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Constrained FIR Filter Design by the Method of
Vector Space Projections

Khalil C. Haddad, Henry Stark, Fellow, IEEE, and Nikolas P. Galatsanos

Abstract—A new technique for designing linear and arbitrary-
phase finite-impulse response (FIR) filters with various types of
constraints is proposed. The approach is based on the method of
vector space projections. We describe the constraint sets and their
associated projections that capture the properties of the desired fil-
ters. In filter design, as in many other engineering problems, one
is primarily interested in meeting design constraints, i.e., finding
a feasible solution, not necessarily an optimum one. Vector space
projection methods are well-suited for this purpose. We furnish nu-
merous examples of FIR filter design by vector space projections,
including the important and difficult arbitrary phase/magnitude
problem. Examples that demonstrate the advantages and flexibility
of this method over other known methods are furnished.

Index Terms—All-pass filters, convex projection, FIR filters,
linear and quadratic constraints.

I. INTRODUCTION

T HE design of finite-impulse response (FIR) digital filters
is a very basic problem in digital signal processing. Thus,

it has received a lot of attention in the last 30 years. In a typ-
ical filter-design problem, the classical constraints are passband
fluctuation, transition-band behavior, stopband attenuation, and
filter length, i.e., support of the impulse response. When linear
phase is also required, probably the most widely used approach
is that of the well-knownMcClellan-Parks(MP) procedure [1].
These filters are optimal in the mini-max sense, i.e., for a given
set of specifications, the largest error is minimized. However,
the MP algorithm is based on polynomial factorization, and
thus, is not easily extended to the multi-dimensional case. More-
over, it cannot incorporate additional constraints placed on the
filter design.

In many filter design problems, constraints in addition to the
classical ones are required. For example, one might require that
the transient part of the step response be constrained within
given amplitude limits. A second example is the design ofth
band filters where every th impulse-response components is
constrained to having zero value except for the central value [2].
Also, in some cases, there are derivative constraints on the pass-
band response of the filter [3] and so on.

An early and powerful design method for finding feasible so-
lutions, i.e., solutions consistent with the imposed constraints
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is linear programming(LP) [4]. A disadvantage of linear pro-
gramming, however, is that the required number of computa-
tions needed to arrive at a solution is rather large. Another dis-
advantage is that linear programming cannot easily handle non-
linear constraints. In [5] an alternative method for the design of
linear-phase, FIR filters known as theeigenfilter method(EM) is
presented. The idea behind EM is to first formulate a quadratic
error measure between the desired and the actual design,
where is a real- symmetric positive-definite matrix, andis
related to the filter impulse response. Then, one tries to mini-
mize the total error by computing the eigenvectors and eigen-
values of and pick the eigenvector that corresponds to the
smallest eigenvalue in view of the well-known Rayleigh prin-
ciple [6]. The eigenvector represents the filter coefficients. Usu-
ally, is a weighted linear combination of several positive-def-
inite matrices, e.g., , where

, and . The control parametersand
assign priority weights to contributions in the passband and

stopband; respectively. The positive-definite matrices
and are associated with energy constraints on the passband,
stopband, and the unwanted signal, respectively. A disadvan-
tage of EM is that the choice of appropriate values forand

(considering that they should preserve the desired specifica-
tions as much as possible) is not obvious. The advantage of EM
over linear programming is that the former is general enough
to incorporate frequency and time-domain, as well as linear and
quadratic, constraints.

More recently, methods based on convex optimization have
been proposed for the design of FIR filters. In this approach,
a change of variables leads to constraints being placed on
the autocorrelations coefficients of the filter. Thus, the filter
design problem is converted to a convex optimization problem.
The coefficients of the filter are then recovered from the
auto-correlations coefficients via spectral factorization. The
advantage of this design approach is that it can incorporate
different types of convex constraints (linear and nonlinear).
Among others, magnitude bounds on Fourier transforms can be
handled in this framework. Furthermore, it brings to bear to the
filter design problem new efficient interior-point methods for
convex optimization. For a recent review of this approach and
additional references, see [7].

