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Abstract—The block discrete cosine transform (BDCT) is by
far the most widely used transform for the compression of both
still and sequences of images. High compression ratios are
usually achieved by discarding information about the BDCT
coefficients that is considered unimportant and yield images
that exhibit the visually annoying blocking artifact. In this
paper reconstruction of images from incomplete BDCT data is
examined. The problem is formulated as one of regularized
image recovery. According to this formulation, the image in the
decoder is reconstructed by using not only the transmitted data
but also prior knowledge about the smoothness of the original
image, which complements the transmitted data. Two methods
are proposed for solving this regularized recovery problem. The
first is based on the theory of projections onto convex sets
(POCS) while the second is based on the constrained least
squares (CLS) approach. For the POCS-based method, a new
constraint set is defined that conveys smoothness information
not captured by the transmitted BDCT coefficients, and the
projection onto it is computed. For the CLS method an objective
function is proposed that captures the smoothness properties of
the original image. Iterative algorithms are introduced for its
minimization. Experimental results are presented that demon-
strate that with the regularized reconstruction it is possible to
drastically reduce the blocking artifact and improve the perfor-
mance using both subjective and objective metrics of traditional
decoders, which use the transmitted BDCT coefficients only.

I. MOTIVATION AND INTRODUCTION

MAGE data compression is a very important problem
for many emerging applications in the fields of visual
communication and communication networks. Among the
many available image compression approaches,
transform-based methods are the most popular and have
found many applications. The discrete cosine transform
(DCT) is by far the most popular and widely used trans-
form for image compression applications. Several desir-
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able properties made DCT so popular. First, it exhibits
very good energy compaction and decorrelation proper-
ties. It has been shown that the DCT is an asymptotic
approximation to the optimal Karhunen-Loeve transform
when the statistical properties of the image can be de-
scribed by a first-order Markov model [5]. Furthermore, it
has been demonstrated that most images encountered in
visual communication applications are modeled extremely
well by first-order Markov models [5]. Second, the DCT
can be computed very efficiently using fast algorithms
similar in nature to the well-known fast Fourier transform
(FFT) [15].

Because of these properties the DCT has been recom-
mended by both the Joint Photography Experts Group
(JPEG) and the Motion Pictures Experts Group (MPEG)
for compression of still and sequences of motion images,
respectively. According to the JPEG and MPEG recom-
mendations, the DCT is computed over a number of
spatially partitioned regions (typically 16 X 16 or 8 X 8)
called blocks [1], [15]. For the rest of this paper we shall
refer to this block-by-block DCT of the image as the
block-DCT (BDCT). This block partitioning takes advan-
tage of the local spatial correlation properties of images
and facilitates the VLSI hardware implementation of the
DCT [5].

In transform-based image coders—decoders (codecs), in
order to achieve high compression ratios, the process of
generating the data to be transmitted to the decoder can
be divided into two separate steps. First, after the data
has been decorrelated by a suitable transformation, infor-
mation that is not considered important about the trans-
form coefficients is discarded. This is called irrelevancy
reduction [11] and is an irreversible process that results in
the degradation of the coded image. For the BDCT case,
irrelevancy reduction is achieved by not transmitting
and/or representing with less accuracy (quantizing) cer-
tain high-frequency coefficients [15], [3]. Second, the sta-
tistical redundancy of the data that has been decided
upon for transmission to the decoder is removed using
entropy encoding. This process is often called redundancy
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reduction and it is a reversible process that does not
introduce any degradation [11]. In the decoder the re-
ceived entropy encoded data are first decoded. Then, in
order to keep the cost of the decoder low and to allow for
real time compression of video sequences, the reconstruc-
tion algorithm used in most decoders until now is very
simple. The coded image is reconstructed directly by the
inverse BDCT using only the transmitted BDCT coeffi-
cients and setting the rest to zero.

It is well known in both the academic and industrial
image processing communities that at high compression
ratios reconstruction from partial BDCT information re-
sults in low-quality images. More specifically, the most
noticeable artifact that these images exhibit is the block-
ing artifact. This artifact manifests itself as an artificial
boundary among the pixels of adjacent blocks and consti-
tutes a serious bottleneck for many important visual com-
munication applications that require codecs that can yield
visually pleasing images at very high compression ratios.
The recent progress in VLSI technology makes us believe
that inexpensive decoders that will implement sophisti-
cated recovery algorithms in real time is a realistic expec-
tation for the near future. Therefore, the incorporation of
recovery algorithms at the decoders is a very promising
approach to bridging the conflicting requirements of
high-quality images and high compression ratios.

