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Multichannel Regularized Recovery of Compressed
Video Sequences

Mun Gi Choi, Member, IEEE, Yongyi Yang, Member, IEEE, and Nikolas P. Galatsanos, Senior Member, IEEE

Abstract—In this paper, we propose a multichannel regularized
recovery approach to ameliorate coding artifacts in compressed
video. The major advantage of the proposed approach is that both
temporal and spatial correlations in a video sequence can be ex-
ploited to complement the compressed video data. In particular, a
temporal regularization term is introduced to enforce smoothness
along the motion trajectories defined by the transmitted motion
vectors for motion compensation. Several forms of temporal regu-
larization with different computational complexity are considered.
Based on the proposed approach, recovered images are obtained
from the compressed data using the well-known gradient-projec-
tion algorithm. Moreover, an iterative algorithm is proposed for
the determination of regularization parameters at the coder side.
A number of numerical experiments using several H.261 and H.263
compressed streams are presented to evaluate the performance of
the proposed recovery algorithms. Results from these experiments
demonstrate that the use of temporal regularization can yield sig-
nificant improvement in the quality of the recovered images—in
terms of both visual evaluation and objective peak-signal-to-noise
(PSNR) measure.

I. INTRODUCTION

W ITH THE growing demand for efficient digital represen-
tation of images and video in a wide range of applica-

tions, image and video compression has attracted considerable
attention in recent years. Evidence of this is the emergence of
several international image and video coding standards such as
JPEG [25], MPEG-1 [10], MPEG-2 [11], H.261 [12], H.263
[13], and most recently MPEG-4 [29]. What makes image and
video compression possible is the fact that there exists a great
deal of information redundancy in images and video, and every
efficient coding scheme attempts to exploit this redundancy.

The information redundancy in a video sequence is divided
into spatial redundancy and temporal redundancy. The spatial
redundancy exhibits as the similarity of neighboring pixels in an
image, whereas the temporal redundancy exhibits as similarity
between neighboring frames in a video sequence. A popular
video coding scheme is to use a transform to exploit the spatial
redundancy and use motion-compensated prediction to take ad-
vantage of the temporal redundancy. For example, block discrete
cosine transform (BDCT) and motion compensation are used in
the existing video coding standards such as MPEG, H.261, and
H.263.

An inherent problem with image and video compression is
that it results in various undesirable coding artifacts, especially
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in low bit-rate applications. For example, coding artifacts such
as “blocking,” “ringing effects,” and “mosquito noise” are well
known to exist in JPEG and MPEG compressed images and
video. In the literature, various postprocessing and recovery al-
gorithms have been proposed to ameliorate these artifacts in
compressed images. For example, in [26], [28], [19], [14], and
[17], different filtering algorithms are used to reduce the arti-
facts in a compressed image, while in [27], [32], [33], [21][23],
[18], and [34]–[37], image recovery approaches are proposed
to reconstruct the compressed image so that it is free (or nearly
free) of artifacts. The essence of these recovery algorithms is
to reconstruct the image by taking advantage of, in addition to
the received compressed data, the existence of strong correlation
among the pixels of the image (i.e., spatial redundancy) either
through assuming an underlyinga priori probability model or
by directly imposing a smoothness constraint on the image.

For the recovery of compressed video, a straightforward ap-
proach would be to treat each frame in a video sequence as
an independent image and recover it separately from the other
frames. However, such an approach is only suboptimal since it
does not make use of the existence of strong interframe correla-
tion (i.e., temporal redundancy) in a video sequence. It is well
known from the work in other image sequence recovery prob-
lems that the incorporation of interframe correlation can lead
to significant improvement in the quality of recovered images
(see, for example, [3] and [24]. The work in [3] and [24] ad-
dressed restoration of blurred and noisy image sequences. In
this paper, we address the problem of recovering compressed
video sequences by utilizing both temporal and spatial correla-
tions for the first time. The proposed approach is multichannel
in nature in that, unlike other frame-based processing methods
(see, for example, [9]), the image frames in a sequence are re-
covered jointly. The termmultichannelis used here to reflect
the fact that consecutive image frames can be viewed as obser-
vations of the same scene that are not identical (due to motion)
but are strongly correlated [8]. Thus, consecutive image frames
should be recovered simultaneously taking into account inter-
frame correlations. The latter is enforced through smoothness
along the motion trajectories defined by motion vectors that are
readily available in the compressed data. Apart from a different
problem being addressed, a major improvement of the work pre-
sented here over that in [3] is that a new form of temporal regu-
larization is introduced that can accommodate general, subpixel
accuracy motion. The approach in [3] was more restrictive and
assumed integer accuracy motion. The proposed recovery algo-
rithms are quite flexible and can be applied to all existing video
coding standards such as MPEG and H.263.
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The rest of the paper is organized as follows: in Section II,
we introduce some notation on video coding, particularly the
coding scheme of block DCT and motion compensation. Then,
video decoding is formulated as the solution to an ill-posed re-
covery problem using the principle of regularization. The reg-
ularization terms which characterize the spatial and temporal
correlations are defined in Section III. The recovery algorithm
is then derived in Section IV based on the gradient projection
algorithm. A detailed analysis of the computational complexity
of the proposed reconstruction algorithms is also presented in
this section. In Section V, numerical results from the proposed
recovery algorithms are presented, and issues regarding the im-
plementation of the recovery algorithms are discussed. More-
over, a new approach for selecting the regularization parame-
ters is presented in this section. Finally, conclusions are given
in Section VI.

