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Digital Restoration of Multichannel Images

NIKOLAS P. GALATSANOS, STUDENT MEMBER, IEEE, AND ROLAND T. CHIN, MEMBER, IEEE

Abstract—Digital image restoration of monochrome images has been
studied extensively. However, problems associated with the restoration
of multichannel images still require investigation. In this paper, the
Wiener solution of a multichannel restoration scheme is presented.
Using matrix diagonalization and block-Toeplitz to block-circulant ap-
proximation, the inversion of the muitichannel, linear space-invariant
imaging system becomes feasible by utilizing a fast iterative matrix in-
version procedure. The restoration uses both the within-channel (spa-
tial) and between-channel (spectral) correlation; hence, the restored
result is a better estimate than that produced by independent channel
restoration. Simulations are also presented.

I. INTRODUCTION

HE use of image data from multiple frequency bands,

muitiple time frames, multiple colors, or multiple
sensors (e.g., optical, radar, range, etc.) can be of tre-
mendous value in a number of applications, such as multi-
spectral image analysis, robot vision, and satellite remote
sensing. Examples include the restoration of multispectral
satellite images and the enhancement of color images. For
the purpose of discussion, we shall use the term mulzi-
channel images in general throughout this paper to imply
the fact that we are dealing with multiple image planes
(channels) obtained by an imaging system that measures
the same scene using more than one type of sensor.

Restoration is often performed on multichannel images
of a scene in order to enhance salient features or remove
degradation effects to assist in subsequent human or ma-
chine analysis. Most of the restoration techniques involve
individual image plane restoration without using the joint
processing of multichannel image planes. An example of
this type of technique is the restoration of color images
by individual monochrome processing in which each color
is treated separately. This is not desirable because it fails
to utilize the related information between channels.

In [1], Hunt and Kiibler present a multichannel resto-
ration scheme based on the assumption that the signal au-
tocorrelation, describing the between-channel (or spec-
tral) and within-channel (or spatial) relationship, is
separable. This enables the formulation of a linear trans-
formation to decorrelate the signal between image chan-
nels. In other words, this transformation makes the chan-
nels orthogonal. It follows that multichannel restoration

Manuscript received June 24, 1987: revised June 26, 1988. This work
was supported by the National Science Foundation under Grant ECS-
8352356 and ATM-8414467, and in part by NASA under Grant NAG 5-
580.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Wisconsin, Madison, W1 53706.

IEEE Log Number 8825666.

of the transformed signal is equivalent to the application
of restoration to individual channels independently, and
the process does not lose any between-channel informa-
tion.

In this paper we describe a computationally feasible al-
gorithm that utilizes the advantage of the special structure
of the correlation matrix of the multichannel image with-
out using the assumption of spectral and spatial separa-
bility. It uses the block-circulant to block-Toeplitz ap-
proximation, and hence the discrete Fourier transform
(DFT).

Section II describes the image formation model and es-
tablishes the necessary mathematical notations. Indepen-
dent restoration of individual images is reviewed in this
section. Section III presents the multichannel restoration
algorithm. Section IV presents experimental results.

II. TuE IMAGE FORMATION MODEL

A linear shift-invariant monochrome imaging system
can be modeled by

sen = |1 e n -y -y

cdx'dy' + n(x,y) (2-1)

where f(x, y) is the unknown ideal image, g(x, y) is the
known observed image, h(x, y) is the degradation func-
tion, and n(x, v) is a noise process that is uncorrelated to
f(x, y). The discrete version of this system is a set of
linear equations

M-1M-1

gU k) = X 2 fm n) h(j = m. k= n) +n(j. k)

(2-2)
and they can be represented by matrix notation as

g=Hf+n (2-3)

where f, g, and n are lexicographic orders, by either col-
umn or row, of the two-dimensional image of size M X
M into one-dimensional vectors of length M?. The matrix
H is the discrete representation of the degradation of di-
mension M2 X M?*. For linear shift-invariant systems,
matrix H is block Toeplitz, that is, H is partitioned in
blocks and each block is Toeplitz; see [3].

For a multichannel imaging system with N channels
each of size M X M, the imaging model becomes

gl‘:Hif;'+n,‘ for i:1,2,"',N (2‘4)
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where g;, f;, n;, and H; are the observed image, the ideal
image, the noise, and the degradation function of the ith
channel, respectively.