Limited efforts to address the problem described above
have appeared in the literature. In [14] and [16] filtering
the block borders is proposed. In [28] the problem of
reconstructing better images from BDCT transform data
is implicitly formulated as an image recovery problem,
and the theory of projections onto convex sets (POCS)
[26], [27] is invoked to justify the convergence of the
proposed iterative algorithm. However, the smoothing op-
eration used is not rigorously shown to be a projection
onto a convex set, and therefore the convergence of the
proposed algorithm can not be rigorously justified. The
idea of using the theory of POCS for image sequence
compression applications was first introduced in [18].
There, a novel compression scheme was proposed where
convex sets were used instead of the basis functions of a
transform coder. More recently, maximum a posteriori
(MAP) reconstructions of the BDCT compressed images
have been developed [13], [21].

[n this paper the reconstruction of BDCT compressed
images is formulated as a regularized image recovery
problem. This work evolved from our initial work in [17].
Regularization is a general approach used in ill-posed
recovery problems [25]. According to this approach the
reconstruction is based on both the observed data and the
prior knowledge that complements the available data. For
the application under consideration, since reconstruction
only from the available BDCT coefficients yields the
blocking artifact, prior knowledge about the between-block
smoothness must be used in the recovery algorithm.

Two methods are proposed to formulate and solve this
regularized recovery problem; they are based on the theo-
ries of POCS [26], [27] and constrained least squares

(CLS) [4]. For the POCS method, a new constraint set is
defined that captures the between-block smoothness. The
convexity of this set is shown and the projection onto it is
computed. Thus, the reconstructed image is obtained by
alternating projections onto the smoothness set and the
set defined by the available partial information about the
BDCT coefficients. For the CLS method, an objective
function is introduced that incorporates into the recovery
process both requirements, i.e., fidelity to the available
information about the BDCT coefficients and smoothness.
The smoothness properties of the image are captured by
the regularization operator. The tradeoff between the
conflicting requirements of fidelity to the available data
and smoothness is controlled by the regularization param-
eter. Experimental results using test images are pre-
sented, which demonstrate the validity of both methods
for the solution of this problem. The recovered images
using both approaches are almost free from blocking
artifacts and are superior to the images reconstructed
from only the available BDCT coefficients based on both
subjective and objective metrics.

The rest of this paper is organized as follows. In Section
IT the definition of the recovery problem is introduced. In
Section III, POCS-based recovery is introduced and the
detailed development of an algorithm using the theory of
POCS is presented. In Section 1V, the formulation and
the resulting algorithm based on the theory of CLS are
presented. In Section V experimental results are provided.
Finally, in Section VI we present our conclusions and
suggestions for future research.

II. MATHEMATICAL DEFINITION OF THE RECOVERY
PROBLEM

Throughout this paper we will use the following con-
ventions: Every real N X N image f is treated as an
N? X 1 vector in the space RV by lexicographic ordering
by either rows or columns. The BDCT is viewed as a
linear transformation from R™  to RM". Then, for an
image f we can write

F=Bf, and f=B'F, (1

where F is the BDCT of f and B is the BDCT matrix.
Matrix B for an N X N image that is divided into M X M

blocks is a N? X N? block-diagonal matrix with i

matrixes of size M? X M? along the diagonal. These
M? x M? DCT matrixes along the diagonal of B are
identical and their explicit expression is well known (see
[15], for example). Due to the unitary property of the
DCT matrices, the BDCT matrix is also unitary and the
inverse transform can be simply expressed by B', where ¢
denotes the transpose of a vector or matrix.

The elements of F in (1) are the expression coefficients
of the vector f using the BDCT basis in R"’. That is, f
can be written as

NZ
f= Y Fe, )

n=1
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where e, denotes the normalized BDCT basis vectors and
F, is the BDCT coefficient of f.

In image compression, only a fraction of the BDCT
coefficients are coded and transmitted to the decoder. Let
% be the set of indices of the transmitted BDCT coeffi-
cients. Then (2) can be rewritten as

f: Z Fnen + Z Eiell'

nes nes

(3)

Let @ denote the quantization operator used in the
coder; then in the decoder we have available the quan-
tized BDCT coefficients {F,; n €.7}, where F, = @[F,].
In the decoder the coded image is reconstructed by as-
suming the nontransmitted BDCT coefficients {Fs, n &
.#} are equal to 0. Thus the reconstructed image is given

by

f'= Y Fe, (4)

nes

which as explained earlier exhibits the visually annoying
blocking artifact.