II. BACKGROUND AND MOTIVATION

First, we review some basic notation in video coding. To
keep focused, we will limit our discussion to motion-compen-
sated transform coding schemes only. Notice that such coding
schemes are currently widely used in existing coding standards
such as MPEG, H.261, and H.263.

A. Motion-Compensated Video Coding

In motion-compensated video coding such as MPEG and
H.263, the frames in a video sequence are broadly classified
into intracoded frames and predictively coded frames. An
intracoded frame, also known as an I-frame, is coded using a
transform such as block DCT. A predictively coded frame is
first predicted (either unidirectionally or bidirectionally) from
the most recently reconstructed reference frame(s), and the
prediction error is then further compressed by transform-based
coding.

Some notation is due in order to quantitatively describe this
coding process. Let denote frames of a video
sequence, where is a vector representation of framethrough
a lexicographical ordering of its pixels. For frame, define

if is intra coded
if is predictively coded

(1)

where denotes the motion-compensated prediction of the
frame from the most recently reconstructed reference
frame(s). That is, is simply the motion-compensated error
of the frame when it is predictively coded. This prediction
error is then further compressed by using transform-based
coding (such as block DCT), denoted by , followed by the
quantizer, denoted by , to obtain the compressed data, say.
In other words, is the quantized transform coefficients of.
In short, we have

(2)

for . The quantized data, along with the nec-
essary motion information, are then entropy-coded and trans-
mitted to the receiver.

B. Video Decoding as Video Recovery

The task at the receiver is to reconstruct the images
from the received data. Since quantization is

typically a many-to-one mapping, i.e., the operatoris not
invertible, we can no longer determine exactly the original
images from the received quantized coefficients

. In a classical decoder, these quantized co-
efficients are simply taken as the transform coefficients and
operations opposite to the coding process are used to obtain the
compressed images. That is, the frames, , are
decoded as

if is intra coded
if is predictively coded

(3)

where denotes the inverse of the transform-based coding.
Since the quantized value of each coefficient specifies an in-

terval that the exact value of that coefficient should belong to,
the knowledge of the quantized coefficientsdefines the fol-
lowing set to which the frame should belong [27], [32]:

(4)

where is used to denote the-th transform coefficient
of , and are the end-points of the quantization in-
terval associated with this coefficient, anddenotes the index
set of the transform coefficients in the frame.

Clearly, every element in will result in the same quantized
data as the original image does. As a matter of fact, one can
quickly verify that the decoded image in (3) also belongs to

, yet it exhibits coding artifacts. Without additional knowl-
edge, it is impossible to determine the original image exactly.
Therefore, the recovery of the images, , from
the received data becomes an ill-posed problem.

The method of regularization is proven effective for obtaining
satisfactory solutions to ill-posed problems [30]. It has been ap-
plied successfully to solve a number of signal and image re-
covery problems. In particular, it is used in [32] for the reduction
of artifacts in compressed images. According to this approach,
an objective function is defined to consist of two terms whereby
one term is used to express the fidelity of the solution to the
available data and the other is to incorporate prior knowledge or
impose desirable properties on the solution. The solution to the
problem is then obtained through the minimization of this ob-
jective function. For the recovery of video from its compressed
data using the method of regularization, the key is to define the
objective function in such a way that its regularization terms
can take advantage of, in addition to the received data, both the
spatial domain and the temporal domain correlations in a video
sequence. This will be the focus of the next section.