In some problems, the phase of the FIR filter needs to be a
nonlinear function of frequency. Examples are found in phase-
equalization, pulse shaping for chirp radar and others. A number
of papers [8]–[11] present algorithms that address the general
problem of designing FIR filters subject to prescribed magni-
tude and phase responses. In some of these algorithms the ap-
proach is to express the desired phase and magnitude as complex
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Cartesian components and operate on the real and imaginary
components independently [9], [10]. The final filter coefficients
are formed from the resultant real and imaginary coefficients.
Chen and Parks [8] approximate the complex-valued response
by a real-valued function and the resulting errors in magni-
tude and group delay are made approximately equi-ripple. Their
method, however, requires a large computer memory and the de-
sign-time increases exponentially with increasing time and fre-
quency grid-density. Chit and Mason [12] used thedouble adap-
tive system(DAS) in approximating complex-valued specifica-
tions. Their method is based on least-mean-square minimiza-
tion and a weight-adapting scheme designed specifically to give
the filter Chebyshev characteristics. In Nguyen’s EM procedure
[13], the desired complex-valued function are approximated in
a least-squares sense. The author claims that this method yields
filters with performances better than the ones obtained with ei-
ther the DAS [12] or the LP approaches [11].

To the best of our knowledge, Abou-Taleb and Fahmy [14]
were the first to apply projection-like methods to an optimal
(mini-max) 2-D FIR filter design. Their results are important,
since the MP procedure is based on the alternation theorem and
does not find a direct extension to the 2-D case. This is because
the set of cosine functions used in 2-D approximation do not sat-
isfy the Haar condition on the domain of interest, and the Cheby-
shev approximation does not have a unique solution. Techniques
that employ exchange algorithms [15], [16] have been devel-
oped for the 2-D case at the expense of increased analytic com-
plexity.

In an interesting recent paper, Cetinet al. [17] used an it-
erative Fourier transform algorithm to design zero-phase FIR
filters. Upon examination, their algorithm is essentially a spe-
cial case of vector spaceprojections known as projection onto
convex sets(POCS). The algorithm was derived heuristically,
without explicitly defining the constraint sets and deriving their
associated projectors. Moreover, the heuristic nature of this ap-
proach does not obviously lend itself to the design of filters with
other constraints and with arbitrary phase.

In this paper, we consider the design of a class of FIR filters
by vector space projection methods(VSPM’s). We examine in
detail the convexity of the prescribed constraint sets and rig-
orously derive their associated projectors. In our first example,
we present the VSPM formulation of the FIR linear-phase de-
sign problem. In our second example, we demonstrate the flex-
ibility of VSPM by imposing additional linear and nonlinear
constraints on the filter design. Finally, we apply VSPM to the
design of the general FIR filter subject to arbitrary magnitude
and phase constraints including constraints of a nonconvex na-
ture. In all cases, we compare our results with those of existing
methods.

Before continuing with the specifics of VSPM applied to the
FIR filter design problem, we should like to remind the reader
of the fundamental advantages of VSPM. VSPM can handle any
number of constraints including linear, convex and nonconvex
types. In handling nonconvex constraints, we must weaken the
notion of inner-product convergence tosummed distance error
(SDE) convergence. VSPM findsfeasiblesolutions (solutions
that satisfy all constraints) rather than optimal ones. In general,
feasible solutions are simpler and less computationally expen-

sive and are perfectly acceptable for a variety of engineering
design problems such as filter design. Finally, VSPM can easily
be extended to multi-dimensional filter design problems, unlike
some other methods such as convex optimization that would re-
quire a (difficult) multi-dimensional spectral decomposition.

