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Multichannel Regularized Recovery of Compressed
Video Sequences
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Abstract—in this paper, we propose a multichannel regularized in low bit-rate applications. For example, coding artifacts such
recovery approach to ameliorate coding artifacts in compressed as “blocking,” “ringing effects,” and “mosquito noise” are well
video. The major advantage of the proposed approach is that both known to exist in JPEG and MPEG compressed images and

temporal and spatial correlations in a video sequence can be ex- vid In the literature. vari tor ina and recoverv al
ploited to complement the compressed video data. In particular, a €o. € literature, various pos{processing a ecovery al-

temporal regularization term is introduced to enforce smoothness gorithms have been proposed to ameliorate these artifacts in
along the motion trajectories defined by the transmitted motion compressed images. For example, in [26], [28], [19], [14], and
vectors for motion compensation. Several forms of temporal regu- [17], different filtering algorithms are used to reduce the arti-
larization with different computational complexity are considered. facts in a compressed image, while in [27], [32], [33], [21][23]

Based on the proposed approach, recovered images are obtained .
from the compressed data using the well-known gradient-projec- [18], and [34]-[37], image recovery approaches are proposed

tion algorithm. Moreover, an iterative algorithm is proposed for 0 reconstruct the compressed image so that it is free (or nearly
the determination of regularization parameters at the coder side. free) of artifacts. The essence of these recovery algorithms is
A number of numerical experiments using several H.261 and H.263 {g reconstruct the image by taking advantage of, in addition to
compressed streams are presented to evaluate the performance ofyq received compressed data, the existence of strong correlation

the proposed recovery algorithms. Results from these experiments the pixels of the | . tial redund ith
demonstrate that the use of temporal regularization can yield sig- 2Mong the pixels of the image (i.e., spatial redundancy) either

nificant improvement in the quality of the recovered images—in through assuming an underlyirggpriori probability model or
terms of both visual evaluation and objective peak-signal-to-noise by directly imposing a smoothness constraint on the image.
(PSNR) measure. For the recovery of compressed video, a straightforward ap-
proach would be to treat each frame in a video sequence as
. INTRODUCTION an independent image and recover it separately from the other
ITH THE growing demand for efficient digital represen_1‘rames. However, such an approach is only suboptimal since it
Wtation of images and video in a wide range of appncéioes not make use of the existence of strong interframe correla-
tions, image and video compression has attracted considerdi§8 (i-€., temporal redundancy) in a video sequence. It is well
attention in recent years. Evidence of this is the emergencek§wn from the work in other image sequence recovery prob-
several international image and video coding standards sucH&B$ that the incorporation of interframe correlation can lead
JPEG [25], MPEG-1 [10], MPEG-2 [11], H.261 [12], H.263!0 significant improvement in the quality of recovered images
[13], and most recently MPEG-4 [29]. What makes image art@ee. for example, [3] and [24]. The work in [3] and [24] ad-
video compression possible is the fact that there exists a gréggssed restoration of blurred and noisy image sequences. In
deal of information redundancy in images and video, and evdjS Paper, we address the problem of recovering compressed
efficient coding scheme attempts to exploit this redundancy. Video sequences by utilizing both temporal and spatial correla-
The information redundancy in a video sequence is dividéi@ns for the first time. The proposed approach is multichannel
into spatial redundancy and temporal redundancy. The Spa'mipature in that, unlike other frame-based processing methods
redundancy exhibits as the similarity of neighboring pixels in d§€€, for example, [9]), the image frames in a sequence are re-
image, whereas the temporal redundancy exhibits as Sim”aﬁ@,vered jointly. The ternmultichannelis used here to reflect
between neighboring frames in a video sequence. A popqugfact that consecutive image frames.can pe viewed as opser-
video coding scheme is to use a transform to exploit the spatf&ions of the same scene that are not identical (due to motion)
redundancy and use motion-compensated prediction to take Bt are strongly correlated [8]. Thus, consecutive image frames
vantage of the temporal redundancy. For example, block discréf@uld be recovered simultaneously taking into account inter-
cosine transform (BDCT) and motion compensation are usediame correlations. The latter is enforced through smoothness

the existing video coding standards such as MPEG, H.261, {@ng the motion trajectories defined by motion vectors that are
H.263. readily available in the compressed data. Apart from a different
An inherent problem with image and video compression Roblem being addressed, a major improvement of the work pre-
that it results in various undesirable coding artifacts, especiafighted here over thatin [3] is that a new form of temporal regu-
larization is introduced that can accommodate general, subpixel
, . , . accuracy motion. The approach in [3] was more restrictive and
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The rest of the paper is organized as follows: in Section B. Video Decoding as Video Recovery

we introduce some notation on video coding, particularly the the task at the receiver is to reconstruct the images
coding scheme of block DCT and motion compensation. Th 1 £, ..., £, from the received data. Since quantization is

video decoding is formulated as the solution to an ill-posed "Bpically a many-to-one mapping, i.e., the opera@iis not

covery problem using the principle of regularization. The régs ertible, we can no longer determine exactly the original
ularization terms which characterize the spatial and tempoffﬂagesfl,fg, ..., from the received quantized coefficients
correlations are defined in Section Ill. The recovery algorithrp1 F, F,. In a classical decoder, these quantized co-
. . . . . . . ? IR . 1

is then derived in Section IV based on the gradient projectificients are simply taken as the transform coefficients and

algorithm. A detailed analysis of the computational complexity, e ations opposite to the coding process are used to obtain the
of the proposed reconstruction algorithms is also presentedcghpressed images. That is, the frafie$ = 1,2,..., L, are
this section. In Section V, numerical results from the proposef~oded as ’ e

recovery algorithms are presented, and issues regarding the im- -

plementation of the recovery algorithms are discussed. More- A T,;lFl, if f; is intra coded

over, a new approach for selecting the regularization parame- T+ T;Fl, if £; is predictively coded

ters is presented in this section. Finally, conclusions are given

in Section VI. WhereT,;1 denotes the inverse of the transform-based coding.