Using the previous notation, our goal in this paper is to
compute estimates of both sets of coefficients {F,; n &.7}
and {F,; n €.7}. The information used for this task is the
transmitted coefficients {F; n €./}, knowledge of the
quantization operator ¢, and prior knowledge about the
smoothness properties of the original image. The set .# of
the transmitted BDCT coefficients and the quantizer @
depends on the irrelevancy reduction method used [11].

I1I. REGULARIZED IMAGE RECOVERY USING THE
THEORY OF PROJECTIONS ONTO CONVEX SETS
(POCS)

In this section we first briefly review the basic results of
POCS theory, and then we present in detail their applica-
tion to our problem.

A. Brief Review of the POCS Theory

The theory of POCS was introduced to the engineering
image processing community by Youla’s work in [26] and
[27}. Since then, this theory has found many applications
in various image recovery problems [20], [9]. Assume that
all images f, represented as N2 X 1 vectors, are elements
of a Hilbert space H. Then, for any vector f e H, its
projection Pf onto a closed convex set C € H is defined
as the closest element to f in C, i.e.,

If = Pfll = minlif — gl
ge(

It is well known that Pf is uniquely determined by f and
C.

Assume now that m closed convex sets C,, i =
1,2,--,m, in H, are available and that P, is the projector
onto C; for i =1,2,---,m. It was shown that for any
arbitrary initial vector f. the sequence of vectors {f,}
generated by the iteration

ey = T,T, ., T\ fy (5)

where T, =T + A(P, — 1), 0 < A, < 2,i =
verges to a point

1,2,-+-, m, con-

frec, #

|
D)
I

i=1

The key idea for the application of the theory of POCS
to image recovery problems is to represent every known
property of the original image by a closed convex set.
Therefore, for m known properties, there are m closed
convex sets C,. Then, a vector f*, common to all sets C,,
i=1,2,---,m, can be found by alternating projections
onto each one of them, starting from any initial guess
vector. Clearly, the point of convergence f* possesses all
the m desired properties of the original image.

B. POCS-Based Regularized Recovery: Convex Constraint
Sets and their Projectors

It is clear from the discussion in Section III-A that the
definition of a POCS-based recovery algorithm requires
two things. First, the definition of the closed convex
constraint sets that represent all the available knowledge
about the original image, and second, the computation of
the projections onto these sets. Furthermore, based on
the principle of regularization, two types of constraint are
necessary: the constraint set(s) with the information cap-
tured by the available data and the constraint set(s) with
the prior knowledge that is introduced to complement the
available data. More specifically, these constraint sets are
as follows: constraint sets that capture the knowledge
available about the BDCT coefficients in the decoder, and
constraint sets that capture the smoothness properties of
the desired image.

The set C}, which is based on the known BDCT coef-
ficients, is defined by

C, &2 {f: (&Bf)x

where B, @, F,, and .# were defined previously. In
general, C| is not a closed set. Instead C, the closure of

C| is used. This set is given by

- F,Vn es) (6)

C,={f: F™ < (Bf)w < F™ ¥nes) (1)

where F,™" and F,™* are determined by the quantizer
used. By definition, C, is a constraint set that captures all
known information about the received BDCT coefficients.
It is easy to show that C, is closed and convex. The
projection P, f of an arbitrary vector f in RV onto C, is
given by [20] and [28]:

Pf=B"F (8)

where B’ is defined in (1) and F is determined by

anin lf (Bf)n <F”min
F,={E™ it (Bf)a >F™ l<n<N? nes
(Bf)n it E™ <(Bf)y <F™*,

9
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Constraint sets that capture the continuity between
block boundaries contain information that is lost, when
only the transmitted BDCT coefficients are used for re-
construction. Thus, information about smoothness in the
block boundaries complements the information conveyed
by the BDCT coefficients and is very important for this
reconstruction problem. For this purpose, two new con-
straint sets C, and C, are defined.