II. VSPM BACKGROUND

The VSPM deals with the problem of finding a mathemat-
ical object (for example, a signal, function, image, etc.) in a
proper vector space that satisfies multiple constraints. When all
the constraint sets are convex and have a nonempty intersection,
there exists a powerful theory in finding the object that satisfies
all the constraints. This subset of VSPM, mentioned in Section I,
is calledprojection onto convex sets(POCS), which we describe
below.

The theory of convex projection developed by Bregman [18]
and Gubinet al. [19] was first applied to image processing by
Youla and Webb [20]. The reader is referred to [21] for an intro-
duction to this method as well as to its nonconvex extensions.
Here we provide only the basic idea.

To begin with, assume that all the objects of interest are ele-
ments of a complete inner product space, i.e., aHilbert space.
Now consider a convex set H; then, for any element H,
the projection of onto is the element of closest to .
If is closed and convex, exists and is uniquely determined
by and from the minimality criterion

(1)

This rule, which assigns to every H its nearest neighbor
in , defines the (in general) nonlinear projection operator

H without ambiguity. A convenient Hilbert space for
FIR filter design is , the Euclidean space of -vectors
with real components. In this space, the inner product is taken
as and the induced norm is

(2)

The basic idea of POCS is as follows. Every known property
of the unknown H will restrict to lie in a closed convex
set in H. Thus, for known properties there are closed
convex sets and . Then
the problem is to find a point of given the sets and
projection operators projecting onto .
Based on fundamental theorems given by Opial [22] and Gubin
et al. [19], the sequence generated by the recursion
relation

(3)

or more generally by

(4)

where are so-calledrelaxed
projectors(they are not true projectors unless converges
weakly to a point in . The , are relaxation pa-
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Fig. 1. Trajectory of iteration in POCS with two sets. The setC is the solution
region andx is an arbitrary starting point.

rameters and can be used to accelerate the rate of convergence of
the algorithm; is the identity operator. However, determining
the optimum values of the, i.e., the ones that gives the fastest
convergence, is generally a difficult problem and for, other than
linear subspaces, experience has shown that good results are ob-
tained when they are set to values somewhat arbitrarily between
one and two. The algorithm in (2) for is shown graphi-
cally in Fig. 1.

When sets arenonconvex, the extraordinary convergence
properties of the method of VSPM no longer apply. However,
there exists a fundamental theorem, which is quite useful in
dealing with nonconvex sets. This theorem states that, in any
problem involving not more than two constraint sets,summed
distance error(SDE) convergence will always take place, even
if nonconvex sets are involved. The SDE of a pointfrom the
sets is defined by ,
where . For more details on VSPM
involving nonconvex sets (see [21]).

III. D ESIGN OFCLASSICAL LINEAR-PHASE FIR FILTERS USING

VSPM

In this section, we describe linear-phase FIR filter design
using VSPM. Consider the design of a FIR low-pass filter
with linear-phase and impulse response

and .
We call the filter length. This filter is required to meet
the following specifications: in the passband, the magnitude

of the filter transfer function must lie between
and , and in the stopband, cannot exceed

. We put no constraints on the behavior of the filter in
the transition band. Thus, if is the magni-
tude and is the phase, we require that

and that for
. In addition, we require that

for , where and
are the passband and stopband, respectively.

As stated earlier, our Hilbert space is , where to
insure a high-resolution Fourier transform without aliasing. In

this problem, an appropriate cluster of constraint sets are
and defined by

for (5)

for (6)

and

for (7)

In words, is the set of all sequences of length with
at most nonzero coefficients with appropriate symmetry that
imply a Fourier transform withlinear-phase. The set is the
set of all sequence whose Fourier magnitude is appropriately
constrained in the passband and whose phase is linear in that
band. Also, is the set of all sequences whose Fourier trans-
form magnitude is appropriately constrained in the stopband.
Note that it might have been tempting to use a Fourier magni-
tude constraint set, say , given by

for (8)

However, this set is not convex, and hence, its involvement in
a projection algorithm could leads to traps.1 Given a choice,
it is better to use convex rather than nonconvex sets because of
guaranteed convergence of the sequence of iterates in the former
(assuming the set intersection is not empty).