Since the quantized value of each coefficient specifies an in-
1. BACKGROUND AND MOTIVATION terval that the exact value of that coefficient should belong to,
the knowledge of the quantized coefficieltsdefines the fol-

First, we review some basic notation in video coding. TRwing set to which the fram& should belong [27], [32]:
keep focused, we will limit our discussion to motion-compen-

sated transform coding schemes only. Notice that such coding C, 2 {fl . aglin < (Tgfl)n <a™* ne 1} 4)

schemes are currently widely used in existing coding standards

such as MPEG, H.261, and H.263. where(Ts1)),, is used to denote the-th transform coefficient

of f;, & anda*** are the end-points of the quantization in-

A. Motion-Compensated Video Coding terval associated with this coefficient, afiddenotes the index

St of the transform coefficients in the frame.

OCIearIy, every element iv; will resultin the same quantized
ta as the original imade does. As a matter of fact, one can

®3)

In motion-compensated video coding such as MPEG af
H.263, the frames in a video sequence are broadly classifi
into intracoded frames and predictively coded frames. AfT. . : .
intracoded frame, also known as an I-frame, is coded usin ickly yerlfy_that the _decod(_ad 'mag In (3) alsc_) _belongs to
transform such as block DCT. A predictively coded frame is¥’ yet it exhibits coding artifacts. Without additional knowl-
first predicted (either unidirectionally or bidirectionally) fromedge' itis impossible to deterr_nlne the original image exactly.
the most recently reconstructed reference frame(s), and grefore, the recovery of the imaggs! = 1,2,..., L, from

prediction error is then further compressed by transform—bast received data beco”.‘es an |.Il-posed probIem. -
he method of regularization is proven effective for obtaining

coding. . : .
Some notation is due in order to quantitatively describe thi _tlsfactory solutions to ill-posed problems_[30]. It has_ been ap-
coding process. Lefy fy, ..., denotel frames of a video plied successfully to solve a number of signal and image re-

covery problems. In particular, itis used in [32] for the reduction

of artifacts in compressed images. According to this approach,

an objective function is defined to consist of two terms whereby

. {fz ’ if £, is intra coded one term is used to express the fidelity of the solution to the
=

sequence, whelfz is a vector representation of frarhthrough
a lexicographical ordering of its pixels. For frafiedefine

¢ _¢ if £, is predictively coded (1) available data and the other is to incorporate prior knowledge or
T ! impose desirable properties on the solution. The solution to the

A . -~ roblem is then obtained through the minimization of this ob-
where f; denotes the motion-compensated prediction of the : . .

ective function. For the recovery of video from its compressed
frame f; from the most recently reconstructed referen

frame(s). That isF, is simply the motion-compensated errorgata using the method of regularization, the key is to define the

of the framef; when it is predictively coded. This predicticmobjectlve function in such a way that its regularization terms

error £, is then further compressed by using transform-basgan take advantage of, in addition to the received data, both the

coding (such as block DCT), denoted By;, followed by the Spatial domain and the temporal domain correlations in a video

quantizer, denoted bg, to obtain the compressed data, §§y sequence. This will be the focus of the next section.
In other wordsF, is the quantized transform coefficientsfpf

In short, we have I1l. M ULTICHANNEL REGULARIZATION FUNCTION

In multichannel signal recovery, the correlation properties be-

F, = QI:f; (2) tween different channels of the signal are effectively exploited
to recover the signal, see, for example [5], [6], [8], and [31].
for! = 1,2,..., L. The quantized data, along with the necAn image sequence can be considered as a multichannel signal

essary motion information, are then entropy-coded and tramgien the temporal dimension is viewed as an additional channel
mitted to the receiver. to the spatial dimension. In image sequence recovery problems,
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it is well known that the use of both spatial smoothness and testant~ in (7) is used to balance relative effectiveness of these
poral smoothness along the direction of the motion yields bettero penalty terms.

results than the use of spatial smoothness alone (see, for ext) Between-Block Regularizatiorithe termJ,(fy;) in (7)
ample, [3] and [1]). Considet frames (channels) of a videois based on the variation of an image at its coding block bound-

sequence. Define aries. It is further decomposed into two parts: the variation at

the vertical block-boundaries and that at therizontalblock-
gl 2 (gl gl .. gD)", L2l eF ... ff)" (5) boundaries. Specifically, forimage fram@sts, ..., £z, in i,

we have

whereg,; andf,; denote the compressed images and the recov- I

ered images, .respectively, the subschiptindicates the multi- Jo(far) A Z (||QVsz||2 + HQHBleQ) @8)

channel notation, and the supscfiptienotes the transpose op- =1

eration.