For the definition of the set C,, the N X N image f is
represented in column vector form as

f= {fl’fz’“ Il (10)

where f; denotes the ith column of the image. Let Q be a
linear operator such that Qf represents the difference
between the columns at the block boundaries of the
image f. For example, for the case of N = 512 and 8 X 8
blocks,

Js = fo
Qf= fm Tfl? (11)
~f5(M ;f5()5
The norm of Qf
63 . 1
“Qf” = Z Hfg, —fg.,'+1||-} (12)

i=1
is the total intensity variation between the boundary

columns of adjacent blocks.
Set C, is defined by

2{f:1ofll < E} (13)

where E is the scalar upper bound that defines the size of
this set. The choice of E is discussed in detail in Sections
Vand VL It is easy to see that set C, is an ellipsoid that
is both closed and convex. C, was one of the ellipsoids
used in [7] and [8] for obtaining solutions to the image
restoration problem. .

For an image f € R"" in column form {f,, 5., f\},
its projection f=p ,f onto set C, is represented in
cclumn form by {fl,fz, -, fy}. In Appendix A we show
that for a 512 X 512 image and 8 x 8 blocks

fi=afi+ (1 —a) f,,
f;+1:(1va)-‘fl+a.‘fl+l
fori=8-k and k=1,2,-,63;
otherwise, f=f,-,

and

(14)

where a = —

. This result can be general-

HQ T

ized in a straightforward manner for any image and block
sizes. Set C, captures the intensity variations between the
columns of the block boundaries of an image. In a similar
fashion, we can also define the set C5, which captures the
intensity variations between the rows of the block bound-
arics. The projector P; onto C4 can be found in the same
fashion as P,. Note that sets C, and C} capture only the

variations between the columns and rows at block bound-
aries. We can also define similar smoothness constraint
sets for adjacent columns and rows off the block bound-
aries. These sets are called off-block boundary smooth-
ness sets.

It is worth noting that set C, defined in (13) can be
generalized for any linear operator Q. The projector in
this case is given by [22], [7], [24]

Pf=(I+A0'Q) ' f (15)
where the Lagrange multiplier A depends on E and Q
and is found such that the bound in (13) is satisfied with
equality. If Q is a high-pass operator, this set represents
also a smoothness constraint. However, in general P is
difficult to compute since the computation of A requires
the numerical solution of a nonlinear equation. In con-
trast, the computation of P, and P} is straightforward.
Using the previously defined sets C|, C,, and C}, the
resulting POCS-based recovery algorithm can be de-
scribed by the following steps:

1) Take f, = f' the initial guess.
2) For k = 1,2,-+, compute f, according to
v =P PP f_, (16)
where P, and P/ are the projectors onto sets C; and
C;, respectively.
3) Continue iterating until || f,
prescribed bound.

— f,_,llis less than some

Note that (16) is general and can incorporate other
constraint sets, such as off-block boundary smoothness
and positivity.

IV. CONSTRAINED LEAST SQUARES (CLS)
REGULARIZED RECOVERY

A. Mathematical Preliminaries

In this section we describe the development of another
regularized recovery approach, which is based on the
theory of CLS [4]. Before going into the details of this
approach, let us adopt some notations. For an image
vector f € RN with F as its BDCT coefficient vector, we
define the diagonal matrix 7. such that

(LF) & F, ifners
o 0  otherwise

where .7 is the set of transmitted BDCT coefficients that
was defined earlier. We also define the matrix I, as

L2T1-1

where [ is the identity operator.

By definition, I, selects the BDCT coefficients that are
transmitted to the decoder, while I_C selects the ones that
are not. It is easy to show that both matrixes are idempo-
tent, i.e.,

I-1.=1. and I.-I =1, 17

and also
(18)
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B. Regularized Recovery Using CLS: Objective Function and
Minimization Algorithms

The CLS approach has been used successfully in many
regularized image recovery problems (see for example [4],
[6], [8]-[10], and [2]). According to this approach, the
recovered image is obtained by minimizing an objective
tunction, which is the weighted sum of two functions that
impose conflicting requirements on the recovered image.
Thus, if one of these functions penalizes deviation from
the available data the other must penalize the undesired
effects if an image is reconstructed only from the avail-
able data. In this sense, the second function introduces
prior knowledge that complements the available data or,
in other words, constrains the behavior of the recon-
structed image.

For the reconstruction of the image from partial knowl-
cdge of the BDCT coefficients we propose the minimiza-
tion of the following function with respect to f:

L BNSFIP + pllf =11 =T + wd

where || - || is the usual /, norm, u is a nonnegative scalar
called the regularization parameter, f' is the blocky im-
age that is reconstructed from the transmitted data de-
fined in (4), and operator S is called the regularization
operator [25].

