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Constrained FIR Filter Design by the Method of
Vector Space Projections

Khalil C. Haddad, Henry Starkellow, IEEE and Nikolas P. Galatsanos

Abstract—A new technique for designing linear and arbitrary- s linear programming(LP) [4]. A disadvantage of linear pro-
phase finite-impulse response (FIR) filters with various types of gramming, however, is that the required number of computa-
constraints is proposed. The approach is based on the method of i, 15 needed to arrive at a solution is rather large. Another dis-
vector space projections. We describe the constraint sets and their dvant is that |i . t v hand i
associated projections that capture the properties of the desired fil- e_l vantage Is ; . programmmg cannot easily han _e Lol
ters. In filter design, as in many other engineering prob|ems’ one |Ineal‘ constraints. In [5] an alternatlve method fOI’ the deSIgn Of
is primarily interested in meeting design constraints, i.e., finding linear-phase, FIR filters known as thigenfilter methodEM) is
a feasible solution, not necessarily an optimum one. Vector spacepresented. The idea behind EM is to first formulate a quadratic
projection methods are well-suited for this purpose. We furnish nu- error measure? Pv between the desired and the actual design,

merous examples of FIR filter design by vector space projections, hereP i | tri itive-definit tri d
including the important and difficult arbitrary phase/magnitude WIETELIS a [eal= SYIMMELIC PoSiive-detiniie Matrix, ands

problem. Examples that demonstrate the advantages and flexibility related to the filter impulse response. Then, one tries to mini-

of this method over other known methods are furnished. mize the total error by computing the eigenvectors and eigen-
Index Terms—All-pass filters, convex projection, FIR filters, values of P and pick the eigenvector that corresponds to the
linear and quadratic constraints. smallest eigenvalue in view of the well-known Rayleigh prin-

ciple [6]. The eigenvector represents the filter coefficients. Usu-
ally, P is a weighted linear combination of several positive-def-
inite matrices, e.gP = 6P, + P, + (1 — 6 — v)P., where
HE design of finite-impulse response (FIR) digital filter$ > 0,y > 0, and(y + 6) < 1. The control parametesand
is a very basic problem in digital signal processing. Thus, assign priority weights to contributions in the passband and

it has received a lot of attention in the last 30 years. In a typtopband; respectively. The positive-definite matriggs P,
ical filter-design problem, the classical constraints are passha@iP. are associated with energy constraints on the passband,
fluctuation, transition-band behavior, stopband attenuation, agi@pband, and the unwanted signal, respectively. A disadvan-
filter length, i.e., support of the impulse response. When linetage of EM is that the choice of appropriate values&and
phase is also required, probably the most widely used approactconsidering that they should preserve the desired specifica-
is that of the well-knowmMcClellan-Parkg{MP) procedure [1]. tions as much as possible) is not obvious. The advantage of EM
These filters are optimal in the mini-max sense, i.e., for a givewver linear programming is that the former is general enough
set of specifications, the largest error is minimized. Howevdg incorporate frequency and time-domain, as well as linear and
the MP algorithm is based on polynomial factorization, anguadratic, constraints.
thus, is not easily extended to the multi-dimensional case. More-More recently, methods based on convex optimization have
over, it cannot incorporate additional constraints placed on theen proposed for the design of FIR filters. In this approach,
filter design. a change of variables leads to constraints being placed on

In many filter design problems, constraints in addition to thiéae autocorrelations coefficients of the filter. Thus, the filter
classical ones are required. For example, one might require tti@sign problem is converted to a convex optimization problem.
the transient part of the step response be constrained witfiine coefficients of the filter are then recovered from the
given amplitude limits. A second example is the desigiithf auto-correlations coefficients via spectral factorization. The
band filters where every.th impulse-response components ig@dvantage of this design approach is that it can incorporate
constrained to having zero value except for the central value [gjfferent types of convex constraints (linear and nonlinear).
Also, in some cases, there are derivative constraints on the p#gsong others, magnitude bounds on Fourier transforms can be
band response of the filter [3] and so on. handled in this framework. Furthermore, it brings to bear to the

An early and powerful design method for finding feasible sditer design problem new efficient interior-point methods for
lutions, i.e., solutions consistent with the imposed constrairtenvex optimization. For a recent review of this approach and

additional references, see [7].