The existence of strong spatial and temporal correlationsW_ereQVB* Qnp are operators that find the differences betw_een
f); suggests the use of the following multichannel regularizé‘gjacent columns and adjacent rows at the block boundaries of

tion functional for the recovery df,; from its compressed data@" IMage, respectively. _ _ _
g To clarify the point, assume théitis anM x N image with

pixelsf(é,j),¢=1,2,...,5 = 1,2,..., N, and that a coding
IEn) 2 g — Eull® + AT (E) + AJe(Ens),  (6) block size o8 x 8 is used. Then the operatQk 3 is defined in
the following fashion:

\k/Jvehke)\r; three terms are involved, each of which is explalned(QVBf) G2 {f(i,j) £+ 1), if ((]’))g -0 ©)

: ’ 0, otherwise

* Inthefirstterm||-|| denotes the Euclidean norm. This term
is used to enforce the fidelity of the recovered imafygs Where(Qvsf)(¢, j) denotes the value afvsf at (i, j), and
to the received data, which are represented in the spafi@i))s denotes the value of modulo 8. Note that(j))s =
domain by the compressed image dafa. 0 only if the jth column of the image is at a coding block

« The constant3, and)\, are called regularization parame-boundary. Then, we have
ters. Their role is to balance the influence of their associ-

M N
ated regularization terms on the objective function. Qvef|? = £ 5y — £(i. 5 2
: o : , vefl?=>" i, ] i+ D7 (10)
* The termJ;(fy;) in the objective functiod(fy;) in (6) | | - = (75, 9) = 1€ 4
is used to enforce spatial correlation in the recovered im- (50s=0

ages. Note that the spatial smoothness property of imagefe quantity||Qvsf]||> captures the total variation between

has been exploited in almost every proposed processiggumns at all adjacent block boundaries of the imfige

algorithm so far, ranging from simple filtering to the more |, 3 similar fashion, we can define the operatpss to find

sophisticated probability model-based approaches, for i difference at th@orizontalcoding block boundaries of an

reduction of compression artifacts, in [32]-[34], for eXimage. Note that the operatafs s andQup were used in [32]

ample. to define smoothness constraint sets to suppress the blocking
» The temporal domain correlation is exhibited as similarityrtifact of a compressed image.

between the neighboring framesfiy. The termJ.(fa;)  2) Within-Block Regularization:Similar to the definition of

in (6) is defined to enforce smoothness along the mOtiQﬂ(fM), the termJ,,(fas) in (7) is based on the variation of an

trajectories in the frames df,. image inside its coding blocks. Specifically,

A. Spatial Domain Regularization =
Jo(Er) 2 (1QvshI* + | Qustil|) (11)

In block transform-based video coding such as in MPEG, P

H.261, and H.263, images are typically coded on a block-by- i i .

block basis, where a particular block is processed independ@feré @vs and Qws are operators defined to find the differ-
of the others. As a result, discontinuities occur at coding blo&0C€S between all the adjacent columns and adjacent rows in-
boundaries. Indeed, it is observed in [32] that the local variatiGif'€ the coding blocks of an image, respectively. That s, for an

of the pixels at the coding block boundaries of an compress&p9et,
image tends to be significantly larger than that of the pixels in- o £(i. i) —f(i. 5+ 1). if ((§ 0
side the coding blocks. vsf) (i.3) = {()E R otr(1(éjr)v)v?s§. (12)

With this in mind, we definel;(fy;) to have the following
form: Similarly, the operatoQys is defined for the rows of an

image. Then, the quantity,,(fi;) as a whole characterizes the
I (Far) 2 43w (Err) + (1 = 1T (Frr) (7) total variation inside all the coding blocks of the image frames
in far.
where the first ternd., (f3,) is used to enforce smoothness in- Observe that each term involved in (11) and (8) is a quadratic
side the coding blocks, and the second tdiytt,, ) is used to and convex function of the image vectdysAs a result, the reg-
enforce smoothness at the coding block boundaries. The cafarization termd ., (fa;) andJ, (fy;) are quadratic and convex
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functions off,,. This fact will be utilized in the derivation and Wheref‘l, 1=1,2,...,L,is defined by
implementation of the numerical algorithms later on. .
fronas 1 fh (i

B. Temporal Domain Regularization fi(s.5) = L_1 Z £ (.9 (18)

. . . o . k=1,k#l

Similar to the spatial domain regularization terms, we define

the temporal domain regularization tedw(fy;) based on the with £} defined in (13). In other words; is the simple average
differences betweetemporallynelghborlng plXE'S. The defini- of the motion-compensated estimates of frafnéom other

tion of J,(f,), however, requires knowledge of the relative MOo¢L — 1) frames. Using the matrix notation in (14), we have
tion between the pixels in neighboring frames.

We consider two different motion compensation models in a1 L
the following. The first model assumes that the motion vectors fi=7— > My (19)
used are of integer precision. The second model, on the other k=1,k71

hand, does not make use of this assumption and deals with th(? o . )

i . he regularization ternd,(fy,) is then defined as
more general case of noninteger motion vectors. For easy refer-
ence, the first model will be referred to imeger motion model L
and the second asoniqteger motic_)n modeh Fhe res_t of the J:(far) £ |£as — E‘MH2 = Z || — f‘l||2, (20)
paper. The use of the integer motion model is that it yields re- =1
duction in the complexity of the reconstruction algorithm. _ _ _

First, let's introduce some standard notation for motion com- From (19), we can describe the tedy(f,;) using a multi-
pensation. Consider two framgsandf; in an image sequence.channel linear operatd®y;c such that

(,5)
Ji(far) = |Quictu |- (21)

Let (ngy’lj),ykyl denote the motion vector of the pixgl ;)
in framef; with respect to its correspondence in the reference
frame f;.. Then the motion compensated estimate of fréine o the purpose of illustration, consider the casé ef 3. The

from the reference framg,, denoted b)f“l’“, is given by operatorQuc is given by
8G.5) =t (i + 25 + o) (13) I —IMy, —IMs,
Qune = —%Mm I —5M32 (22)
at pixel (¢, 4). “IMy s —IM,, I

- ) (m’)) - i i
In general, the motion VeCt(<I’xk71 ’(‘y"jsl n ((‘13)) IS OTSUD- \ herel is the identity matrix. Such a structure @ will be
2,3 2,3

pixel precision, and the terifi QL Rk AW T is com- utilized later on for the derivation of numerical algorithms.

puted from its neighboring pixels using linear interpolation [20]. 2) Noninteger Motion Model:In order to handle the more

As a result, (13) can be written in a compact matrix form as general case of motion compensation such as that used in MPEG
and H.263, we can alternatively define the temporal regulariza-

£ = J\Y P03 (14) tiontermJ.(f,,) directly based on frame-to-frame motion com-

pensated prediction errors. Specifically, we define

where the matriXVI; ; is used to denote the compensation op-

eration of framef; from reference framég,.