1) Convexity of : Let and define
for . Since

and , we
have

. Hence, the set is convex. The proof that is
closed is given on [21, p. 225]. Furthermore, it is easy to show
that set is a linear subspace. For example, for and

is the set of points on the line defined by the vector
.

2) Projection onto : To simplify matters, assume that all
vectors are real. Let be an arbitrary
vector in H, be any vector in and

the projection of onto . We deal with column vectors,
hence the transposition. Then

(9)

where for .
With , the projection is easily com-

puted. Taking into account that for ,
we write (assuming that is even) the Lagrange functional as

(10)

1A trap is a fixed point of the algorithm that is not a solution. Traps do not
appear in problems involving only convex sets.
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and use the fact that . Then with
for we obtain

(11)

This clearly shows that . Thus, the pro-
jection of onto becomes

for

elsewhere.
(12)

3) Convexity of : Let and . Then
. The notation

or implies a Fourier transform pair. Thus,
the phase of is and since and
are lower and upper bounded by and , respectively,
so is for any .
Since , as defined, includes all its limit points, it is closed.
The geometric representation of in the frequency domain is
that of a radial cut of length , at an angle , in
an annulus of inner diameter and outer diameter .

4) Projection onto : The projection of an arbitrary vector
with Fourier transform can

easily be computed using the Lagrange multiplier method. We
obtain , where

if cond.A
if cond.B
if cond.C
if

(13)

where conditions A, B, and C apply for all frequencies for
and where

cond. A is:

cond. B is:

cond. C is:

(14)

In the definition of is the set of all frequencies in
.

5) Convexity of : Let and be . Then

and we must show that . But for any two complex
numbers and we have . Since
and are bounded by, it follows that . The
set can be represented in the complex frequency domain as
a circle with radius , centered at the origin. Since it includes
its own boundary, it is closed.

6) Projection onto : The projection of an arbitrary
onto is easily computed with the method of Lagrange

multipliers as

for
for
elsewhere.

(15)

The FIR filter-design algorithm is given by

arbitrary (16)

A good choice for the starting point is
with , for and

elsewhere. In Section VI, we furnish numerical
results in which the VSPM algorithm in (16) is compared with
the MP algorithm.

IV. DESIGN OFCLASSICAL LINEAR-PHASE FIR FILTERS

SUBJECT TOADDITIONAL CONSTRAINTS

As we mentioned earlier, it is possible to design a linear-phase
FIR filter subject to additional constraints. Here, we consider the
design of a linear-phase FIR filter whose response to
a known input is restricted to lie within certain bounds. For this
problem, key sets are of the form

(17)

where is the given input, with components
and denotes convolution,

denotes the response at time, and and
represent the desired lower and upper bounds, respectively, on
the response at time. The explicit form of is

for (18)

where . The components of
are zero.

The entire system can be written in matrix form as

(19)

where

and is an matrix in (20), shown at the bottom
of the next page.
From (18), it is not difficult to see that we can write as

, where is the vector whose elements are theth
row of . Then is equivalent to

(21)

where, in the interest of saving notation, we omit introducing
new notation for the set whose elements are in the reduced
space.

The projection and proof of convexity for this set are given on
[21, pp. 94–99]. We repeat the projection here for completeness.
For any point where



718 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 8, AUGUST 2000

and its projection , we obtain,
for

if

if

if

(22)

The FIR filter design algorithm is given by

arbitrary (23)

Another example is the problem of designing a linear phase
FIR filter with quadratic constraints. Consider a linear-phase
low-pass FIR filter with . Let the input signal be, as
in the previous example, an unwanted waveform, i.e., a finite-
duration sequence of lengthwith values

.
The time of occurrence of is unknown, but its shape is

known. We would like to be such that, in addition to being a
low-pass filter with given specifications, it constrains the energy
of the output signal due to . Thus, with representing the
components of , the sequence

(24)

represents the point output-sequence in response
to the -point input-sequence. Equations (18)–(20) of the pre-
vious example apply here as well, and to restrict the energy in

, a useful constraint set is

(25)

where, as before, the vectorconsists of the first components
of . The projection of any , where

, will have the form
where, as before, .