For § a high-pass operator, J is a measure of the local
variation of f. In other words, J¢ is a smoothness mea-
sure for f and is minimized by a constant image, the
possible smoothest image. On the other hand, J, is a
distance measure between the image f and the blocky
image f' and is minimized by f’. Thus, Jg and J,
complement each other, as required by the theory of
regularization. The regularization parameter u is used to
define the tradeoff between the smoothness and the fi-
delity to the data in the final solution.

In what follows we present two approaches of the CLS
regularization algorithm. According to the first, we as-
sume that the quantizer used at the coder is not known at
the decoder. Thus, only the unsent BDCT coefficients I, F
are estimated. According to the second, we assume that
the quantizer used at the coder is known by the decoder.
Thus the entire array of BDCT coefficients F is estimated
incorporating the knowledge of the quantizer in the re-
covery algorithm. The attractive feature of the first ap-
proach is that it yields a linear algorithm that is mathe-
matically tractable and offers valuable insight into the
behavior of the recovered image f.

1) Estimating I.F: The BDCT Coefficients that are not
Transmitted: Based on the introduction of /, and I, (1) is
rewritten as

(19)

f=B'(I.+1)F=BIF+BIF.

This is the vector form of (3). Note that for this version of
the CLS approach we assume I F = Bf’, and thus, for
each image vector f,

f=f"+B'IF. (20

Therefore, we have

Js = ISf’ + SB'LFI 1)

and

Jp = |BLFI* = |II.FI’. (22)

As explained previously for this version of the regular-
ized CLS reconstruction, our objective is the recovery of
IF only. The gradient of J, with respect to F is equal to

Vi, =2I.BS'S(f' +B'I.F) +2ul F.  (23)

Because of the convexity of J, this functional is mini-
mized when VJ, = 0. This yields

(wl +I.BS'SB')I.F = —I.BS'Sf". (24)
The idempotent property of the matrix I, combined with
(24) yields

(wl +1.BS'SB'L)I.F = ~I.BS'Sf". (25)

With
A, 2 ul + 1 BS'SBI,

(w) —

(26)

the regularized estimate of the missing BDCT coefficients
can be obtained by solving the following equation:

I.F= —1IBS'Sf'.

(m)'e

A 7N

Let A, A+, Ay: denote the increasingly ordered
eigenvalues of the positive semidefinite matrix I, BS'SB‘I,,
that is,

0<A <A< o <A <IIS'SIL

A,y defined in (26), is strictly positive-definite if p iz
positive. Furthermore, all its eigenvalues satisfy the fol-
lowing relation:

O<pu+ A <p+ArA < <p+rpe<p+lSSh

(28)
Hence matrix A, is invertible, and (27) yields

I.F = —A;\I.BS'Sf". (29)
It follows from (20) that the recovered image can be
written as

30$)

(u)'c

f=(1-BAa;\.BS'S)f".

The direct computation of f in (30) is prohibitive even
for moderate-size images, due to the required inversion of
matrix A ,,. However, the product of A, with any
vector is easy to compute. Thus, we chose to find f
iteratively using the successivec approximation iteration
(19], [6), [7], [8]. Applying B‘4, , B to both sides of (30),
we obtain

B'A,,\Bf = B'(A,,,B ~ I.BS'S)f". (31)



426 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY. VOL. 3, NO. 6, DECEMBER 1993

Since both B and A, are invertible, (30) and (31) are
equivalent. The successive approximation iteration for
(31) is given by

fo=Fio+cBYb — A ,,Bf_ ) (32)

where ¢ is a nonzero scalar and b = (A, ,,B — [.BS'S)f".

(32) can be further simplified in the following way. Apply-
ing B to both sides yields

F =F,_, +c(b—A F, ) (33)

where F, is the BDCT of f,. (33) is equivalent to (32).
However, the latter is computationally more efficient be-
cause multiplication by B’ is avoided. It is clear that a
fixed point of iteration of (32) must satisfy (31). From the
carlier discussion, matrix A, is positive-definite and well
defined. Therefore, (30) has a unique solution. We show
next that (33) has a unique fixed point and this fixed point
represents our recovered image. From (33) we have

F. —F = (I~ cA,)F ~F_)).

(u)

(34)

Thus, the mapping defined by (33) is contractive and
therefore iteration (33) has a unique fixed point if [12]

M7 —cA,ll <1 (35)
Condition (35) is used to define the range of values of c.

It can be further simplified by considering the eigenvalues
of A, ,,- When c satisfies the relation

2
w+ (1SS

(p)r

0<e< (36)
condition (35) is satisfied.