III. M ULTICHANNEL REGULARIZATION FUNCTION

In multichannel signal recovery, the correlation properties be-
tween different channels of the signal are effectively exploited
to recover the signal, see, for example [5], [6], [8], and [31].
An image sequence can be considered as a multichannel signal
when the temporal dimension is viewed as an additional channel
to the spatial dimension. In image sequence recovery problems,
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it is well known that the use of both spatial smoothness and tem-
poral smoothness along the direction of the motion yields better
results than the use of spatial smoothness alone (see, for ex-
ample, [3] and [1]). Consider frames (channels) of a video
sequence. Define

(5)

where and denote the compressed images and the recov-
ered images, respectively, the subscriptindicates the multi-
channel notation, and the supscriptdenotes the transpose op-
eration.

The existence of strong spatial and temporal correlations in
suggests the use of the following multichannel regulariza-

tion functional for the recovery of from its compressed data
:

(6)

where three terms are involved, each of which is explained
below.

• In the first term, denotes the Euclidean norm. This term
is used to enforce the fidelity of the recovered images
to the received data, which are represented in the spatial
domain by the compressed image data.

• The constants and are called regularization parame-
ters. Their role is to balance the influence of their associ-
ated regularization terms on the objective function.

• The term in the objective function in (6)
is used to enforce spatial correlation in the recovered im-
ages. Note that the spatial smoothness property of images
has been exploited in almost every proposed processing
algorithm so far, ranging from simple filtering to the more
sophisticated probability model-based approaches, for the
reduction of compression artifacts, in [32]–[34], for ex-
ample.

• The temporal domain correlation is exhibited as similarity
between the neighboring frames in . The term
in (6) is defined to enforce smoothness along the motion
trajectories in the frames of .

A. Spatial Domain Regularization

In block transform-based video coding such as in MPEG,
H.261, and H.263, images are typically coded on a block-by-
block basis, where a particular block is processed independent
of the others. As a result, discontinuities occur at coding block
boundaries. Indeed, it is observed in [32] that the local variation
of the pixels at the coding block boundaries of an compressed
image tends to be significantly larger than that of the pixels in-
side the coding blocks.

With this in mind, we define to have the following
form:

(7)

where the first term is used to enforce smoothness in-
side the coding blocks, and the second term is used to
enforce smoothness at the coding block boundaries. The con-

stant in (7) is used to balance relative effectiveness of these
two penalty terms.

1) Between-Block Regularization:The term in (7)
is based on the variation of an image at its coding block bound-
aries. It is further decomposed into two parts: the variation at
thevertical block-boundaries and that at thehorizontalblock-
boundaries. Specifically, for image frames in ,
we have

(8)

where , are operators that find the differences between
adjacent columns and adjacent rows at the block boundaries of
an image, respectively.

To clarify the point, assume thatis an image with
pixels , , , and that a coding
block size of is used. Then the operator is defined in
the following fashion:

if
otherwise

(9)

where denotes the value of at , and
denotes the value of modulo 8. Note that

only if the th column of the image is at a coding block
boundary. Then, we have

(10)

The quantity captures the total variation between
columns at all adjacent block boundaries of the image.

In a similar fashion, we can define the operator to find
the difference at thehorizontalcoding block boundaries of an
image. Note that the operators and were used in [32]
to define smoothness constraint sets to suppress the blocking
artifact of a compressed image.

2) Within-Block Regularization:Similar to the definition of
, the term in (7) is based on the variation of an

image inside its coding blocks. Specifically,

(11)

where and are operators defined to find the differ-
ences between all the adjacent columns and adjacent rows in-
side the coding blocks of an image, respectively. That is, for an
image ,

if
otherwise.

(12)

Similarly, the operator is defined for the rows of an
image. Then, the quantity as a whole characterizes the
total variation inside all the coding blocks of the image frames
in .

Observe that each term involved in (11) and (8) is a quadratic
and convex function of the image vectors. As a result, the reg-
ularization terms and are quadratic and convex
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functions of . This fact will be utilized in the derivation and
implementation of the numerical algorithms later on.

B. Temporal Domain Regularization

Similar to the spatial domain regularization terms, we define
the temporal domain regularization term based on the
differences betweentemporallyneighboring pixels. The defini-
tion of , however, requires knowledge of the relative mo-
tion between the pixels in neighboring frames.