In some problems, the phase of the FIR filter needs to be a
. . . _ _ nonlinear function of frequency. Examples are found in phase-
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ommended by Associate Editor J. Dias. equalization, pulse shaping for chirp radar and others. A number
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Cartesian components and operate on the real and imaginsine and are perfectly acceptable for a variety of engineering
components independently [9], [10]. The final filter coefficientslesign problems such as filter design. Finally, VSPM can easily
are formed from the resultant real and imaginary coefficientse extended to multi-dimensional filter design problems, unlike
Chen and Parks [8] approximate the complex-valued resporssgne other methods such as convex optimization that would re-
by a real-valued function and the resulting errors in magmiuire a (difficult) multi-dimensional spectral decomposition.
tude and group delay are made approximately equi-ripple. Their

method, however, requires a large computer memory and the de- Il. VSPM BACKGROUND

sign-time increases exponentially with increasing time and fre- . - 5
quency grid-density. Chitand Mason [12] useddbeble adap- . The .VSPM deals with the .problem Of. f|nd!ng a matherr_]at
ical object (for example, a signal, function, image, etc.) in a

tive systenfDAS) in approximating complex-valued specifica, oper vector space that satisfies multiple constraints. When all

tions. Their method is based on least-mean-square minimi?ﬁrx : ; :
. . . . - e constraint sets are convex and have a nonempty intersection,
tion and a weight-adapting scheme designed specifically to giye

the filter Chebyshev characteristics. In Nguyen’s EM procedurcﬁere exists a _powerfl_JI theory in finding the Ob.JeCt that sat|_sf|es

; . . all the constraints. This subset of VSPM, mentioned in Section |,
[13], the desired complex-valued function are approximated I0 . lledbroiection onto convex seBOCS), which we describe
a least-squares sense. The author claims that this method vyi ¢ Pro) '

filters with performances better than the ones obtained with € The theorv of convex proiection developed by Breaman [18]
ther the DAS [12] or the LP approaches [11]. eory proj ) op y bregm
nd Gubinet al. [19] was first applied to image processing by

To the best of our knowledge, Abou-Taleb and Fahmy [1§0ula and Webb [20]. The reader is referred to [21] for an intro-

we.re_ the f'r;téoF?Sa!ﬁ prgjegtlon:rhrlfe_ methtl)tds to {:m opilm uction to this method as well as to its nonconvex extensions.
(mini-max) 2- ilter design. Their results are importan egﬁe we provide only the basic idea.

since the MP procedure is based on the alternation theorem an b begin with, assume that all the objects of interest are ele-
does not find a direct extension to the 2-D case. This is becat,;{sf nts ofacomr;lete inner product spEs.e., aHilbert space

the set of cosine functions used in 2-D approximation do not SRlow consider a convex st C H: then. for an’y element € H
isfy the Haar condition on the domain of interest, and the Cheb[¥|— ’ ’ ’

. . . - . the projectionPx of x ontoC'is the element of” closest tax.
shev approximation does not have a unique solution. Techmqlﬂ;

. ¢ is closed and convex;x exists and is uniquely determined
that employ exchange algorithms [15], [16] have been dev% x andC from the minimality criterion

oped for the 2-D case at the expense of increased analytic co
plexity. lIx — Px|| = min |lx - gl &

In an interesting recent paper, Ceghal. [17] used an it- acc
erative Fourier transform algorithm to design zero-phase Fifjs rule, which assigns to every € H its nearest neighbor
fl!ters. Upon examination, fchel_r algorithm is esse?nna_llly asPgy ¢, defines the (in general) nonlinear projection operator
cial case of vector spagaojections known as projection ontop. 4 _, ¢ without ambiguity. A convenient Hilbert space for
convex set§POCS). The algorithm was derived heuristicallyg|r fijter design isRM, the Euclidean space d¥/-vectors

without explicitly defining the constraint sets and deriving theif;iip real components. In this space, the inner product is taken
associated projectors. Moreover, the heuristic nature of this aRyx v) = 3 z(4)y(s) and the induced norm is

proach does not obviously lend itself to the design of filters with
other constraints and with arbitrary phase. M 1/2

In this paper, we consider the design of a class of FIR filters x| = (x,x)/2 = [Z a:Q(i)] . )
by vector space projection methof(d¢SPM's). We examine in i=1

detail the convexity of the_ prescrlt_)ed constraint sets and "9"The basic idea of POCS is as follows. Every known property
orously derive their associated projectors. In our first exampl

we present the VSPM formulation of the FIR linear-phase dgfthe gnknownx € H will restrict x to I!e in a closed convex

. SetC; in H. Thus, form known properties there are closed
sign problem. In our second example, we demonstrate the fléx- : _
oo . : L . . convex sets”;,i = 1,2,...,mandx € Cy = U2, C;. Then
ibility of VSPM by imposing additional linear and nonlinear bl s to find int ofn ai thz 0 and
constraints on the filter design. Finally, we apply VSPM to th@e_prg em 1S ? |§rl a F.)OIT. obo ?l\gan; _e 1se2 i an
design of the general FIR filter subject to arbitrary magnituq%roleg |onfop§ra or il pr:01ec ing onto bi’ LO_' |’2’2' o ’;nG bi
and phase constraints including constraints of a nonconvex ﬁg-sT on unh amental theorems given 3(; bplah[ lan >ubin
ture. In all cases, we compare our results with those of existiﬁq al. [19], the sequencex,} generated by the recursion
methods. rélation