L L 2
A fk
The motion-compensated prediction errof framef; from Ji(fnr) = Z Z Hfl —f H (23)

reference framé, is then given by I=1 k=1,k#1
I1f, — fIkHQ — || — M £ (15) wheref‘l’“ is given i_n (_13). Inits d(_afiniti_on, the terd, (far) cap-
’ tures the total variation of the pixels in each frafh&om their
Or alternatively, from (13), we have correspondences in the ott{dr — 1) framesf;. along their mo-
tion trajectories.
M N 2 Despite the assumptions made in the integer motion model,
k|2 . PRy L . . . . .
& —£°|I° = Z Z (fl('LJ) -4 ('L,J)) it is still of interest to examine how the definition 8f(fy;) in
i=1j=1 (23) to that in (20). For simplicity, consider again the case of
M N o RN L = 3. First, the definition in (23) leads to
IZZ(fz('L,J) — i+ i+ )) : , , ,
R o e RS

~all2 ~ 12 T
- | - - +e -]+ o -]+ o5
1) Integer Motion Model: Using the multichannel notiafy; 2T 5T T
introduced in (5), we define its motion-compensated estimate,

denoted byf,/, as 1A weighted average may be a reasonable alternative to the simple average,
where weighting is used to reflect the degree of correlation between two dif-

f‘T N f‘T f‘T f‘T T (17) ferent frames (e.g., be}sed on thejr te_mpqrgl distance). Nevertheless, the simple

M= \lisla e ly average is used here in favor of its simplicity.
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On the other hand, the definition in (20) gives (4). Therefore, we seek solution to the following constrained
problem
1 £2 3 2 1 r3t £3 2
Julfw) = |f1 =5 (fl +f1) ‘ +f -5 (f2 +f2) minJ(£y;) subjecttof; € G, 1=1,2....L.  (28)
2
T |fs — 1 (fé + f32) (25)  The individual constraint sets’; on the framesf;,
2 [=1,2,...,L, can be written equivalently as
1 o2 1 32
:ZHfl_le +ZHfl_le C]\lé{(flanaafL)flecla l:1a2’L} (29)
1 22 T 23 . .
+5 (fl - fl) (fl - fl) Then, (28) can be equivalently written as
1 21 aall2 .
+ Z Hfg — f21H + Z Hfg — fg’ ‘ lnillJ(f]w) SUbJECt tofy; € Chy. (30)
N % (f2 B f21>T (f2 B f‘g’) As pointed out in the previous section, all the tetlmgfy,),

Jy(far), andJ.(fas) are quadratic and convex in termsfaf.
As a result, the objective functiolf,) is also quadratic and
1 T convex in terms ofy;. Also, the set<’;, I = 1,2....L, are
+ = (f3 — f?}) (f3 — f§) . (26) closedand convex [32], [34], and consequently so is th€ et
2 Therefore, the optimization problem in (30) is of the form of a
Comparing (26) with (24), one quickly realizes that the formetonvex functional under a convex constraint. It is well known
is simply the latter (up to a scale factor) with additional crogbat a problem in such a form has a unique well-defined solution,

T ) . i : S
sk o . + and can be found using a so-called iterative gradient-projection
terms of the form(1/2) (fl f; ) (fl f; ) wherek # &' algorithm [22], ie..

1 A2 1 NRTE
+ale -8 +5fe-%]

IN\T DN .
Note that each cross teréfl - fl’“) (f; —fF ) is essentially

the cross correlation between the compensation efrofsf‘l’“
andf; — £ In practice, it is reasonable to expect that thesghere P, is the projection operator onto the €&t;, « a relax-
compensation errors are weakly correlated. In this sense, the tion parameter that controls the rate of convergence of the iter-
seemingly different definitions for the temporal regularizatioation,fj’;‘l denotes the estimate ff; after thekth iteration, and
termJ,(fy;) will play essentially the same role in the recoveryyJ (fj’;‘f) is the gradient of (fy,) with respect td; evaluated
algorithms. at f¥ . The computation of the projectdi and the gradient

A note is that when fast scene changes occur in a sequeNtE(£¥,) is explained in detail in the following.
some of the pixels in one frame may not be predictable from its
neighboring frames. In such a case, the temporal regularizatidsn The Projection OperatoP:

termJ,(far) in_(23) s_,hould be {idjusted ac_cordingly by ignoring rrom (29), it is easy to see that féy; its projectionPefy,
the affected pixels in computing the motion-compensated pigsio the seC,, is simply given by the projections of the indi-

diction errors. This also applies to the case of the integer motig ;4 f; onto their corresponding sets. That is
model discussed earlier.