We consider two different motion compensation models in
the following. The first model assumes that the motion vectors
used are of integer precision. The second model, on the other
hand, does not make use of this assumption and deals with the
more general case of noninteger motion vectors. For easy refer-
ence, the first model will be referred to asinteger motion model
and the second asnoninteger motion modelin the rest of the
paper. The use of the integer motion model is that it yields re-
duction in the complexity of the reconstruction algorithm.

First, let’s introduce some standard notation for motion com-
pensation. Consider two framesand in an image sequence.
Let denote the motion vector of the pixel
in frame with respect to its correspondence in the reference
frame . Then the motion compensated estimate of frame
from the reference frame , denoted by , is given by

(13)

at pixel .

In general, the motion vector in (13) is of sub-

pixel precision, and the term is com-
puted from its neighboring pixels using linear interpolation [20].
As a result, (13) can be written in a compact matrix form as

(14)

where the matrix is used to denote the compensation op-
eration of frame from reference frame .

The motion-compensated prediction errorof frame from
reference frame is then given by

(15)

Or alternatively, from (13), we have

(16)

1) Integer Motion Model:Using the multichannel notion
introduced in (5), we define its motion-compensated estimate,
denoted by , as

(17)

where , , is defined by

(18)

with defined in (13). In other words, is the simple average1

of the motion-compensated estimates of framefrom other
frames. Using the matrix notation in (14), we have

(19)

The regularization term is then defined as

(20)

From (19), we can describe the term using a multi-
channel linear operator such that

(21)

For the purpose of illustration, consider the case of . The
operator is given by

(22)

where is the identity matrix. Such a structure of will be
utilized later on for the derivation of numerical algorithms.

2) Noninteger Motion Model:In order to handle the more
general case of motion compensation such as that used in MPEG
and H.263, we can alternatively define the temporal regulariza-
tion term directly based on frame-to-frame motion com-
pensated prediction errors. Specifically, we define

(23)

where is given in (13). In its definition, the term cap-
tures the total variation of the pixels in each framefrom their
correspondences in the other frames along their mo-
tion trajectories.

Despite the assumptions made in the integer motion model,
it is still of interest to examine how the definition of in
(23) to that in (20). For simplicity, consider again the case of

. First, the definition in (23) leads to

(24)

1A weighted average may be a reasonable alternative to the simple average,
where weighting is used to reflect the degree of correlation between two dif-
ferent frames (e.g., based on their temporal distance). Nevertheless, the simple
average is used here in favor of its simplicity.
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On the other hand, the definition in (20) gives

(25)

(26)

Comparing (26) with (24), one quickly realizes that the former
is simply the latter (up to a scale factor) with additional cross

terms of the form where .

Note that each cross term is essentially

the cross correlation between the compensation errors
and . In practice, it is reasonable to expect that these
compensation errors are weakly correlated. In this sense, the two
seemingly different definitions for the temporal regularization
term will play essentially the same role in the recovery
algorithms.

A note is that when fast scene changes occur in a sequence
some of the pixels in one frame may not be predictable from its
neighboring frames. In such a case, the temporal regularization
term in (23) should be adjusted accordingly by ignoring
the affected pixels in computing the motion-compensated pre-
diction errors. This also applies to the case of the integer motion
model discussed earlier.

Finally, due to the quadratic and convex nature of the motion-
compensated prediction error terms in the regularization term

, both forms of are also quadratic and convex in
terms of .

IV. M ULTICHANNEL REGULARIZED RECOVERYALGORITHMS

Considering the definition of the spatial and temporal regu-
larization terms defined in the previous section, we can rewrite
the regularized objective function

(27)

where , , and .
Now that each regularization term in is defined, the re-

covery of video from its compressed data can then be solved
by directly minimizing this objective function. From our earlier
discussion in Section II it is known that each original frame
belongs to the constraint set defined by the received data in

(4). Therefore, we seek solution to the following constrained
problem

subject to (28)

The individual constraint sets on the frames ,
, can be written equivalently as

(29)

Then, (28) can be equivalently written as

subject to (30)

As pointed out in the previous section, all the terms ,
, and are quadratic and convex in terms of .

As a result, the objective function is also quadratic and
convex in terms of . Also, the sets , , are
closed and convex [32], [34], and consequently so is the set.
Therefore, the optimization problem in (30) is of the form of a
convex functional under a convex constraint. It is well known
that a problem in such a form has a unique well-defined solution,
and can be found using a so-called iterative gradient-projection
algorithm [22], i.e.,

(31)

where is the projection operator onto the set , a relax-
ation parameter that controls the rate of convergence of the iter-
ation, denotes the estimate of after the th iteration, and

is the gradient of with respect to evaluated
at . The computation of the projector and the gradient

is explained in detail in the following.