Before continuing with the specifics of VSPM applied to the

FIR filter design problem, we should like to remind the reader
of the fundamental_advz_antaggs of_VSPM. VSPM can handle 8§y more generally by
number of constraints including linear, convex and nonconvex
types. In handling nonconvex constraints, we must weaken the Xper1 = T To1 - TiXpe, k=0,1,... 4
notion of inner-product convergencegommed distance error
(SDE) convergence. VSPM findsasiblesolutions (solutions whereT; = I + 11,( P, — I),0 < p; < 2 are so-calledelaxed
that satisfy all constraints) rather than optimal ones. In generipjectors(they are not true projectors unlgss= 0) converges

feasible solutions are simpler and less computationally expawmeakly to a pointinCy. Theyu;,i = 1,...,m, are relaxation pa-

Xk+1 = Pum_l e Plxk, k= 0, 1, e (3)
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this problem, an appropriate cluster of constraint set€’ar€’s
andCs; defined by

C; ={h € RM: h(n) = (N — 1 —n),
forn =0,1,...,N —1h(n)=0,N <n< M -1} (5)
Cr=Cy(a)={he RM:1-a < Alw) <1+«
p(w) =—w(N —1)/2, forw € Q,} (6)

and
C3=0C3(8) ={h e RM: A(w) < Bforwe .}, (7)

In words, C; is the set of all sequences of lengiti with
at mostNV nonzero coefficients with appropriate symmetry that
imply a Fourier transform witinear-phase The set; is the
set of all sequence whose Fourier magnitude is appropriately
Fig. 1. Trajectory of iteration in POCS with two sets. TheiSeis the solution consirained m.the passband and whose phase is “n.ear in that
region andr, is an arbitrary starting point. band. AlsoCs is the set of all sequences whose Fourier trans-

form magnitude is appropriately constrained in the stopband.

that it might have been tempting to use a Fourier magni-
given by

rameters and can be used to accelerate the rate of convergen&%&? X b
the algorithm;! is the identity operator. However, determinindu € constraint set, say;,
the optimum values of thg, i.e., the ones that gives the fastest - _ ()

. g 2 — 2
convergence, is generally a difficult problem and for, other than = M.
linear subspaces, experience has shown that good results are ob-— {heR%:1-asAlw)sltaforwe) (8

tained when they are set to values somewhat arbitrarily bet""q@&/\/ever, this set is not convex, and hence, its involvement in

one and two. The algorithm in (2) fen = 2 is shown graphi- 5 projection algorithm could leads to trapsGiven a choice,

cally in Fig. 1. _ it is better to use convex rather than nonconvex sets because of
When sets aremonconvex the extraordinary convergenceyyaranteed convergence of the sequence of iterates in the former

properties of the method of VSPM no longer apply. HOWGVe(fassuming the set intersection is not empty).
there exists a fundamental theorem, which is quite useful inl) Convexity ofC;: Let hi(n), ha(n) € C; and define

dealing with nonconvex sets. This theorem states that, in aY(n) = phi(n) 4+ (1 — phe(n) for 0 < x < 1. Since
problem involving not more than two constraint sessinmed hi(n) = hi(N —1 —n) andhy(n) = he(N — 1 —n), we
distance error(SDE) convergence will always take place, eveRavehs(n) = puhi (N — 1 —n) + (1 — p)ho(N — 1 —n) =
if nonconvex sets are involved. The SDE of a poirfrom the  h3(N — 1 — n). Hence, the set is convex. The proof tidatis
setsCj,i = 1,2,...,m is defined byJ(x) = X2, d(x,C;), closed is given on [21, p. 225]. Furthermore, it is easy to show
whered(x, C) = inf,cc ||x —y||. For more details on VSPM that setC; is a linear subspace. For example, fdr = 3 and

involving nonconvex sets (see [21]). N = 2 C} is the set of points on the line defined by the vector
(a,a,0).
[ll. DESIGN OFCLASSICAL LINEAR-PHASE FIR FHLTERS USING 2) Projection ontaC1: To simplify matters, assume that all
VSPM vectors are real. Leg = (g(0), ..., g(M —1))* be an arbitrary

i i s ¢
In this section, we describe linear-phase FIR filter desiq\?edorm Hh = (h(0), ..., h(M—1))" be any vector i, and

using VSPM. Consider the design of a FIR low-pass ﬁlt%entzz &rgjsgaznozfgt.ﬁt%%hwe deal with column vectors,
with linear-phase and impulse respong€0),h(1),..., posit

AN — 1),h(N — 1) # 0andh(n) = 0,n > N — 1. M—1
We call NV the filter length This filter is required to meet h* = arg min [g(n) — h(n)]? 9)
the following specifications: in the passband, the magnitude hect T30

|H(w)| of the filter transfer functionH (w) must lie between o\ —
1 — «andl + «, and in the stopbandH (w)| cannot exceed whereh (ﬁ) _M()_Ior N<ns< 12\/[ -l .