Finally, due to the quadratic and convex nature of the motion- Pty = (Poyf1, Po,fa, ..., Po, f1) . (32)
compensated prediction error terms in the regularization term

J:(far), both forms ofJ,(fy;) are also quadratic and convex inThe individual projection of; onto the set’; is well known
terms offy,. [32], [34]. ForTs an orthonormal coding transform such as the

block DCT, the projectiorP., f; is given by

£ = Po (i, —aVI(£))), k=0,1,2,... (31)

IV. MULTICHANNEL REGULARIZED RECOVERY ALGORITHMS = . L.
T5'Fy, if f; is intra-coded

Considering the definition of the spatial and temporal regu- Foti = {t_‘z + T,;ll?‘l, if f; is predictively coded (33)
larization terms defined in the previous section, we can rewrite

the regularized objective functial(fy,) where thenth coefficient of F; is given by
L amin, if (), < omin
J(tv) = Z I — gil]® + AT (Ear) + AoJo(frr) (Fp)p = { amax, if (Ipfy) > am™ (34)
=1 (I'pf:), , otherwise.
+ /\3Jt(f]\4) (27) )
whered; = v\, A2 = (1 — )\, andAz = .. B. The GradienVJ(F ;)

Now that each regularization termJiif,, ) is defined, the re- The gradientJ(£y;) can be expressed in terms of the partial

covery of vided), from its compressed data can then be solvegh iy atives ofJ (f,,) with respect to the individual framdsas
by directly minimizing this objective function. From our earlier
A (far) OJ(far) 8J(fM)>

discussion in Section Il it is known that each original frafhe UI(fr) —
belongs to the constraint s€t defined by the received data in (far) = of, 1 of, T ofy

(39)
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For a particular framé;, 1 = 1,2,..., L, For the case of the noninteger motion model, the computation
of the gradient,(fy;) needs some detailed explanation. From

aJ(f a a initi i
(far) Co(f — )+ AT (Ear) + Ao To(£ar) the definition ofJ,(fy;) in (23)
of of; of L
9 A3 (frr) .
As=—=J(fas). 36 =2 f; — f
s g, T () (36) of, k};ﬂ (8-1F)
In the following, we consider separately the computation of = ||t — f‘i”?
the partial derivative term®/91;)J ., (£11), (8/01) I, (fa,) and - Z of; : (41)
(0/9£) 3 (£ar) in (36). =1kl
1) The GradientsVJ.,(fas) and VJ,(fa): From (8), we The firstterm in (41) involves all the frames used for the predic-
obtain tion of f;, while the second term involves all the frames predicted
53, ( 5 5 from f;. The partial derivative&||fy, — £}||? /0f;) in the second
03, (Ear) =—||Qusfl|)? + — ||Qvsfi|® (37) term can be further computed as: for a particular pixel location
of of, of (i, §)
The partial derivative terms in (37) can be easily computed. Take 12
the second termin (37) for example. From the definitiofpefs 8ka — £ _ il i) fli
in (9)’ we have af[@.’ 1) = Z ( k(L »J ) - k(L »J ))
) (@,57 YN} (i.9)
9 OfL(¢, ')
———||Qvef e ISR E ) 42
afi(i, j) " o, 9) (42)

£(4,9) — fi(i, 5 — 1], if ((j))s =1 38 where N; (4, j) is the set of pixels in framé that are motion
i) = fi(t,5 = 1)] (7)) 38) compensated bf;(¢, 7).
Clearly, the computation of the second term of the gra-

Similarly, VJ,,(fa)the other terms in (40) can be deriveddient in (41) can be cumbersome in that in computing
The details are omitted for brevity. (Ollfi — £;]1?/0i(4,4)) some bookkeepingis necessary to

2) The GradientVJ,(fy,): In Section IIl, two different kgep track of the p|>§els in framg, that are predicted from
forms for the temporal regularization term were proposed. mxel fi(i,7). In practice, h.owever, this t?Sk can be bypassed
the following, we describe its gradient for both cases in detail! favor of lower computational complexity by introducing an

First, for the case of integer motion model approximation to the temporal regularization teda(fy).
Indeed, consider the definition of,(fy;) for the case of

noninteger motion model in (23)

{ 2?‘1(%]’) — (@, i+ D], () =0
=1¢2

0 otherwise .

8F(far)

= 2Q}1c Qucty.- (39)
af]w L L 2
- . _ Jo(fyr) = e -] 43
The computation in (39) involves the mat@¥;, which may t{fh) ; k_;;él A (43)

require large memory. To avoid this difficulty, We propose a
scheme to approximate this computation. Recall that the terrﬁl’“ in J.(fs) is used to denote the motion-

Recall the matrix structure for the opera@uic in (22). compensated prediction df from reference framd. If we
Under the assumption that each motion compensation mata'qxproximatdl’“, the motion-compensated predictionfpfrom
M, ; satisfies the following condition fr, by using a most recently available (say, from the previous

iteration) estimate of framf, instead of the true fram& itself,
(Mkil)T =M (40) then the gradientdJ,(f;)/0f;) in (41) can be approximated
by
the matrixQyic becomes symmetric, i.eQ{TC = Quc. In
such a case, the quantity in (39) can be easily computed since oJy(far) 9 Z £ _ f-k) (44)
the operation 06y onfy, is simply the motion compensated of, YA
prediction error for each frame.

It can be shown that the condition in (40) holds under the folln the rest of this paper, this approximation is simply referred
lowing assumptions: 1) each pixel from frarhds used only to asapproximate modelThe performance of this simplified
once to compensate a single pixel of frainend 2) there is a approach will be discussed further in the experiments presented
one-to-one correspondence between the pixels of frdraad in the next section.

k. In practice, however, these two conditions are @pproxi- ) ] )

matelytrue because the motion vectors found through a motién Analysis of Numerical Complexity of the Recovery
estimation algorithm (such as block matching) may not presef¥@orithms

such a one-to-one correspondence between pixels in two frame&.he proposed recovery algorithms are iterative in nature.
In our implementation, we make this approximation in favor dflevertheless, it is still informative to analyze the major nu-
simplicity. merical computations involved in the implementation. For this
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purpose, we will provide an approximate count of major arithwo major issues in these experiments: 1) the impact of the use
metic operations required for each iteration of the algorithmsof various temporal regularization terms on the performance of
Combining the iteration in (31) and the gradient in (36), wthe proposed recovery algorithms, and 2) the choice of their as-
see that during each iteration the following operation is neededciated regularization parameters. In particular, we will com-
for each framef;: pare the performance of the proposed multichannel recovery ap-
proach against that of spatial only recovery approach. In addi-
tion, we will propose a new approach for the determination of