A. The Projection Operator

From (29), it is easy to see that for its projection
onto the set is simply given by the projections of the indi-
vidual onto their corresponding sets. That is,

(32)

The individual projection of onto the set is well known
[32], [34]. For an orthonormal coding transform such as the
block DCT, the projection is given by

if is intra-coded
if is predictively coded

(33)

where the th coefficient of is given by

if
if
otherwise.

(34)

B. The Gradient

The gradient can be expressed in terms of the partial
derivatives of with respect to the individual framesas

(35)
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For a particular frame , ,

(36)

In the following, we consider separately the computation of
the partial derivative terms , and

in (36).
1) The Gradients and : From (8), we

obtain

(37)

The partial derivative terms in (37) can be easily computed. Take
the second term in (37) for example. From the definition of
in (9), we have

if
if
otherwise .

(38)

Similarly, the other terms in (40) can be derived.
The details are omitted for brevity.

2) The Gradient : In Section III, two different
forms for the temporal regularization term were proposed. In
the following, we describe its gradient for both cases in detail.
First, for the case of integer motion model

(39)

The computation in (39) involves the matrix , which may
require large memory. To avoid this difficulty, We propose a
scheme to approximate this computation.

Recall the matrix structure for the operator in (22).
Under the assumption that each motion compensation matrix

satisfies the following condition

(40)

the matrix becomes symmetric, i.e., . In
such a case, the quantity in (39) can be easily computed since
the operation of on is simply the motion compensated
prediction error for each frame.

It can be shown that the condition in (40) holds under the fol-
lowing assumptions: 1) each pixel from frameis used only
once to compensate a single pixel of frameand 2) there is a
one-to-one correspondence between the pixels of framesand

. In practice, however, these two conditions are onlyapproxi-
matelytrue because the motion vectors found through a motion
estimation algorithm (such as block matching) may not preserve
such a one-to-one correspondence between pixels in two frames.
In our implementation, we make this approximation in favor of
simplicity.

For the case of the noninteger motion model, the computation
of the gradient needs some detailed explanation. From
the definition of in (23)

(41)

The first term in (41) involves all the frames used for the predic-
tion of , while the second term involves all the frames predicted
from . The partial derivatives in the second
term can be further computed as: for a particular pixel location

,

(42)

where is the set of pixels in frame that are motion
compensated by .

Clearly, the computation of the second term of the gra-
dient in (41) can be cumbersome in that in computing

some bookkeepingis necessary to
keep track of the pixels in frame that are predicted from
pixel . In practice, however, this task can be bypassed
in favor of lower computational complexity by introducing an
approximation to the temporal regularization term .
Indeed, consider the definition of for the case of
noninteger motion model in (23)

(43)

Recall that the term in is used to denote the motion-
compensated prediction of from reference frame . If we
approximate , the motion-compensated prediction offrom

, by using a most recently available (say, from the previous
iteration) estimate of frame instead of the true frame itself,
then the gradient in (41) can be approximated
by

(44)

In the rest of this paper, this approximation is simply referred
to asapproximate model. The performance of this simplified
approach will be discussed further in the experiments presented
in the next section.

C. Analysis of Numerical Complexity of the Recovery
Algorithms

The proposed recovery algorithms are iterative in nature.
Nevertheless, it is still informative to analyze the major nu-
merical computations involved in the implementation. For this
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purpose, we will provide an approximate count of major arith-
metic operations required for each iteration of the algorithms.

Combining the iteration in (31) and the gradient in (36), we
see that during each iteration the following operation is needed
for each frame :

(45)

where each of the partial derivative term is evaluated at
.
A breakdown of the operations involved in (45) is as follows:

• The evaluation of the two terms and
combined will requireonly two additions

(or subtractions to be exact) per pixel. Note that the factor
2 in (38) can be combined with the multiplying constants
in (45).

• From (39) and the discussions immediately after, it can
be seen that for the term an equivalent of
twice as many as operations associated with the operator

are needed. Based on the structure of illus-
trated in (22), we see that the operation of can be
accomplished using additions and 1 division. Thus,

can be evaluated usinga total of
additions and 2 divisions. Note that the operations associ-
ated with computing the motion vectors are not included
here. Similarly, a computation count can also be obtained
when the noninteger motion model or its simplified variant
is used.