Since all the components of above the st are restricted
to be zero, a set equivalent to is the reduced set

(26)

In words, the set is the set of all real-valued impulse re-
sponses, , whose responses to the signallies within a sphere
of radius centered at

By studying the relation

(27)

we conclude that has the form of an ellipsoid, and therefore,
is convex.

1) Projection onto : The computation of the projection
of an arbitrary element onto involves finding the
extremum of the Lagrange functional

(28)

where, as usual, is the Lagrange multiplier. Differentiation
followed by some algebra determines that the minimum of
has the form

(29)

where is as in (20), has dimension is an
identity matrix, and is an prescribed vector.

The projection in the reduced space is given as

if
where

is chosen so that
(30)

and the projection is given by .
The computation of is facilitated by the recognition that

is a monotonically decreasing function of
for . This is directly demonstrable by showing that, for

. The actual computation of can be done
by a Newton–Raphson type algorithm. Finding the extremum
of is readily done using Parseval’s theorem in the frequency
domain. We shall omit the details in the interest of brevity. For

...
...

...
. . .

...
...

...

...
...

...
...

...
...

(20)
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further details, see [23] and [24]. The FIR filter-design algo-
rithm is given by

arbitrary (31)

V. DESIGN OFFIR FILTERS WITH ARBITRARY MAGNITUDE

AND PHASE USING VSPM

Consider the design of a FIR filter with arbitrary phase and
magnitude that meets the following specifications: for a spe-
cific frequency , the magnitude and phase of the
filter’s frequency response must be in
and , respectively. The first step in designing
a filter that meets these constraints is to define the appropriate
sets. Define first

and (32)

and

for (33)

where . While the set is nonconvex and,
therefore,guaranteedstrong convergence is not a possibility,
experience has shown that excellent results are still possible
when projecting onto such sets since SDE convergence will al-
ways take place when only two sets are involved [21]. The set

is the set of all -length impulse responses in with the
first elements nonzero and all the rest zero. This set is convex
and the projection of onto is given by

else.
(34)

The projection onto is more difficult and is best computed
from geometrical considerations.

1) Projection onto : To prevent cumbersome notations,
let and . Let us as-
sume we need to project a trial solution onto the
set . Since the contour of the set is made of sharp corners
and curves with discontinuous derivatives, we must be careful to
partition to space into regions whose vectors will be projected on
various parts of the contours . Indeed, the mathematical de-
scription of the appropriate projection operation will depend on
the location of the point in the complex-plane defined by Re[]
and Im[ ]. We partition the complex-plane into nine disjoint re-
gions as shown in Fig. 2 and geometrically described in Table I.
For the sake of brevity, in what follows we provide the detailed
calculation of the projection only for the cases where Re-
gion V and again when Region VI. For the other regions
the calculations are similar and are given without derivation in
Table II.

2) Projection from Region V(VIII):The Lagrange functional
to be minimized for this projection is

(35)

Fig. 2. Tolerance aroundH(!) of magnitude a and phase� in the
complex-plane.

TABLE I
REGION DESCRIPTION OFFIG. 2

TABLE II
PROJECTIONSDEFINITION OFP

where and denote the imaginary and real parts of
is the constraint on the argument of and is a point in

Region V described by . We can rewrite as

(36)
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and set the derivatives

(37)

and

(38)

in order to find , the Fourier transform of . From (37) and
(38), we obtain

(39)

(40)

Dividing (39) by (40) and recognizing that

we finally obtain that

(41)

where . Thus

(42)

3) Projection from Region VI(IX):For any point , its
projection must either be on the contour segment or the
contour segment in Fig. 2. Any point on the
contour is given by

(43)

where to be determined. The pointmay bedecomposed
as

(44)
Thus

(45)

To find the projection on , we minimize as a
function of . We can rewrite (45) as ,
where is the -dependent part. Thus, we seek to make
as small as possible. But

and for any point in .
Thus, where

(46)

This is a parabola with minimum at and smallest
value for at . Therefore, the projection onto
is the point .