. We put no constraints on the behavior of the filter in u\t/ggh'rjalz nETiLth% agigi;]?t(gg(';hi%r?cj)?CtISnjl\? eas;\l}/fcfm_
the transition band. Thus, ifi(w) = |H(w)| is the magni- P : 9 ) = =Ny '

tude andp(w) = arg{H(w)} is the phase, we require that'Ve write (assuming tha¥ is even) the Lagrange functional as

Aw) € 1 — «,1 + o] and thatp(w) = —w(N — 1)/2 for N/2—1
w € Q, = {w: 0 £w < wy}. In addition, we require that .j = Z {[g(n) = R(n)]* + [g(n + N/2) — h(n 4+ N/2)]*}
Alw) < gforw € Q, = {w: w, < w < 7}, where2, and€2, o
are the passband and stopband, respectively. (10)

i i 1
~As State.d earlier, our H"ber_t spacefis’, Wh?reM > N10  1atrapis a fixed point of the algorithm that is not a solution. Traps do not
insure a high-resolution Fourier transform without aliasing. l&ppear in problems involving only convex sets.
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and use the fact that(n + N/2) = h(N/2—n—1). Thenwith The FIR filter-design algorithm is given by

aJ/oh(l) =0forl =0,1,...,(N/2) — 1 we obtain

g +gN-1-10)
5 .

B (1) = (12)

This clearly shows that*(l) = h*(N — 1 — 1). Thus, the pro-

jectionh*

{ g +9(N-1-10)
D=
0,

= Pig of g ontoC; becomes

forl=0,1,...
elsewhere.

N-1

2 7
12)

3) Convexity of’>: Leth; andh, € Cs. Thenhs = phy +
(1—phy < [pAr(w)+

hk+1 = P1P2P3hk, hg arbitrary (16)

A good choice for the starting poidty is hy «— Ho(w) =
Ho(w) = ideal(w) with Hideal(w) =1, forw € Qp and
Hiyca(w) = 0 elsewhere. In Section VI, we furnish numerical
results in which the VSPM algorithm in (16) is compared with
the MP algorithm.

IV. DESIGN OFCLASSICAL LINEAR-PHASE FIR HLTERS
SUBJECT TOADDITIONAL CONSTRAINTS

As we mentioned earlier, itis possible to design a linear-phase

(1—p)As(w)] exp’). The notation FIR filter subject to additional constraints. Here, we consider the

g « G(w) orG(w) « gimplies a Fourier transform pair. Thus,design of a linear-phase FIR filter whose respoase R to

the phase oH{3(w) < hs is ¢(w) and sinced; (w) and Az (w)

a known input is restricted to lie within certain bounds. For this

are lower and upper bounded by- § and1 + &, respectively, problem, key sets are of the form

S0 isAz(w) = pAi(w) + (1 — p)As(w) forany0 < p < 1.

Since (s, as defined, includes all its limit points, it is closed.
The geometric representation @ in the frequency domain is

that of a radial cut of lengtB«, at an angle-w (N — 1)/2, in
an annulus of inner diametér— « and outer diameter + .

={h € R™: b;(n) <
=0,n > N -1}
N+L-2

Ca(n)
h(n)

n=0,1,...,

(sxh), < bs(n)

(17)

4) Projection ontaC,: The projection of an arbitrary vectorWheres is the given input, with componentg0), s(1), ...,

g € RM with Fourier transformZ(w) =

|G(w)]e??e() can  s(L

1) # 0 ands(l) = 0, > L, denotes convolution,

easily be computed using the Lagrange multiplier method. V& * h). denotes the response at timeandb, (n) andbz(n)

obtainh* = P,g «— H*(w), where
(14 ) exp’#©), if cond.A
H* () = (1 — ) exp?#©), ' if cond.B
|G(w)] cos[fa(w) — p(w)]exp??©), if cond.C
G(w), if weQF
(13)

where conditions A, B, and C apply for all frequenciesdoe
1, and where

cond. Ais:|G(w)]| cos[fg(w) — p(w)] > 1
cond. B is:|G(w)| cos[fg(w) — p(w)] £1
cond. Cis:l — « < |G(w)] cos[fg(w) — ( )] <l+a.

(14)

represent the desired lower and upper bounds, respectively, on

the response at time. The explicit form ofa(n) = (s x h),, is
N—-1

a(n) = Z hi)s(n—i), forn=0,1,...,L+N—-2 (18)
=0

wheres(—-1) = s(-2) = ... =
a(n),n > N + L — 1 are zero.
The entire system can be written in matrix form as

0. The components of

4= Sh (19)
where
a=(a(0),a(1),...,a(L + N —2)T
h = (h(0), h(1),... . h(N — 1))T

In the definition of H*(w), (2, is the set of all frequencies inandS is anL + N — 1 x N matrix in (20), shown at the bottom