Equation (2-4) can be further simplified by adopting the
following notation:

81 fi n
&2 b n,

g=| - | f=| .| n=|" (2-5)
8N iy hy

H,R}'H,

=)
Il

L HyR}"H,

where g, f, and n are N X M? in length. The degradation
H of the multichannel image is

F_HIO <o 0 ]
0 Hz"'o

H=| - 0o ---0 (2-6)
[ 0 0 --- Hy_|

and is of dimension NM?2 x NM?. Finally, the multichan-

nel imaging equation can be written as
g =Hf +n. (2-7)

The linear minimum mean square error (LMMSE) so-
lution to (2-7) is the well-known Wiener solution, given
by

f=RH[HRH +R,) 'g (2-8)
where f is the estimate of f, and R, and R, are the auto-
correlation of the multichannel signal and the noise, re-
spectively. The solution requires the inversion of

R = [HRH' + R,]. (2-9)

Let us further examine Ryand R,. Let R} = E[ f,f}] be
the correlation between channel i and [. Then

1 12 IN
Ry Ry Ry
RZ] R22 RZN
R=|"7 "0 (2-10)
NI N2 NN
Ry Ry" Ry
is an NM? X NM? matrix.
The autocorrelation matrix of n, R,, is defined in
(2-11) by assuming that the between-channel noise is un-

[ HR;'H\ + R, HRP’H

HyR}*H)

correlated; that is, Ri = 0 for i # I. Using the definition
R! = E[n;n}], we have

R'o ---0
0 Ry -0

R, = . X (2-11)
0 0 - RV

If white noise is assumed for n, then R¥ = ¢7 I, where
0% is the variance of n,.
Using (2-9), (2-10), and (2-11),

5 H,R;NHY
H,R7” Hy + R? H,R}VH)

(2-12)
HyR}VHy + RN

and it is of dimension NM? X NM?

For any realistic application, for example, M = 128
and N = 3, the direct computation of (2-8) is not practi-
cal, requiring the inversion of a 49 152 X 49 152 matrix.

A. Independent Restoration of Image Planes

Block-Toeplitz to block-circulant approximation has
been used in monochrome image restoration to enable the
inversion of the imaging system using DFT. For station-
ary and linear shift-invariant images, the signal autocor-
relation and the system degradation matrices are block
Toeplitz, each of dimension M? x M?. Using the block-
Toeplitz to block-circulant approximation and the fact that
circulant matrices have identical eigenvectors, the Wiener
solution of the monochrome image restoration is reduced
to a set of scalar equations in the Fourier domain via the
two-dimensional DFT; see [3]. Hence, inverting the im-
aging system is feasible and straightforward. The validity
of the block-Toeplitz to block-circulant approximation has
been verified [4] and it has been shown that as the dimen-
sion of the matrix grows, a block-Toeplitz matrix is
asymptotically equivalent to a block-circulant matrix in
the Euclidean norm sense.

In examining (2-8), the multichannel inversion formu-
lation, one can see that the noise autocorrelation R, for a
white noise process is block diagonal. The autocorrelation
matrix Ry of the multispectral vector f given by (2-10) is
not block Toeplitz but it can be partitioned into subma-
trices that are block Toeplitz. If we assume that R}[ =0
for i # [, that is, image channels are uncorrelated, then
from (2-10) we obtain

RI'0 -0
0 R}Z e 0

Rf= . . . . . (2~13)
0 0 - RV
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Using this assumption, the inversion formulation of (2-8)
becomes

Py

7 = RIH\[HR{H! + RI]™ i=1,2,+,N
(2-14)

which represents the independent channel restoration ap-
proach with the implicit assumption that the correlation
between channels is zero. Since this assumption is not
valid for multichannel images, it is clear that the indepen-
dent channel restoration is a suboptimal solution to the
true multichannel restoration because it fails to include
information on the joint spatial and spectral correlations
of the multichannel imaging system.

II1.- THE- MULTICHANNEL - IMAGE- RESTORATION
ALGORITHM

In multichannel image restoration, the signal correla-
tion matrix Ry glven by (2-10) is not block Toeplitz. The
clements of Ry, Rf, are block Toeplitz for stationary im-
ages but they are not arranged in a Toeplitz order because

RI # RITHIM k=1,2,

This can be explained by the fact that different channels
embody different properties of the scene being imaged,
and these differences can lead to substantial differences
between the image pair (i, !) and (i + k, [ + k), and
therefore there is no justification to assume stationarity
between channels. Not being able to assume block Toe-
plitz for Ry, Fourier domain computations cannot be used
directly to decompose (2-8).