Assume next that the projection ofis on the contour seg-
ment . Any point on can be written as

. Then

(47)

where and .
We seek the smallest value of to minimize .
For any , this occurs at . Therefore,

, the same as before. The projections for other regions
are obtained similarly and are tabulated in Table II.

The FIR filter-design algorithm is given by

arbitrary (48)

VI. NUMERICAL RESULTS

It is clear from our previous discussion that VSPM filter-de-
sign requires the frequency-domain implementation of the con-
straints in and . These constraints are realized on a
grid of discrete frequencies. An -length DFT is implemented
by the FFT algorithm for . Thus, we create dis-
crete frequencies over
the interval [0, 2 . Below we give several examples of FIR
filter design using VSPM. In the first example, we design a
simple linear-phase low-pass FIR filter and compare its perfor-
mance to that obtained with the MP method. Example 2 con-
sists of designing a low-pass FIR filter with bounds on the over-
shoot and undershoot of the step response. Example 3 consists
of designing a low-pass FIR filter with an output-energy con-
straint on a prescribed, undesirable, signal and comparing the
VSPM design with the EM design. Example 4 consists of de-
signing an all-pass FIR filter with a prescribed nonlinear phase
signal and comparing the VSPM design with the designs of LP,
DAS, and EM. In all of the following examples,
was used except for Example 4, in which the was
used for better accuracy. The stopping criterion of the itera-
tive VSPM in the following examples is given by:stop when

. When this condition is met we say, some-
what arbitrarily, that convergence has occurred.

Example 1: VSPM versus MP—Low-pass Linear-phase FIR
Filter Design

We design a low-pass filter using the setswith finite im-
pulse response of length , with and

with . The passband and stopband edge fre-
quencies are and . The result is com-
pared with the MP algorithm with the same passband/stopband
frequencies computed using MATLAB with equal error weights
on both the stopband and the passband. Fig. 3 shows the resulting
frequency responses of both the MP (broken line) and the VSPM
(solid line) results. Figs. 4 and 5 show the passband and stopband
of the two algorithms in details. The main result is that the re-
sponse of the filter generated by VSPM (solid line) is as good
as the MP one (broken lines). For this example, the VSPM algo-
rithm in (11) required 4,000 iterations for convergence.

Example 2: Filter Design with Constraints on the Step Re-
sponse

In this example, we use VSPM to design a filter that con-
strains the overshoot and undershoot of the truncatedstep re-
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Fig. 3. Frequency response of VSPM- and PM-designed filters.

Fig. 4. Stopband response of VSPM- and PM-designed filters in details.

sponse of the filter in Example 1. Thus, we use the setswith
, with and with , and

the same passband and stopband edge frequencies as in Example
1. We chose values of and that still allowed a nonempty in-
tersection of all the constraints sets. However, now we involve
the sequence of sets of (21). The truncated step-re-
sponse is given by

...
...

...
. . .

...
...

(49)

Fig. 5. Passband response of VSPM- and PM-designed filters in details.

Fig. 6. Step response with and without constraints.

while the and that define set are given by

for

for (50)

The sets are not applied for . Also, we let the re-
sponse beunconstrainedduring its monotone rise. The broken
line in Fig. 6 represents the step response of the filter in Ex-
ample 1 without applying a step response constraint. The solid
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Fig. 7. Frequency response of both filters designed with and without
constraints.