[0,7] & ©,.
5) Convexity ofC;: Let h; andh, be € Cs. Thenh; =

phy + (1= phy o [pHi(w) + (1 = p)Hy(w)] = Hz(w)

of the next page.
From (18), it is not difficult to see that we can writg€n) as
a(n) = sTh, wheresZ is the vector whose elements are ik

and we must show th&f3(w)| < 3. But for any two complex row of S. ThenC4( ) is equivalent to

numbers4 andB we havelA + B| < |A| +|B|. Since|H; (w)]

and|Hz(w)| are bounded by, it follows that| Ha(w)| < 5. The Ca(n) = {h € RV: bi(n) < sTh < ba(n)},

setC; can be represented in the complex frequency domain as

n=0,1,2,...,L+N—2 (21)

a circle with radius?, centered at the origin. Since it includes

its own boundary, it is closed.
6) Projection ontoC3: The projection of an arbitrarg <

where, in the interest of saving notation, we omit introducing
new notation for the set whose elements are in the reduced

G(w) ontoC3 is easily computed with the method of Lagrang&Pace.

multipliers as

BG(w)/|G(w)],
h* = g « E ;;

for |G(w)| > B,w e Q,
for |G(w)| < B,w €
elsewhere.

(15)

The projection and proof of convexity for this set are given on
[21, pp. 94-99]. We repeat the projection here for completeness.
For any pointg = (g,g°)? € R™ where

g= (9(0)79(1)7 .- 'g(N - 1))T e RN
g°=(g(N),g(N +1),...,9(M —1))"
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and its projectiorh* = (h*,0,0,...,0)” € RM, we obtain, Since allthe componentshf above thé N —1)st are restricted
forn=0,1,...,N —1 to be zero, a set equivalent g is the reduced set
h* =Pg 5 =Cs(0,d)={he RY: ||[Sh—d| <o} (26)
g, if by(n) < (s}, &) < ba(n) : ,
. bi(n)—sTg o In words, the seC; is the set of aII_ rea_l—valu_ed_ impulse re-
_J)8 Wsnv if (s5,8) < bi(n) spons_esh, whose responses to the sigrdies within a sphere

_ sTg— by(n) o of radiuso _centered atl_
g = Wsn, if (s1,g&) > ba(n). By studying the relation

The FIR filter design algorithm is given by

hk+1 = P1P2P3P4hk, hg arbitrary

(22) |Sh|| < o 7)

we conclude thaf’s has the form of an ellipsoid, and therefore,
23) is convex.
1) Projection ontoC5: The computation of the projection

Another example is the problem of designing a linear pha§éan arbitrary elemeng € R onto C; involves finding the
FIR filter with quadratic constraints. Consider a linear-phagitremum of the Lagrange functional

low-pass FIR filteth with h € RM. Let the input signal be, as
in the previous example, an unwanted wavefsriine., a finite-
duration sequence of lengthwith valuess(0), s(1), ..., s(L—

1) #0,5(0) =0, > L—1.

The time of occurrence of is unknown, but its shape is

J(h) = |g - B>+ A([h+s - d|* —o%)  (28)

where, as usualy is the Lagrange multiplier. Differentiation
._followed by some algebra determines that the minimuny of
has the form

known. We would likeh to be such that, in addition to being a

low-pass filter with given specifications, it constrains the energy

hy = (T4 AST8)"1(ASTd + g) (29)

of the output signah due tos. Thus, witha(n) representing the

components of, the sequence

N—-1

a(n) = Z h($)s(n—1),

g
represents thel + M — 1) point output-sequence in response h = P58 = { hy,
to the L-point input-sequence Equations (18)—(20) of the pre-

n=0,1,..

whereS is as in (20)ST'S has dimensioV x N, Iis anN x N
identity matrix, andl is anN + L — 1 x 1 prescribed vector.

L L+M—2 (24) The projectiorfl* in the reduced space is given as

if |8 —d|l < o
ISg — d|| > o, whereA* > 0
is chosen so thgtShy — d|| =o¢

vious example apply here as well, and to restrict the energy in (30)

a, a useful constraint set is

05 EC;)(O', d)

={he R™:||Sh—d| < o,h(n)=0,n> N}

and the projectiom* € RV is given byh* = (h*,0)7.
The computation of™ is facilitated by the recognition that
(25) »(A) =|[Shy - d||? is a monotonically decreasing function of
Afor A > 0. This is directly demonstrable by showing that, for

where, as before, the vectioconsists of the firsiv components A > 0,¢’(A) < 0. The actual computation of* can be done
of h. The projectionh* of anyg = (g,g°) € R™, where by a Newton—-Raphson type algorithm. Finding the extremum

g = (g(0),g(1),...g(N=1)T € R, will have the formh* =

~

of J is readily done using Parseval’s theorem in the frequency

( ,_0) where, as beforeh = (h(0),h(1),...,h(N — 1))T. domain. We shall omit the details in the interest of brevity. For
- s(0) 0 0 0 0 0 1
(1) 5(0) 0 0 0 0
s(2) s(1) s(0) 0 0 0
S(L—1) s(L—2) s(L—3) SL-N+1) s(L-N)
S= 0 s(L—-1) s(L-2) . s(L-—N+1) (20)
0 0 s(L—1) s(L—N+2)
; ; s(L—1) ; ; ;
0 0 0 s(L—1) s(L—2) s(L —3)
0 0 s(L —1) s(L —2)
L0 0 0 s(L—1)
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further details, see [23] and [24]. The FIR filter-design algo-
rithm is given by

hk+1 = P1P2P3P5hk, ho arbitrary (31)