• The projection operation associated with , as shown
in (34), is dominated by the transformation of the image
data to and from the transform domain. This is usually ac-
complished by a fast transform such as the fast DCT. The
computational cost of the DCT depends on the specific im-
plementation. In the algorithm reported in [15], for each

DCT transform, real multiplications
and real additions are required.
For , this corresponds to three multiplications and
approximately eight additions per pixel. Note that both the
forward and backward DCTs are required for .

In summary, the total number of operations involved in each
iteration of (51) is approximately as follows: 11 multiplications
and additions per pixel. For the case of ,
which is used in our experiments later on, this corresponds to
11 multiplications (6 of which is for DCT) and 31 additions
(16 of which is for DCT) per pixel. Interestingly, this is roughly
equivalent to four times the computational cost of decoding an
I frame.

V. EXPERIMENTS

In this section, we use a number of numerical experiments
to test the proposed video recovery algorithms. We focus on

two major issues in these experiments: 1) the impact of the use
of various temporal regularization terms on the performance of
the proposed recovery algorithms, and 2) the choice of their as-
sociated regularization parameters. In particular, we will com-
pare the performance of the proposed multichannel recovery ap-
proach against that of spatial only recovery approach. In addi-
tion, we will propose a new approach for the determination of
regularization parameters used in the objective function.

A. Experiments on Regularization Terms

The proposed recovery algorithms are tested using H.261/3
compressed video streams. Note, however, that these algorithms
can be applied to MPEG compressed video streams as well. The
following sequences are used: “Mother and Daughter (MD),”
“Foreman,” and “Carphone” sequences. The picture format is
QCIF(Y: , U and V: ) for all test sequences. A
total of 30 frames from each selected sequence are used in our
experiments. Three experiments are presented here. The frame
rates used in these three experiments, from experiment one to
experiment three, are 10, 30, and 10 frames/s, respectively.

As an objective metric the peak signal-to-noise ratio (PSNR)
is used. This metric is defined by

dB (46)

where is the total number of pixels in the image, andand
are the original image and the recovered image, respectively.
Experiment 1: For this experiment,the proposed recovery

algorithm in (31) was tested using H.261 compressed video
streams. To demonstrate the merit of temporal regularization,
the following different forms of regularization terms were
considered:

1) Spatial-only regularization was used. That is, the tem-
poral regularization term was simply ignored in
the objective function in (6).

2) Temporal regularization based on the integer motion
model as in (20) was used. In this experiment, motion
vectors were estimated on a pixel-by-pixel basis by
using a full search block matching algorithm from
low-pass smoothed compressed frames. Also,
(i.e., 5-channel) was used in (19).

3) Temporal regularization based on the exact noninteger
motion model as in (23) was used. Similar to case 2,
pixel-by-pixel motion vectors were used for motion com-
pensation, and was used.

4) Similar to case 3, except that temporal regularization
based on the approximate model as in (44) was used.

All four regularization approaches described above were ap-
plied to 30 frames of the “Foreman” sequence compressed at
31.69 kb/s and “Carphone” sequence compressed at 28.25 kb/s.
The results for these two sequences are summarized in Figs. 1
and 2, respectively, where the PSNR values of the recovered
frames for each case listed above are shown. Due to space lim-
itation, we show in Fig. 3 the recovered images only for a par-
ticular frame (#236) of the “Foreman” sequence for case 1 and
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Fig. 1. PSNRs of recovered frames from the H.261 compressed “Foreman”
sequence using four different regularization approaches: spatial only
(dashed–dotted line), integer motion model (dotted line), noninteger motion
model (solid line), and approximate model (dashed line).

Fig. 2. PSNRs of recovered frames from the H.261 compressed “Carphone”
sequence using four different regularization approaches: spatial only
(dashed–dotted line), integer motion model (dotted line), noninteger motion
model (solid line), and approximate model (dashed line).

case 4. Also shown for comparison in this figure are the com-
pressed image and the original image.

Experiment 2: When there is little or no temporal correlation
in a sequence, one would naturally expect that the multichannel
approach should perform just as well as the spatial only regu-
larization approach. Indeed, in such a case one can simply set

in (6) to discard temporal regularization.
In this experiment, the test stream used was the “Foreman” se-

quence coded at 38.6 kb/s using H.261 with five-frame skip. The
same four regularization cases described in Experiment 1 were
tested. The results are summarized in Fig. 4 where the PSNR
values of the recovered frames are shown. From the results in
Fig. 4 it seems that the spatial only regularization approach out-
performs the multichannel approaches during the period from
frame 240 to frame 280. A closer examination of the image
sequence, however, reveals that frequent scene changes occur

during this segment of the sequence. As a result, temporal regu-
larization becomes less effective. As pointed out earlier, the reg-
ularization parameter should be set zero in (6) in such a case.
Nevertheless, in order to demonstrate its effect, we still kept
nonzero during this segment in this experiment. In such a case,
the temporal regularization term in (6) tends to assume
a very large value because of less predictability between frames.
As a result, this term dominates over the spatial regularization
terms in and makes them less effective.