The algorithm presented below overcomes the above
stated problem and allows the computation of f efficiently
from (2-8) without requiring the usage of Hunt and Kii-
bler’s separability assumption [1] and the between-chan-
nel stationarity assumption.

Let us first define the DFT operation. The DFT of an
M X M signal f (m, n) is defined by

M-1M-1

F(u, v) = E 2 f(m, n)exp[—j—(um + vn)}

for

u,v=20,1,2, M-1

and it can be also written in vector matrix notation as
F=W'f (3-1)

where F and f are lexicographic orders of F(u, v) and
f(m n), respectively, and are of length M?. The matrix
W~! contains the complex exponentials and is of dimen-
sion M2 x M?. See [2] for a more detailed description of
this representation.

Similarly, the inverse is

f= WF

where W is defined accordingly; see [2].
In [2] it has been shown that for a block-circulant ma-

trix C of dimension M? X M? given by

el e, [c], |
[}y [el, - el
¢= ;
[c],,
(el [el,_, - e,

where [c]; are M X M circulant matrices given by

¢ & -3
2 1 3
G G G
le] = -
o'
M M- !
4 G G
the following is true:
D=W'Cw (3-2)

where D is an M? X M? diagonal matrix.

Equation (3-2) represents the diagonalization of a block-
circulant matrix via the 2-D DFT. Having established the
above, we proceed with the description of the multichan-

nel restoration algorithm.

Let us define an NM2 X NM? transformation matrix W
as

0 o« oo 0
W= (3-3)
0 0 ‘e W
where W satisfies (3-2). The matrix inverse, W', is then
given by
w' o 0
o w
W' = . (3-4)
0 0 - W
Applying W' to (2-8) we obtain
W 'f=[W'RW][W 'HW]
[W'[HRH' + R)W] W 'g. (3-5)

The term W~ 'g is the DFT of the observed N-channel
image, and W™'f is the DFT of the restored multichan-
nel image.

Equation (3-5) can now be written as

F=[W'RW][W 'HW]
[W'[HRH' + R,)W] W'G (3-6)
where G and F are the DFT of g and f, respectively.
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Examining the elements in (3-6) separately, we have

W'RI'W W 'RPW

The inverse matrix B; ' can be determined by [5]

r,{&.xlr
t leq

W' 'RW=|W'R'W W 'RPW (3-7)
: . . i— + i — aI- U— i — al-:l
:{ 1 Q 1 i 1 Ql] I} (3_10)
ai—lUivl oy
and
where
-1 t
w w0 i =Y A Z Qo =Y, + U X, (311)
-1 17 1A 1 gyt _
Hw= 0 v .HZW (3-8) Q.= —Bi_—IX— (3-12)
and
The last part of (3-6) is Ui_,=-Z'_ B (3-13)
W™ '[HR/'H, + R} \W W '[HRPH,|W
W '[HRH' + R,]JW = | W '[H,R} H\]W W '[H,R*HY + RFZ|W (3-9)

Assuming stationary images and linear shift-invariant sys-
tems, R’s and H’s in the above equation are block-Toe-
plitz matrices. Using block-Toeplitz to block-circulant
approximation and the diagonalization as defined in
(3-2), equations (3-7), (3-8), and (3-9) yield block matri-
ces with partitions that are diagonal as shown in the fol-
lowing:

[®] [®] - [®]
o] [®] --- @
[][] . [] (Form A)

(@] [®] --- [e®]
where [ ®] are M®> X M’ diagonal matrices. Operations
on matrices of this form are computationally efficient be-
cause they contain only a few nonzero elements. The fol-
lowing describes a computationally feasible algorithm for
the inversion of such matrices.

Lemma 1: Operations (addition, subtraction, multipli-
cation, and inversion) on Form A matrices result in Form

A matrices.
Lemma 2: Any iM? X iM? block matrix B; can be par-

titioned as
B,_, X._
B = { ’ | 1}
i—1 Yi—l

where B;_ isan (i — 1) M? x (i — 1)M? block matrix,
X;_, is a block column of dimension (i — 1) M? x M?,
Z!_, is a block row of dimension M? x (i — 1)M?, and
Y,_, is an M? x M’ matrix.