V. DESIGN OFFIR HLTERS WITH ARBITRARY MAGNITUDE
AND PHASE USING VSPM

Consider the design of a FIR filter with arbitrary phase and
magnitude that meets the following specifications: for a spe-
cific frequencyw, the magnitudéH (w)| ande(w) phase of the
filter's frequency responsH (w) must be iMa(w) — &, a(w)+ 4]
and[a(w)—e, o(w)+¢], respectively. The first step in designing
a filter that meets these constraints is to define the appropriate
sets. Define first

O =Co(6,¢) = {h € RM: a(w) - 6 < |H(w)|
<a(w)+ 6 anda(w) —e < p(w) < a(w) +e}  (32) Eci)%ﬁplzéx—;(;r?(rjnce aroundd (w) of magnitudea and phasea in the
Cr={h e R™. h(N — 1) # 0 andh(n) = 0,
forn=N,N+1,...M -1} (33)

TABLE |

. . REGION DESCRIPTION OFFIG. 2
wherep(w) = arg H(w). While the set’s is nonconvex and,

therefore,guaranteedstrong convergence is not a possibility, Region Description
experience has shown that excellent results are still possible I Interior of bounded region (0,1,9)
when projecting onto such sets since SDE convergence will al- 11111 ;2:;?:;;121&?:5;1(('t':'n'3;'1; ;
ways take place when only two sets are involved [21]. The set v Partially unbounded region (,o.7.5)
C- is the set of allV-length impulse responses i with the v Partially unbounded region (s,n,m.f)
first V elements nonzero and all the rest zero. This set is convex VI Partially unbounded region (f,m,v)
and the projectiom* of g onto C is given by VII Partially unbounded region (1.0,4,7)
VIII Partially unbounded region (r,¢,p.g)
IX Partially unbounded region (z,p,g)
Pig—h' = h(n)=g(n), 0<n<N-1 (34)
0, else.
TABLE I

The projection onta@’s is more difficult and is best computed
from geometrical considerations.

PROJECTIONSDEFINITION OF Pg

1) Projection ontoCs: To prevent cumbersome notations, Region Projection
let H= H(w),a = a(w), ¢ = ¢(w) anda = o(w). Let us as- I (a-5) exp|j(arg x)]
sume we need to project a trial solutign— G(w) = x onto the 11 x
setCs. Since the contour of the s€% is made of sharp corners m (a+8) exp|j(arg x)]
and curves with discontinuous derivatives, we must be careful to v (a-5) expj(a +£)]
partition to space into regions whose vectors will be projected on V| |x|cos(arg x — & — &) exp[j(a + €)]
various parts of the contoutss. Indeed, the mathematical de-
scription of the appropriate projection operation will depend on VI (a+8) exp[j(a+¢)]
the location of the pointin the complex-plane defined by/REe[ v (a-3) exp[j(a - ¢)]
and Im[H]. We patrtition the complex-plane into nine disjoint re- VI | |x|cos(c — & —arg x) exp[ j(a - &)]
gions as shown in Fig. 2 and geometrically described in Table I.
For the sake of brevity, in what follows we provide the detailed IX (a+8) expj(a - €)]

calculation of the projection only for the cases where Re-

gion V and again wher € Region VI. For the other regions

the calculations are similar and are given without derivation imhereH; andH g denote the imaginary and real partdbfa+

Table II. ¢ is the constraint on the argumewy of H andzx is a point in
2) Projection from Region V(VIII):The Lagrange functional Region V described by — xr + jz;. We can rewrite/ as

to be minimized for this projection is

Jw,HY=J=|z—H|?+ )\ [tanl <g—;> —(a+ s)} J=(xp—H)? 4+ (z; — Hp)?> + X [tanl <g—;> —(a+ s)}

(35) (36)
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and set the derivatives
aJ

and
aJ
o, =" (38)

in order to findH*, the Fourier transform di*. From (37) and
(38), we obtain

Hy
2 —Hp)=—"A—F5—5
Hp
2(]}[ —H[) I)\— (40)
H} + Hj.
Dividing (39) by (40) and recognizing that
xgr =|z|cos(b;), xy = |x|sin(6,)
arg(H)=a+e, Hg=|H|cos(b,)
H; =|H|cos(6,)
we finally obtain that
|H| = |z|cos(6, — . — €) (41)
wheref, = arg(z). Thus
H = zcos(f, — a—e)e?(@F9), (42)

3) Projection from Region VI(IX):For any point: € Rg, its
projection must either be on the contour segnientn) or the
contour segmengm, p) in Fig. 2. Any pointP on the(m,n)
contour is given by