. . ) a
i+ =P, <f1k — 20 (£ — g1) — aXy a_fle(fJ\l) regularization parameters used in the objective function.
g g ) o
— o a—flJb(wa) — a3 a—flJt(fJW) A. Experiments on Regularization Terms

(45) The proposed recovery algorithms are tested using H.261/3
compressed video streams. Note, however, that these algorithms
where each of the partial derivative term is evaluatefjat=can be applied to MPEG compressed video streams as well. The
£y, following sequences are used: “Mother and Daughter (MD),”
A breakdown of the operations involved in (45) is as follows¥Foreman,” and “Carphone” sequences. The picture format is
« The evaluation of the two termgd/af;)J.(fa;) and QCIF(Y: 176 x 144, U and V:88 x 72) for all test sequences. A
(8/0£)3,(£21) combined will requireonly two additions total of 30 frames from each selected sequence are used in our
(or subtractions to be exact) per pix&lote that the factor €Xperiments. Three experiments are presented here. The frame
2 in (38) can be combined with the multiplying constantéates used in these three experiments, from experiment one to
in (45). experiment three, are 10, 30, and 10 frames/s, respectively.
« From (39) and the discussions immediately after, it can AS an objective metric the peak signal-to-noise ratio (PSNR)
be seen that for the terfd/of;)J.(fy;) an equivalent of 1S used. This metric is defined by
twice as many as operations associated with the operator
Qnc are needed. Based on the structurdQafc illus- P
trated in (22), we see that the operation®f;c can be _ 2557 -
accomplished usingL.—1) additions and 1 division. Thus, PSNR = 10log1 £ — £]|2 dB (46)

(8/01,)J,(fs) can be evaluated usirggtotal of2(L — 1) _ _ _ _
additions and 2 divisions\ote that the operations associWhereW is the total number of pixels in the image, afacand

ated with computing the motion vectors are not includelyare the original image and the recovered image, respectively.
here. Similarly, a computation count can also be obtainedEXxperiment 1:For this experiment,the proposed recovery
when the noninteger motion model or its simplified variar@lgorithm in (31) was tested using H.261 compressed video
is used. streams. To demonstrate the merit of temporal regularization,
« The projection operation associated with,, as shown the fpllowing different forms of regularization terms were
in (34), is dominated by the transformation of the imaggonsidered:
data to and from the transform domain. This is usually ac- 1) Spatial-only regularization was used. That is, the tem-
complished by a fast transform such as the fast DCT. The  poral regularization ternd,(fy;) was simply ignored in
computational cost of the DCT depends on the specificim-  the objective functiod (fa;) in (6).
plementation. In the algorithm reported in [15], for each 2) Temporal regularization based on the integer motion
K x K DCT transform,K? log, K real multiplications model as in (20) was used. In this experiment, motion
andK (3K log, K — K + 1) real additions are required. vectors were estimated on a pixel-by-pixel basis by
For K = 8, this corresponds to three multiplications and using a full search block matching algorithm from
approximately eight additions per pixel. Note that both the low-pass smoothed compressed frames. Also= 5

forward and backward DCTs are required oy, . (i.e., 5-channel) was used in (19).
In summary, the total number of operations involved in each 3) Temporal regularization based on the exact noninteger
iteration of (51) is approximately as follows: 11 multiplicatons ~ Motion model as in (23) was used. Similar to case 2,
and23 + 2(L — 1) additions per pixel. For the case bf= 5, pixel-by-pixel motion vectors were used for motion com-

which is used in our experiments later on, this corresponds to  Pensation, and. = 5 was used.
11 multiplications (6 of which is for DCT) and 31 additions 4) Similar to case 3, except that temporal regularization
(16 of which is for DCT) per pixel. Interestingly, this is roughly based on the approximate model as in (44) was used.
equivalent to four times the computational cost of decoding anAll four regularization approaches described above were ap-
| frame. plied to 30 frames of the “Foreman” sequence compressed at
31.69 kb/s and “Carphone” sequence compressed at 28.25 kb/s.
The results for these two sequences are summarized in Figs. 1
and 2, respectively, where the PSNR values of the recovered
frames for each case listed above are shown. Due to space lim-
In this section, we use a number of numerical experimeritation, we show in Fig. 3 the recovered images only for a par-
to test the proposed video recovery algorithms. We focus toular frame (#236) of the “Foreman” sequence for case 1 and

V. EXPERIMENTS
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PSNR

301

during this segment of the sequence. As a result, temporal regu-
larization becomes less effective. As pointed out earlier, the reg-
ularization parametets should be set zero in (6) in such a case.
Nevertheless, in order to demonstrate its effect, we still kgpt
nonzero during this segment in this experiment. In such a case,
the temporal regularization terfy(fy;) in (6) tends to assume
avery large value because of less predictability between frames.
As a result, this term dominates over the spatial regularization
terms inJ,(fy; ) and makes them less effective.

o GCompressed Ina practical imp_lementation, one may ut_ilize a scene-change
295k ~ _ Spatial only | detection mechanism to automatically adjust the valueof
-~ Approx Model so as to control the effect of temporal regularization. Note that
sol Integer Model | when a scene-change occurs the interframe prediction error is
— Exact Model expected to rise drastically. This will likely cause a sudden in-
T S eoe? ‘ crease in the number of intracoded macroblocks in a predictive

28.5
220

225

280

235
Frame Number

240

245

250

frame (i.e., a P or B frame in MPEG coding). Therefore, one may
detect the occurrence of a scene-change by simply monitoring

Fig. 1. PSNRs of recovered frames from the H.261 compressed “Foremajyiy sudden increase in either the interframe prediction error or

sequence using four different regularization approaches:

spatial o

(dashed-dotted line), integer motion model (dotted line), noninteger moti%ﬁe number of intra-coded macroblocks in a frame. Of course,

model (solid line), and approximate model (dashed line).

dB

34.5

331

PSNR

O Compressed

other more sophisticated schemes for detecting scene changes
exist (e.g., see [2], [16]) and can also be employed.