If B; is a Form A matrix, that is, all i entries are M2 X
M diagonal matrices, then the above matrix inversion
procedure [(3-10)-(3-13)] involves operations only with
diagonal matrices, enabling the inversion to be imple-
mented efficiently.

We have already shown that the restoration of multi-
channel image as formulated in (3-6) involves operations
on Form A matrices given by (3-7)-(3-9). The matrix de-
fined in (3-9) is positive definite and well conditioned. In
conjunction with Lemma 2, solving for the Wiener solu-
tion of the multichannel imaging system becomes fea-
sible. The following summarizes the restoration proce-
dure.

Step 1: Diagonalize R}’ and H; by the transformation W
fori,/=1,2,---,N.

Step 2: Transform g; by G, =

, N and construct G.

Step 3: Partition the matrix [ W~ [HRfH’ + R,1W]
into N partitions and use the iterative procedure (as stated
by Lemma 2) N — 1 times to solve for the inverse.

Step 4: Solve for F, the Weiner solution, as in (3-6).

Step 5: Inverse DFT of F for the restored i image f

Wilg fori =1, 2,

IV. EXPERIMENTS

Simulations were performed to test the multichannel
LMMSE restoration algorithm. Test images of dimension
128 X 128 X 3 were used.

The Toeplitz-to-circulant approximation was done using
the DFT. The Toeplitz matrix is first transformed by a
similar transformation and then the off-diagonal elements
were set to zero.

In most image restoration schemes, images stationarity
is assumed; that is, the local mean and local variance are
independent of the spatial position. The LMMSE resto-
ration uses this assumption in order to become computa-
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tiofially feasible via the DFT. The multichannel LMMSE
scheme we present here also makes use of this assump-
tion.

In view of this, the proposed algorithm was first tested
by using synthetically generated textural images which are
stationary in nature. A 3 X 3 moving average process
given below was used to create multichannel textural pat-
terns f.

S k) =a(1) - w(j =2,k —2) +a(2)
cw(j—2,k—=1)+a(3) w(j—2,k)
+a(4) - w(i—1,k—2)+ a(5)
cw(j—-1Lk—=1)+a(6) - w(j—1,k)
+a(7) - w(j, k —2) + a(8)
“w(j, k= 1) +a(9) - wj. k) (4-1)

where f,(j, k) is the textural image in channel [ at spatial
location (j, k), w(j, k) is independent white Gaussian
noise with zero mean and unit variance driving the model,
and a(-) are the moving average coefficients.

Independent additive white Gaussian noise, n, was
added to each channel separately. Low-pass averaging fil-
ters, H, implemented as 5 X 5 weighted convolution
masks, were applied to degrade the channels generating
the multichannel images g. See Fig. 1 for the image for-
mation model of this experiment.

The multichannel correlation was estimated by

M M
RIGK) = o3 5 3£ + m k + m) filn, m)
(42)

where M = 3 and R}I (j, k) is the correlation at spatial
location (j, k) between channels i and /. The signals f;
and f; are the original image of channel i and channel /,
respectively. Note that in this experiment, the correlation
was estimated directly from the ideal image signal f. The
estimated correlation was then used in (2-12) for the res-
toration. To permit comparison of the performance of the
multichannel restoration scheme to that of independent
restoration, mean-square error (MSE) between f; and f, was
used.

Three sets of multichannel textural images were gen-
erated, each with three channels. One of the image sets
represents a strong between-channel correlation, another
represents a moderate correlation, and the last set repre-
sents a weak between-channel correlation. The values of
the moving average coefficients for the generation of these
three sets of images are listed in Table I. The textural
images were restored by the multichannel scheme, and
their MSE measures are shown in Table II. As expected,
the multichannel restoration outperformed the indepen-
dent restoration. Furthermore, the improvement is sub-
stantial when the between-channel correlation is strong.
This can easily be explained by the fact that the multi-
channel restoration scheme utilizes information contained
in all the channels. When the between-channel correlation
is weak, the performance of the multichannel scheme and

&

] -
n

n3

Fig. 1. The image formation model for restoration of stationary images.