In a practical implementation, one may utilize a scene-change
detection mechanism to automatically adjust the value of
so as to control the effect of temporal regularization. Note that
when a scene-change occurs the interframe prediction error is
expected to rise drastically. This will likely cause a sudden in-
crease in the number of intracoded macroblocks in a predictive
frame (i.e., a P or B frame in MPEG coding). Therefore, one may
detect the occurrence of a scene-change by simply monitoring
any sudden increase in either the interframe prediction error or
the number of intra-coded macroblocks in a frame. Of course,
other more sophisticated schemes for detecting scene changes
exist (e.g., see [2], [16]) and can also be employed.

Experiment 3: In this experiment, the proposed algorithms
were tested using H.263 compressed streams. In these streams,
the following modes of H.263 compression were allowed: un-
restricted motion vector mode (annex-D), advanced prediction
mode (annex-F), PB frame mode (annex-G), and syntax based
arithmetic coding (annex-E) [13]. The recovery algorithms were
tested again using various forms of temporal regularization—all
those used in Experiment 1 except case 2 where the integer
motion model was assumed. The motion vectors used were of
half-pel precision. In addition to using reestimated motion vec-
tors from the compressed images the algorithm was also tested
using the available transmitted motion vectors.

The recovery results obtained using the “MD” sequence com-
pressed at 10.67 kb/s are summarized in Fig. 5 where the PNSR
values of the recovered frames are shown. In Fig. 6, recov-
ered images are shown for a particular frame (#22) from the
“MD” sequence for case 1 (spatial only regularization) and case
4 (noninteger motion model assumed using the reestimated mo-
tion field). Also shown in Fig. 6 for comparison are the original
image and the compressed image of that frame.

Finally, it was observed in our experiments that the proposed
gradient-projection recovery algorithms converged rather
rapidly. All the results in the three experiments discussed above
were obtained with less than 10 iterations of (31).

B. Experiments on Regularization Parameters

As in every regularized image recovery problem, the proper
choice of these regularization parameters by itself is an inter-
esting yet challenging problem [7]. However, we realize that
there is an interesting differentiating aspect in the compressed
video recovery problem from other traditional image recovery
problems—the original images of the compressed video are
known at the coder. An interesting question immediately arises:
can we exploit this valuable information to determine the
values of the regularization parameters at the coder? If so, then
their values can be transmitted along with the compressed data
as a minimal coding overhead (say, in the user data fields of the
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(a) (b)

(c) (d)

Fig. 3. Images of the 236th frame of the “Foreman” sequence: (a) the original image; (b) the compressed image; (c) the recovered image with spatial only
regularization; and (d) the recovered image using regularization based on noninteger motion model.

Fig. 4. PSNRs of recovered frames from the H.261 compressed “Foreman”
sequence (with five-frame skip) using four different regularization approaches:
spatial only (dashed–dotted line), integer motion model (dotted line), noninteger
motion model (solid line), and approximate model (dashed line).

compressed data stream) so that they can be used in the decoder
by the proposed compressed video recovery algorithms. This,
of course, would serve as a valuable alternative to the traditional
approaches for the determination of regularization parameters
such as a trial-and-error approach. Motivated by this, we
attempt to seek an answer to this question in the following.

Fig. 5. PSNRs of recovered frames from the H.263 compressed “MD”
sequence using three different regularization approaches: spatial only
(dashed–dotted line), noninteger motion model using transmitted motion field
(labeled as Exact(Transmitted), dotted line), noninteger motion model using
reestimated motion field (labeled as Exact(Reestimated), solid line), and
approximate model using the reestimated motion field (dashed line).

Recall that our proposed recovery approach to compressed
video was based on the solution to the constrained optimization
of the objective function in (27). Clearly, the solution to
this problem will depend on the regularization parameters,

, and in a nonlinear fashion. Let this solution be denoted by
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(a) (b)

(c) (d)

Fig. 6. Images of the 22nd frame of the “MD” sequence: (a) the original image; (b) the compressed image; (c) the recovered image with spatial only regularization;
and (d) the recovered image using temporal regularization based on noninteger motion model using reestimated motion field.