Experiment 3:In this experiment, the proposed algorithms
were tested using H.263 compressed streams. In these streams,
the following modes of H.263 compression were allowed: un-
restricted motion vector mode (annex-D), advanced prediction
mode (annex-F), PB frame mode (annex-G), and syntax based
arithmetic coding (annex-E) [13]. The recovery algorithms were
tested again using various forms of temporal regularization—all
those used in Experiment 1 except case 2 where the integer
motion model was assumed. The motion vectors used were of

=~ Spatial only half-pel precision. In addition to using reestimated motion vec-
ol o ;:’:Z;‘: o tors from the compressed images the algorithm was also tested

315+

— Exact Model

105

110

115
Frame Number

120

130

using the available transmitted motion vectors.

The recovery results obtained using the “MD” sequence com-
pressed at 10.67 kb/s are summarized in Fig. 5 where the PNSR
values of the recovered frames are shown. In Fig. 6, recov-
ered images are shown for a particular frame (#22) from the

“MD” sequence for case 1 (spatial only regularization) and case
Fig. 2. PSNRs of frecovgr]?fd frames frclim_ the H.261 Compkr]essed “Cf'_:lrlphOBP(noninteger motion model assumed using the reestimated mo-
o " erent regulnizalon approsches. shata *fon field). Also shown in Fig. 6 for compatison are the origina
model (solid line), and approximate model (dashed line). image and the compressed image of that frame.

Finally, it was observed in our experiments that the proposed
case 4. Also shown for comparison in this figure are the coréitadient-projection recovery algorithms converged rather
pressed image and the 0rigina| image_ rapldly All the results in the three experiments discussed above

Experiment 2: When there is little or no temporal correlationwere obtained with less than 10 iterations of (31).
in a sequence, one would naturally expect that the multichannel i L
approach should perform just as well as the spatial only redé- EXPeriments on Regularization Parameters
larization approach. Indeed, in such a case one can simply seAs in every regularized image recovery problem, the proper
As = 0in (6) to discard temporal regularization. choice of these regularization parameters by itself is an inter-
In this experiment, the test stream used was the “Foreman” gsting yet challenging problem [7]. However, we realize that
guence coded at 38.6 kb/s using H.261 with five-frame skip. Thigere is an interesting differentiating aspect in the compressed
same four regularization cases described in Experiment 1 wergeo recovery problem from other traditional image recovery
tested. The results are summarized in Fig. 4 where the PSNiRblems—the original images of the compressed video are
values of the recovered frames are shown. From the resultkivown at the coder. An interesting question immediately arises:
Fig. 4 it seems that the spatial only regularization approach ouan we exploit this valuable information to determine the
performs the multichannel approaches during the period froralues of the regularization parameters at the coder? If so, then
frame 240 to frame 280. A closer examination of the imag&eir values can be transmitted along with the compressed data
sequence, however, reveals that frequent scene changes oasar minimal coding overhead (say, in the user data fields of the
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(© (d)

Fig. 3. Images of the 236th frame of the “Foreman” sequence: (a) the original image; (b) the compressed image; (c) the recovered image with spatial only
regularization; and (d) the recovered image using regularization based on noninteger motion model.

P2 } w5 dB ' : ‘ ' ,
©  Compressed
a1k B — - Spatial only E
v 0 N = = Approx Modet B
Integer Model

\\ — Exact Model

oo \
4 Z g0l . .. O Compressed |
o N /’ ~ >~ Spatialorly— - ~- -~ -
N ~_ -t

B Exact(Transmitted)
31F - — Approx Model b

q —— Exact(Reestimated)
| 30 1

2?60 180 200 220 240 260 260 360 320 29 y ' y ' y y » y
0 10 20 30 40 50 60 70 80 90

Frame Number Frame Number

Fig. 4. PSNRs of recovered frames from the H.261 compressed “Foremaij. 5. PSNRs of recovered frames from the H.263 compressed “MD”
sequence (with five-frame skip) using four different regularization approachegquence using three different regularization approaches: spatial only
spatial only (dashed-dotted line), integer motion model (dotted line), nonintegeashed—dotted line), noninteger motion model using transmitted motion field
motion model (solid line), and approximate model (dashed line). (labeled as Exact(Transmitted), dotted line), noninteger motion model using
reestimated motion field (labeled as Exact(Reestimated), solid line), and
approximate model using the reestimated motion field (dashed line).

compressed data stream) so that they can be used in the decoder

by the proposed compressed video recovery algorithms. ThisRecall that our proposed recovery approach to compressed
of course, would serve as a valuable alternative to the tradition&eo was based on the solution to the constrained optimization
approaches for the determination of regularization parametefghe objective functiod(fy1) in (27). Clearly, the solution to
such as a trial-and-error approach. Motivated by this, vikis problem will depend on the regularization paramefgrs
attempt to seek an answer to this question in the following. A2, andAs inanonlinear fashion. Let this solution be denoted by
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(b)

(d)

Fig. 6. Images of the 22nd frame of the “MD” sequence: (a) the original image; (b) the compressed image; (c) the recovered image with spatiatiaatjoregula
and (d) the recovered image using temporal regularization based on noninteger motion model using reestimated motion field.