TABLE 1
MOVING AVERAGE COEFFICIENTS OF THE SYNTHETICALLY GENERATED
TEXTURE IMAGES

Strong Between-Channel Correlation

a(D) [ a@) | a@) | a@® [ aB) | a® [ a( | a® | a®)
Channel 1 10 0 0 0 10 0 0 [{] 10
Channel 2 10 0 0 0 10 0 0 0 10
Channel 3 10 0 0 0 10 0 0 0 10
Moderate Between-Channel Correlation
a(l) a(2) a3) a(4) a(s) a(6) a@®) a8) a9)
Channel 1 10 0 0 0 10 0 0 0 10
Channel 2 10 10 0 0 10 0 0 0 0
Channel 3 Q0 0 0 0 10 0 0 10 10
Weak Between-Channel Correlation
al) | a@) | a@ | a@ [ aB) | a©®) | ad | a® [ a®
Channel 1 10 0 0 0 10 0 0 0 10
Channel 2 0 10 0 0 10 0 0 10 0
Channel 3 0 0 0 10 10 10 0 0 0
TABLE II
RESTORATION OF SYNTHETICALLY GENERATED STATIONARY IMAGES. THE
SNR 15 30 dB
Mean-Square Error
Strong Between-Channel Correlation
Channel 1 Channel 2 Channel 3
Without Restoration 15.88 15.90 15.89
Independent 12.14 12.13 11.12
Multichannel 7.44 7.44 7.44
Moderate Between-Channel Correlation
Channel 1 Channel 2 Channel 3
Without Restoration 1593 13.37 13.38
Independent 11.84 971 9.67
Multichannel 10.82 8.98 8.93
Weak Between-Channel Correlation
Channel 1 Channel 2 Channel 3
Without Restoration 16.02 15.94 1575
Independent 8.94 11.79 8.72
Multichanne] 8.36 11.51 8.21

Fig. 2. The image formation model for restoration of real images.

the independent restoration are basically identical, be-
cause there is very little information from the other chan-
nels to be utilized.

In another experiment real images were used, as shown
in Fig. 3. The image was digitized and degraded by three
different low-pass filters implemented as 5 X 5, 7 X 7,
and 9 X 9 convolution operators. Independent white
Gaussian noise was added to each channel. See Fig. 2 for
the image formation model.
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TABLE 111
RESTORATION OF THE ZEBRA IMAGE.
THE SNR'S oF CHANNEL 1, 2, AND 3 ARE 30 dB, 40 dB, axp 50 dB,
RESPECTIVELY

Mean Square Error

Channel 1 Channel 2 Channel 3
Without Restoration 19.24 20.38 21.56
Independent 13.61 12.34 10.27
Multichannel 8.13 7.52 733

Fig. 3. (a) Original (upper left) and distorted images of channel 1 (upper
right), channel 2 (lower left), and channel 3 (lower right). (b) Indepen-
dently restored images of channel 1 (upper right), channel 2 (lower left),
and channel 3 (lower right). (¢) Multichannel restored images of channel
1 (upper right), channel 2 (lower left), and channel 3 (lower right).
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The correlation was estimated by
M M

> Zl g + n, k+ m)g(n, m)

n=1m=

il g+ 1
RY(j, k) = JYE

(43)

where R}/(j, k) is the correlation at position (j, k) be-
tween channels i and /. The signals g; and g, are the ob-
served image from channel /, respectively. In this case,
the estimation used the observed image g instead of the
ideal signal f. Next, the estimated correlation, the ob-
served signal, and the degradation functions were input to
the multichannel restoration scheme and the results were
tabulated in Table III. The resulting images are shown in
Fig. 3. Again, the multichannel restoration performed
better than the independent restoration.

V. CONCLUSIONS

This paper presents a computationally feasible algo-
rithm to solve for the Wiener solution (LMMSE) of a
multichannel imaging system. Solving for the Wiener so-
lution directly as stated in (2-8) requires N?M® operations
for the inversion of (2-9), where N is the number of chan-
nels and M X M is the size of the image. Using the pro-
posed multichannel restoration algorithm as defined in
(3-6), the required number of operations for the inversion
is reduced to N>M? log, M. For large M, for example,
128 x 128 three-channel images, the difference is signif-
icant (10" versus 10%. Simulations were performed to
test the proposed algorithm. It was verified that the mul-
tichannel algorithm outperforms the independent restora-
tion.
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