. Also, let denote the original image sequence
in the coder, then a reasonable choice for, , and seems to
minimize the difference between , and . That
is, we seek

(47)

Unfortunately, this is a difficult task due to the nonlinearity of
. Instead, we propose the following iterative al-

gorithm to approximate this solution:

1) Let iteration index , and let and
denote the initial guess for and

, respectively.
2) During iteration , define function

. Note that is a linear function
of , hence so is . Next, solve
for

(48)

A closed-form solution for can
be readily derived since is linear in

. We omit such details for brevity.
3) Compute

(49)

4) If , a prescribed
threshold, then stop; otherwise, let , go to step
2.

A few remarks are immediately in order.

1) The operations in (48) and (49) can be viewed as a
two-step implementation of the gradient-projection
operation in the recovery algorithm in (31), except that
now an optimal value for is searched in the
step of (48).

2) From a computational point of view, the number of oper-
ations needed for computing (48) is only a fraction of that
needed for (49). Thus, the computational complexity for
calculating in each iteration is of the same
order as that of the recovery algorithm in each iteration.

3) It is observed from our extensive numerical experiments
[4] that the iterates generated in (48) al-
ways converge to a final value. More interestingly, it is
observed that this final value is independent of both the
choice of initial starting points and ,
and choice of relaxation parameter.

4) It is confirmed from our extensive numerical experiments
that regularization parameters determined from this pro-
posed algorithm yield quite satisfactory recovery results.
In fact, it has been used in the three experiments presented
above.

In the following, we present some numerical results to
demonstrate: 1) the properties of the regularization parameters
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Fig. 7. MSEs of the recovered 116th frame of the H.261 compressed
“Carphone” sequence when the regularization parameters are varied using
the following schemes: (Plots of MSEs of the recovered 116th frame of the
H.261 compressed “Carphone” sequence when the regularization parameters
are varied using the following schemes:(� ; � ; � ) = (�� ; �� ; �� )
(dashed line) and(� ; � ; � ) = (�� ; �� ; � ) (solid line).

obtained from this iterative algorithm and 2) the sensitivity to
the choice of regularization parameters of the performance of
the proposed recovery algorithms.

Experiment 4: In this experiment, the iterative algo-
rithm described above in (48) and (49) was first tested
using the “Carphone” stream used in Experiment 1. The
regularization parameters , , were first obtained
using this iterative algorithm for a particular frame (#116).
The value of the relaxation parameter was chosen to
be 0.01. Then, to test the “optimality” of this solution,
their values were varied using the following two arbitrarily
chosen schemes: 1) and
2) , where is a scaling
parameter ranging from to . The proposed recovery
algorithms were then applied using these varied values. Shown
in Fig. 7 are the mean square errors (MSEs) of the recovered
image compared to the original frame versus the scaling
parameter. The MSE is used here instead of the PSNR in order
to show its low sensitivity to . Note that in both cases, the
minimal MSE was achieved when , i.e., when there
was no deviation from the values determined by the iterative
algorithm. The regularization approach used here was case 3 in
Experiment 1, i.e., the noninteger motion model was used.

Similar results were obtained when the above procedures
were applied to several other streams.

VI. CONCLUSION

In this paper, we proposed a multichannel regularization ap-
proach to address the video decoding problem. Temporal do-
main regularization is used, in addition to spatial domain reg-
ularization, to complement the transmitted data. The role of
temporal regularization is to enforce smoothness along the mo-
tion trajectories defined by the transmitted motion field. Sev-
eral forms of temporal regularization terms with different com-
putational complexity are examined. In our proposed approach,

the recovered images are obtained by using the well-known gra-
dient-projection algorithm from the compressed video data. In
addition, a novel iterative algorithm is proposed to address the
classical problem of how to determine the regularization param-
eters. This algorithm takes advantage of the unique feature of
video compression in that the original images are available at
the coder.

A number of numerical experiments using H.261 and H.263
compressed streams were presented to demonstrate the perfor-
mance of the proposed algorithms. Results from these experi-
ments show that the proposed recovery approach can effectively
exploit both the temporal and spatial correlations in an image
sequence. It is observed that significant improvement can be
obtained in the quality of the recovered images—in terms of
both visual evaluation and objective PSNR measure. In partic-
ular, various forms of compression artifacts in the compressed
images are greatly reduced in the recovered images.
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