Fig. 8. Appearance of the unwanted signals(n).

line represents the step response with the step-response con-
straint applied. Notice that when the constraints are involved,
the overshoot and undershoot do not exceed the tolerances pre-
scribed. Fig. 7 shows the frequency response of the filter with
and without the step-response constraint. Note that a price has
been paid for achieving a superior step-response: the frequency
response is inferior to when no step-response constraints are ap-
plied. For this example, the VSPM algorithm in (23) required
3,000 iterations for convergence.

Example 3: VSPM versus EM with the Energy Output Con-
straints

In this example, we compare the VSPM ( actually POCS)
with the EM. Let the undesired waveformbe as in Fig. 8.

Fig. 9. Frequency response of both EM- and VSPM-designed filters with
C (�); � = 5:56 � 10 .

Fig. 10. Passband response of Fig. 9 in detail.

The energy of is . Using the eigenfilter
method, we designed a low-pass FIR filter with . The
passband and stopband edge frequencies are and

. After several trials with different arbitrary and
, the passband and stopband control parameters, we selected

these in such a way as to preserve as
much as possible the desired specifications. The energy of the
response to the input signalturned to be 5.56 10 .

Next, we designed an FIR filter using VSPM while keeping
the same specifications. We used the set, defined in (26),

and the sets with and
with . Fig. 9 shows the resulting frequency

response of both methods. The broken and solid lines represent
the EM-and VSPM-based responses, respectively. Fig. 10 shows
the passband in detail: note that VSPM produced a filter with
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Fig. 11. Frequency response of both EM- and VSPM-designed filters with
� = 0:5;  = 0:005 and VSPM withC (�); � = 5:56� 10 .

Fig. 12. Passband response of Fig. 11 in more detail.

better attenuation in the stopband than the EM and comparable
fluctuations in the passband. Moreover, the constraints were not
satisfied by the EM at the edge frequencies, in contrast to the
behavior of the VSPM.

As another experiment, we modify (relax) the conditions of
this example by letting the VSPM response in the stopband be
as large as the EM (i.e., in the first stopband lobe). The design
involves set with , set with

, and with . Fig. 11 shows the fre-
quency response of both methods. Fig. 12 shows the passband in
detail, and clearly demonstrates the superior performance of the
VSPM-designed filter. For this example, the VSPM algorithm
in (31) required 5,000 iterations for convergence.

Fig. 13. Magnitude error of the all-pass filter with magnitude deviation� =
9 � 10 .

Fig. 14. Group-delay error of the all-pass filter with phase deviation" = 3�
10 .

Example 4: Phase Compensation Using All-Pass FIR Filter:
Comparison of Methods

Assume that in a particular phase-compensation problem, the
required phase response of the filter is given by [11]

(51)

which corresponds to the following group-delay function

(52)

We try to approximate an all-pass filter, i.e., ,
that has the desired phase characteristics. The filter parameters
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TABLE III
PEAK ERROR IN MAGNITUDE AND GROUPDELAY

that we select are: filter length , magnitude deviation
, and phase deviation [see (32)].

We can clearly see from Figs. 13 and 14 that the VSPM
yields an all-pass filter with a small magnitude error

. The peak error of the group delay are largest (0.14)
at and whereas they are very small at other
frequencies. Table III summarizes the peak error of the four
approaches: LP [11], DAS [12], EM [13], and VSPM. The
results verify that VSPM yields a filter with better performance.
(The group delay peak-error is not available in [11], [12]).
For this example, the VSPM algorithm in (48) required 3,500
iterations for convergence.

VII. CONCLUDING REMARKS

In this paper we have reviewed VSPM’s and used these
methods to design several important classes of FIR filters.
In particular, we used VSPM to design linear and arbi-
trary-phase/magnitude FIR filters subject to various design
constraints. We furnished several examples and demonstrated
the advantages of VSPM over existing methods.

The main advantages of using VSPM for filter design are:

1) while VSPM generally does not yield optimal solutions,
it will furnish solutions that meet all design constraints
(assuming that they are consistent) using the same set of
mathematical tools;

2) VSPM is easily extended to the design of multi-di-
mensional filters, an extension that is difficult for other
methods.
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