CLS-based regularized recovery requires the selection
of the regularization parameter w. This parameter bal-
ances the roughness measure Jg and difference measure
J;, in the recovered image. 1t is instructive to examine the
solution given by (30) for the two extreme choices of pu.
First, when u =0, the recovered image minimizes the
smoothness measure directly. It is easy to see that it yields
the smoothest image that satisfies the received BDCT
coefficients. Second, when u = =, then I_(,F = (). Thus,
the recovered image becomes the blocky image f'.

The recovery problem examined in this paper has a
differentiating feature from other image recovery prob-
lems in that the original image is known in the coder.
Thus, unlike other recovery problems where the regular-
ization parameter has to be chosen using the available
data [2], in this problem it can be chosen using the
original image. The approach we follow is to compute the
ratio r of Jg and J;, when the original image is used and
then find u, which will match this ratio, that is, Y, =
Jiiw /Iy = 1, where Jg, and Jp, are computed using
the reconstructed image with a fixed value of .

Using (21) and (30), the roughness measure Jj, ) of the
recovered image can be written as

Tsiu = ISFIP

~|s(r - Bua i Bss)f|

(w)'c

(37)

Similarly, from (22) and (29), the difference measure Ipiw
is equal to

Tocw =]l AGM. BS’Sf’”Z.

(n)

(38)

In Appendix B we have shown the following two prop-
ositions:

Proposition I: Jg,, is a strictly increasing function of p.

Proposition 2: Jp,,, is a strictly decreasing function of

M.
Based on the above two propositions, we conclude that
as the regularization parameter u varies from 0 to =, the
recovered image changes continuously from the smoothest
to the most blocky one, i.e., the image recovered directly
from received BDCT coefficients. It is also clear that L
is a strictly decreasing function of w. In other words, as u
varies from 0 to =, the ratio W, ., decreases continuously.
Thus, we can always find one value of u that matches the
desired ratio r.

2) Estimating F: The Entire Array of BDCT Coefficients:
As already explained, according to this approach, the
entire array of BDCT coefficients F is estimated using f'
as the data. The functional J, is minimized again with
respect to f but unlike the previous case we solve for the
entire array f. This yields

39

1
I+ —S’S)f—f'
"

where f’ is the blocky image given in (4). Equation (39)
can be written in the BDCT domain as

(40)

1
[+ —BS’SB’)F =F'.
I
Equation (40) can be solved using the iteration

F,=F,_, +C(F' -

1
I+ ABS'SB’)FH) (41)
I

where ¢ is chosen to satisfy

2u

0<e< ———
w+S'sl

(42)
to guarantee its convergence.

Since the real symmetric matrices §'S and (1 + S'S)
have the same eigenvectors, it is easy to show that

N*

Is(w = Z

n=1

S, A
l+is}(F'

wn

2

;

2

(£)

where s5,, n=1,2,,N°, are the eigenvalues of S'S,
which are nonnegative, F' = W'f’, and W is a unitary
matrix formed by the eigenvectors of $'S. Thus, again for
this version of the regularized CLS algorithm, Sy, and

N
and J, ,, = Yy

n=1

s’l

(43)

MTS,
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Jp( ) are strictly increasing and decreasing functions of u,
respectively. Therefore, the value of the regularization
parameter can be computed again from the original im-
age, as explained in the previous section.

If the quantizer used at the coder is known at the
decoder, this knowledge can be incorporated in the recov-
ery process by the modified iteration

F,=F_, + c(Bf’ -

1 i
I+ —BS’SB‘)Fkl), (44)
I

F, = P,F, (45)

where P, is the projector onto the set C, defined by (8) Fig. 1. The original Lena image; the middle 256 X 256 section from the
and (9). Since P, is a projector onto a closed convex set, it 512 X 512 image is shown.

is not expansive [26]. Thus, it can be shown that the
iteration (45) converges and minimizes the functional J,
on the closed convex set C, [10]. Therefore, the fixed
point of iteration (45) yields the desired image.