P = (a+ 8@+ _ peiteto) (43)

wherep > 0to be determined. The pointmay bedecomposed
as

@ = [|z| cos(fz — (a + ) + jlw|sin(f, — (a +&))]e? T,
(44)
Thus

o= PP =P 4+ (a4 6 + 97 — (a+8)coslh. — (a4 )
+ |z|pcos[f, — (e +¢€)] — 2(a+ 6)p. (45)

To find the projection or{n,m), we minimize|z — P|? as a
function of p. We can rewrite (45) ak — P|?> = o + ¢(p),
whereg(p) is thep-dependent part. Thus, we seek to make)
as small as possible. By{p) = p® +2p[|z| cos[f, — (a+€)] -
(a+ §)] and for any point inRg, |z| cos[f, — (e +¢€)] > a+6.
Thus,¢(p) = p? + 2Kp where

K = |z|cos[b, — (a+¢€)] — (a+6) > 0. (46)

This is a parabola with minimum at,,;,, = —K and smallest
value forp > 0 atp = 0. Therefore, the projection onta., p)
is the pointP* = (a + §)e/(*+2),

Assume next that the projection ofis on the contour seg-
ment (m, p). Any point P on (m,p) can be written ag® =
(a+ 6)e’P). Then

|z — P)? = |z|*> + (a + 8)2 — |z|pcos(6, — 6p) (47)

wherea+e <8, <a+e+(r/2)anda—e < p < a+e.
We seek the smallest value éf — 6p to minimize|z — P|2.
Forany#é,, this occurs atlp = « + . Therefore,P* = (a +
8)el@+e) the same as before. The projections for other regions
are obtained similarly and are tabulated in Table II.

The FIR filter-design algorithm is given by

hy1 = FsPrhy, ho arbitrary, (48)

VI. NUMERICAL RESULTS

Itis clear from our previous discussion that VSPM filter-de-
sign requires the frequency-domain implementation of the con-
straints inCy, C3 and Cs. These constraints are realized on a
grid of discrete frequencies. A% -length DFT is implemented
by the FFT algorithm ford = 2*. Thus, we creaté/ dis-
crete frequencies; = (2n/M)i,i = 0,1,...M — 1 over
the interval [0, 2]. Below we give several examples of FIR
filter design using VSPM. In the first example, we design a
simple linear-phase low-pass FIR filter and compare its perfor-
mance to that obtained with the MP method. Example 2 con-
sists of designing a low-pass FIR filter with bounds on the over-
shoot and undershoot of the step response. Example 3 consists
of designing a low-pass FIR filter with an output-energy con-
straint on a prescribed, undesirable, signal and comparing the
VSPM design with the EM design. Example 4 consists of de-
signing an all-pass FIR filter with a prescribed nonlinear phase
signal and comparing the VSPM design with the designs of LP,
DAS, and EM. In all of the following exampledd = 1024
was used except for Example 4, in which the = 4096 was
used for better accuracy. The stopping criterion of the itera-
tive VSPM in the following examples is given bgtop when
|hy1—hyl] < 10~ Whenthis condition is met we say, some-
what arbitrarily, that convergence has occurred.

Example 1: VSPM versus MP—Low-pass Linear-phase FIR
Filter Design

We design a low-pass filter using the sétswith finite im-
pulse response of lengfth = 31, Ca(«) with o = 0.0243 and
Cs(8) with 3 = 0.0243. The passband and stopband edge fre-
guencies are, = 0.47 andw, = 0.57. The result is com-
pared with the MP algorithm with the same passband/stopband
frequencies computed using MATLAB with equal error weights
on both the stopband and the passband. Fig. 3 shows the resulting
frequency responses of both the MP (broken line) and the VSPM
(solidline) results. Figs. 4 and 5 show the passband and stopband
of the two algorithms in details. The main result is that the re-
sponse of the filter generated by VSPM (solid line) is as good
as the MP one (broken lines). For this example, the VSPM algo-
rithmin (11) required 4,000 iterations for convergence.

Example 2: Filter Design with Constraints on the Step Re-
sponse

In this example, we use VSPM to design a filter that con-
strains the overshoot and undershoot of the truncsteypl re-
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Fig. 3. Frequency response of VSPM- and PM-designed filters. Fig. 5. Passband response of VSPM- and PM-designed filters in details.
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Fig. 4. Stopband response of VSPM- and PM-designed filters in details. Fig. 6. Step response with and without constraints.

sponsen of the filter in Example 1. Thus, we use the s€iswith  while theb; (n) andbz(n) that define seC4(n) are given by
N = 31, Cy(e) with o« = 0.13 andC5(3) with 3 = 0.13, and
the same passband and stopband edge frequencies as in Example

1. We chose values of and3 that still allowed a nonempty in- b1(n) =—0.005
tersection of all the constraints sets. However, now we involve ba(n) =0.005, forn=1,...13
the sequence of sef{g’s(n)} of (21). The truncated step-re- bi(n) =1 — 0.005
sponse is given by ba(n) =1+ 0.005, forn =18,...31. (50)
a(0) 1.0 - 07 71A0) The set<’y(n) are not applied fon > 30. Also, we let the re-
a= “(.1) _ 1 1 0 h(ll) (49) sponse beinconstrainediuring its monotone rise. The broken