£5,(\1, A2, A3). Also, letfs, denote the original image sequence 4) If max{|\¥*? — A}, i = 1,2,3} < ¢, a prescribed

inthe coder, then areasonable choiceXgr),, and\; seemsto threshold, then stop; otherwise, let= k& + 1, go to step
minimize the difference betwedt, (A1, A2, A3), andf},. That 2.
is, we seek A few remarks are immediately in order.
(A%, A2*, As™) 1) The operations in (48) and (49) can be viewed as a
. s e 2 two-step implementation of the gradient-projection
Vv 13 = Ear (s Az, AT (47) operation in the recovery algorithm in (31), except that

now an optimal value fofA;, A2, A3) is searched in the
step of (48).
) From a computational point of view, the number of oper-
ations needed for computing (48) is only a fraction of that
o O A needed for (49). Thus, the computational complexity for
fi, denote the initial guess fofA,", A2, As™) and calculating(\1, A2, A3) in each iteration is of the same

2) g\fj(nnlé )i\sér;?t;i)c;r::s%i?itrll\;e%nctionf’“*l( AL Ao, Ag) 2 order as that of the recovery algorithm in each iteration.
1 M ’ ’ -

Unfortunately, this is a difficult task due to the nonlinearity of
£3,(A1, A2, A3). Instead, we propose the following iterative al-
gorithm to approximate this solution:

1) Let iteration indext = 0, and let(};°, .%, As®) and

£5, — aVI(£Y,). Note thatvJ(££,) is a linear function 3) Itis observgd from OL:: ex}:ansi;/e numerical gxperiments
of (A1, Az, As), hence so i€5F1(A1, A2, As). Next, solve [4] that the |terate</\1. JA2Y, As ) gene.rated |n.(48) a}l-.
for ways converge to a final value. More interestingly, it is
observed that this final value is independent of both the
(AT AR AR choice of initial starting point§;°, A", A3") and £y,
=arg min | £3, — £5FH (O, Ag, )\3)H2 (48) aqd choice of relaxation parameter ' '

ALAz; A 4) ltis confirmed from our extensive numerical experiments
A closed-form solution forA, ¥+, "1, A;*F1) can that regularization parameters determined from this pro-
be readily derived sinc€X! (A1, A2, \s) is linear in posed algorithm yield quite satisfactory recovery resulits.
(A1, A2, As). We omit such details for brevity. Infact, it has been used in the three experiments presented

3) Compute above.

TN -~ Bl \ Kbl s detl In the following, we present some numerical results to
ty =Fc (fM ()\1 ;A2 Az )) - (49) demonstrate: 1) the properties of the regularization parameters
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¥ S the recovered images are obtained by using the well-known gra-

dient-projection algorithm from the compressed video data. In
addition, a novel iterative algorithm is proposed to address the
classical problem of how to determine the regularization param-
eters. This algorithm takes advantage of the unique feature of

3151

| —— beta_lambda12
1= = beta_ lambdai23

@

5 e video compression in that the original images are available at
i - the coder.

3305 A number of numerical experiments using H.261 and H.263

2 compressed streams were presented to demonstrate the perfor-
= mance of the proposed algorithms. Results from these experi-

[553
=3

ments show that the proposed recovery approach can effectively

29.5

Multiplying Factor

Fig. 7. MSEs of the recovered 116th frame of the H.261 compressed
“Carphone” sequence when the regularization parameters are varied using
the following schemes: (Plots of MSEs of the recovered 116th frame of the
H.261 compressed “Carphone” sequence when the regularization parameter[g]
are varied using the following scheméa:;, Az, As) = (BA1", BAz™, BAs™)
(dashed line) andX+, Az, Az) = (BA1", BA2", A3™) (solid line).

2
obtained from this iterative algorithm and 2) the sensitivity to o
the choice of regularization parameters of the performance o
the proposed recovery algorithms.

Experiment 4:In this experiment, the iterative algo-
rithm described above in (48) and (49) was first tested
using the “Carphone” stream used in Experiment 1. The
regularization parameters;*, X2*, A\3™ were first obtained
using this iterative algorithm for a particular frame (#116). [®!
The value of the relaxation parameter was chosen to
be 0.01. Then, to test the “optimality” of this solution,
their values were varied using the following two arbitrarily
chosen schemes: 1)\i, Ao, A3) = (BAL™, BA2™, 8A3™) and
2) ()\1, )\2,)\3) = (/3)\1*,/3)\2*, )\3*), where 3 is a Scaling
parameter ranging from0~—2 to 102. The proposed recovery
algorithms were then applied using these varied values. Showig;
in Fig. 7 are the mean square errors (MSESs) of the recovered
image compared to the original frame versus the scaling 9
parameter. The MSE is used here instead of the PSNR in orde[r
to show its low sensitivity tg3. Note that in both cases, the
minimal MSE was achieved whefi = 1, i.e., when there

" . ) . [10]
was no deviation from the values determined by the |terat|v<£
algorithm. The regularization approach used here was case 3 in
Experiment 1, i.e., the noninteger motion model was used. [11]

Similar results were obtained when the above proceduregy
were applied to several other streams.

fa

(4]

(6]

(71

(23]

VI. CONCLUSION [14]

In this paper, we proposed a multichannel regularization ap-
proach to address the video decoding problem. Temporal dgts]
main regularization is used, in addition to spatial domain reg-
ularization, to complement the transmitted data. The role of;g
temporal regularization is to enforce smoothness along the mo-
tion trajectories defined by the transmitted motion field. Sev-

o o [17]
eral forms of temporal regularization terms with different com-
putational complexity are examined. In our proposed approach,

exploit both the temporal and spatial correlations in an image
sequence. It is observed that significant improvement can be
obtained in the quality of the recovered images—in terms of
both visual evaluation and objective PSNR measure. In partic-
ular, various forms of compression artifacts in the compressed
images are greatly reduced in the recovered images.
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