V. EXPERIMENTS

In this section experiments are presented to test the
proposed algorithms. Both POCS- and CLS-based regular-
ized reconstruction algorithms are tested. The 512 X 512
Lena image was used in our experiments. The center
256 X 256 section of this image is shown in Fig. 1. The
same center section of the processed images will be shown
in the following. This image was divided into 8 X 8 blocks,
and the DCT of each block was taken to generate the
BDCT coefficients. Two irrelevancy reduction methods Fig. 2. The blocky image obtained from PPC irrelevancy reduction;
were implemented to produce the data to be used by our PSNR = 30.03 dB.
regularized reconstruction algorithms. First, the irrele-
vancy reduction approach based on partition priority cod-
ing (PPC) in [3] was implemented. This method is based
on thresholding, coefficients smaller than a selected
threshold are set to zero, and the transmitted BDCT
coefficients are uniformly quantized using 8 bits/coeffi-
cient. Second, the JPEG recommendation was imple-
mented and quantization tables were used to determine
the quantizer in the coder [1]. The two blocky images
shown in Figs. 2 and 3 were obtained by PPC- and
JPEG-based irrelevancy reduction, respectively. For the
PPC approach the threshold was set to 48. For the JPEG
approach the quantization table from [28] shown in Table
I was used. As an objective measure of the distance
between two images g and h, we used the peak signal-to-
noise ratio (PSNR). For N X N images with [0, 255] gray-  Fig. 3. The blocky image obtained from JPEG irrelevancy reduction;

level range PSNR is defined in dB by PSNR = 29.38dB.
N? x 2552
PSNR = 10log | —— |- (46) TABLE I
”g - hH THE QUANTIZATION TABLE FROM [28] WAS USED FOR

JPEG-BASED IRRELEVANCY REDUCTION

The PSNR of the blocky images obtained by PPC and

; : - 50 60 70 70 90 120 255 255

« 9 -
JPEQ irrelevancy reduction was 30.03 and 29.58 dB, re 50 60 70 9% 130 255 535 255
spectively. 70 70 80 120 200 255 255 255
POCS-based regularized reconstruction was tested first. 33 920 %8 1452 %55 gz“ gz
, , Ik 2 255 255 55 55 :
The upper bounfis E apd E' used to .deﬁne sets C, and 120 255 755 755 355 555 555 755
C, were determined using the blocky images. The blocky 255 255 255 255 253 255 255 255
image f' written in column vector form is f' = 255255 255 255 2% S D55 255
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i[5, f512). Then E was estimated from f' by

)

63 3
- A 2
S = Z ”fé»wk _fénml” >

i=1
1 7
E=—-3%S and k=127
7420

This E is a measure of the average vertical discontinuity
between adjacent columns of the entire image and was
found to yield satisfactory results when used as a bound
for the set C,. In a similar fashion the bound E' was
obtained. The reconstructed images from the PPC- and
JPEG-obtained blocky images are shown in Figs. 4 and 5,
respectively. The corresponding PSNR’s are equal to 30.91
and 30.30 dB.

The CLS approach was also tested. From the discus-
sions in Section 1V, the regularization approach requires
the selection of the regularization parameter u and oper-
ator S. For the selection of u the original image was used
as explained in section IV-B. For the selection of S, the
following considerations were taken into account: a) §
must be able to capture the blocking effects, i.e., the
intensity discontinuities between the block boundarics.
and b) the region of support of § should be small in order
to prevent blurring the recovered image. We therefore
chose S to be a high-pass convolutional filter generated
by the mask s. The nonzero coefficients of s are s(0,0) =
2,5(0,1) = —1, and s(1,0) = —1.

For PPC-based irrelevancy reduction both versions of
the CLS algorithm in (33) and (45) yield almost identical
results. This is expected, since all transmitted BDCT
coefficients are quantized very accurately with 8 b /coef-
ficient. However, for JPEG-based irrelevancy reduction
the two versions of the CLS algorithm yield different
rzsults. As expected, the second version that incorporates
the knowledge of the quantizer into the algorithm results
in considerably better results. In Fig. 6, the image result-
ing from the reconstruction of the PPC blocky image
using (33) is shown. In Figs. 7 and 8, the recovered images
resulting from reconstruction using the JPEG blocky im-
age based on (33) and (45) are shown respectively. The
PSNR’s of the images in Figs. 6, 7, and 8 are 30.25, 29.68,
and 29.65 dB, respectively. It is interesting to notice that
although the image in Fig. 7 has ringing artifacts around
its edges it has a higher PSNR than the visually more
pleasing image in Fig. 8.

From its definition in (46), PSNR is a distance measure
between two images. It is well known that PNSR does not
always match the human perception for image quality. It
is clear that in some of the previous experiments, though
the blocking artifacts are drastically reduced, the differ-
cace in PSNR is not indicative of this improvement.