: Do .o : line in Fig. 6 represents the step response of the filter in Ex-
a(30) 11 --- 1 h(30) ample 1 without applying a step response constraint. The solid
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Fig. 8. A f th ted si . . . . .
9 Ppearance of the unwanted sigsé) The energy of is ||s||> = 6.7 x 10~*. Using the eigenfilter

method, we designed a low-pass FIR filter with= 29. The
line represents the step response with the step-response ¢RRsband and stopband edge frequenciessare- 0.37 and
straint applied. Notice that when the constraints are involved, — 0.4x. After several trials with different arbitrar§ and
the overshoot and undershoot do not exceed the tolerances grehe passband and stopband control parameters, we selected
scribed. Fig. 7 shows the frequency response of the filter withese(§ = 0.5,7 = 0.005) in such a way as to preserve as
and without the step-response constraint. Note that a price hasch as possible the desired specifications. The energy of the
been paid for achieving a superior step-response: the frequerasponse to the input signaturned to be 5.56« 10~%.
response is inferior to when no step-response constraints are afNdext, we designed an FIR filter using VSPM while keeping
plied. For this example, the VSPM algorithm in (23) requirethe same specifications. We used the Gegt defined in (26),

3,000 iterations for convergence. o? = 5.56 x 10~* and the set€s(a) with « = 0.4015 and
Example 3: VSPM versus EM with the Energy Output Coi%(3) with 3 = 0.025. Fig. 9 shows the resulting frequency
straints response of both methods. The broken and solid lines represent

In this example, we compare the VSPM ( actually POC%he EM-and VSPM-based responses, respectively. Fig. 10 shows
with the EM. Let the undesired waveformbe as in Fig. 8. the passband in detail: note that VSPM produced a filter with
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Fig. 12. Passband response of Fig. 11 in more detail.

Example 4. Phase Compensation Using All-Pass FIR Filter:

better attenuation in the stopband than the EM and compara@lemparison of Methods
fluctuations in the passband. Moreover, the constraints were noAssume that in a particular phase-compensation problem, the
satisfied by the EM at the edge frequencies, in contrast to trexuired phase response of the filter is given by [11]
behavior of the VSPM.

_As another exper_iment, we modify (relax)_the conditions of arg H(w) = — <N - 1) w+ 27 (1 — cosw) (51)
this example by letting the VSPM response in the stopband be 2
as large as the EM (i.e., in the first stopband lobe). The design. . i .
involves setCs (o) with o2 = 5.56 x 10—, setCy(a) with Which corresponds to the following group-delay function

a = 0.025, andC3(/3) with 8 = 0.047. Fig. 11 shows the fre- darg H <N -1

quency response of both methods. Fig. 12 shows the passband in T(w) = dw 5
detail, and clearly demonstrates the superior performance of the

VSPM-designed filter. For this example, the VSPM algorithm We try to approximate an all-pass filter, i.¢H (w)| = 1,

in (31) required 5,000 iterations for convergence. that has the desired phase characteristics. The filter parameters

) — 27 sin w. (52)
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TABLE Il
PEAK ERROR IN MAGNITUDE AND GROUP DELAY
LP DAS 16 EM VSPM
Complx.-valued Apprx. Real-valued Apprx.
max |E, (w)|| 9.31x10™ 9.2x10™ 2.88x107 2.08x107 | 0.95x10™
max ‘ E, (w)| Not available 014 014

that we select are: filter lengtlv = 61, magnitude deviation
8 =9 x 1073, and phase deviation = 3 x 1072 [see (32)].

We can clearly see from Figs. 13 and 14 that the VSPM

yields an all-pass filter with a small magnitude erfor95 x
10~*). The peak error of the group delay are largest (0.14)[7]

atw = 0 andw = 7 whereas they are very small at other

(5]

(6]

frequencies. Table Il summarizes the peak error of the four
approaches: LP [11], DAS [12], EM [13], and VSPM. The [8]

results verify that VSPM yields a filter with better performance.

(The group delay peak-error is not available in [11], [12]). 9]
For this example, the VSPM algorithm in (48) required 3,500
iterations for convergence.

VII. CONCLUDING REMARKS

(10]

[11]

In this paper we have reviewed VSPM’'s and used these
methods to design several important classes of FIR filters.
In particular, we used VSPM to design linear and arbi
trary-phase/magnitude FIR filters subject to various design
constraints. We furnished several examples and demonstratgd]
the advantages of VSPM over existing methods.

The main advantages of using VSPM for filter design are:

1) while VSPM generally does not yield optimal solutions,

(12]

[14]

it will furnish solutions that meet all design constraints [1°]

(assuming that they are consistent) using the same set
mathematical tools;

2) VSPM is easily extended to the design of multi-di-

mensional filters, an extension that is difficult for other
methods.
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