence and absence
of blur for different BSNR and SNR values). The experimental
results showed that in all cases the algorithm which utilizes the
nonstationary version of the new proposed prior (Algorithm 3)
performs better than nonstationary Algorithms 1 and 2 in terms
of both visual quality and improvement in SNR/ISNR. Further-
more, the comparison between Algorithms 2 and 3 provides a
strong indication that the use of MF in the prior term is much
more effective in terms of both restoration and resolution en-
hancement capability than its use in the observation term. More-
over, our method provided in most cases a superior, and in one

only case at least as good, of a performance as the SR techniques
in [10], [14], and [15].

Nevertheless, we plan to investigate whether we can further
improve the proposed algorithms by introducing a new model,
that uses a TV based prior [25].
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