VI. CONCLUSIONS

In this paper regularized image recovery was applied to
the problem of reconstructing images from partial BDCT
data. This problem is encountered in most present image

Fig. 4. POCS recovery from the PPC blocky image; PSNR = 30.91 dB.

Fig. 5. POCS recovery from the JPEG blocky image; PSNR = 30.30
dB.

Fig. 6. CLS recovery from the PPC blocky image and (33); PSNR =
30.25 dB.

Fig. 7. CLS recovery from the JPEG blocky image and (33); PSNR =

29.68 dB.
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Fig. 8. CLS recovery from the JPEG blocky image and (45); PSNR =
29.65 dB.

compression applications because of the popularity of the
BDCT. We demonstrated that by the proposed ap-
proaches we can reduce the blocking artifacts and simul-
taneously improve the PSNR distance between the origi-
nal and recovered images in the decoder. In addition, the
proposed approach is general and is not limited only to
the BDCT.

The two methods proposed to solve this problem have a
number of similarities. First, they are both methods that
minimize /, metrics. Second, it is easy to see by compar-
ing the projection onto C, for a general linear operator Q
in (15) and the minimizer of J, that they both have the
same form. Thus, the CLS iterative algorithm can be
viewed as a projection algorithm [23]. However, since the
parameter w is kept constant, the size of the smoothness
set varies from iteration to iteration. The proposed meth-
ods have a number of differentiating features as well. The
POCS method offers a more flexible framework than the
CLS method in incorporating different types of prior
knowledge in the recovery process. However, for the POCS
method the definition of certain types of constraint sets
used to project onto is not straightforward, as it appears
even when the original image is available. For example,
we found that if the original image is used to compute the
bounds of the sets C, and %, the resulting sets are very
large and contain the blocky image. This problem could
be avoided if a normalized smoothness constraint is de-
fined based on the image energy. However, such a set is
not convex. In contrast, for the CLS method the regular-
ization parameter u expresses the tradeoff between two
conflicting properties and is measured as a ratio of two
weighted /, metrics of the desired image. Therefore, its
value is normalized and does not depend on the image
energy. Thus, the original image can be used to compute
values of u that result in high-quality recovered images.

From a computational point of view, both algorithms
converge rapidly, requiring less than 20 iterations. How-
ever, the POCS algorithm converges faster, usually requir-
ing less than 10 iterations. This is consistent with the
observations in [23], where the relation of the method of
successive approximations and projections onto convex
sets was examined.
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APPENDIX A: DERIVATION OF THE PROJECTION ONTO
G,

In the vector space R" X R", a vector is expressed as a
two-tuple of vectors in R", i.e., (x, y), where x,y € R".
For (x, y),(u,v) € R" X R", their natural inner product
is defined by

(x,9), (u,o)) = (x,u) +y,v)

where the inner product in the right-hand side is the
natural inner product defined in R”. The inner product
defined in (A-1) also induces a norm given by

(A-1)

¢, I = Il + 1yI*]° (A-2)
where ||+ in the righthand side is the /, norm in R".
Define

C={(x,»:llx—yl<E,x€R",yeR"}

Clearly, C is a subset of the vector space R" X R". It is
straightforward to show that set C is closed and convex.
Then we have the following:

Lemma 1: For an arbitrary vector (x,y) € R" X R",
the projection P(x, y) onto the set C is given by

P(x,y)

B (x,y) if lx —yl<E
T llax+ (1 —a)y, (1 —adx + ay) otherwise
E
where a = | — + 1|/2.
llx — yl

Proof: By definition, P(x, y) is the vector in set C
satisfying

l(x, y) — P(x, Il = Cx, y) = (u, o)l

min
(u,v)ER"XR"

where (x, y) — (u,v) = (x —u,y — v), and (u,v) € C.
Clearly, if (x, y) € C,i.e., llx — yll < E, then P(x,y) =
(x,y).
Suppose that (x, y) & C, then P(x, y) can be found by
minimizing the Lagrange auxiliary function

7=l y) = u, )P + Alllu — ol — E?]

Taking the gradients of J, with respect to vectors u and v
and setting them to 0, yields

u—x+AMu—-v)=0 and v—y+ AMv —u) =0,
therefore

u=ax+{1—-—a)y and v=00—-a)x + ay
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+ A
+2A

A can be found tobe A =

where a =

. Furthermore, setting |(u — v)|| = E,

lle = yll

~1|,2. "

Using the above lemma, the projector onto C, can be
found as follows: Writing the N X N image f in its
column vector form as in (10), the projection of f onto
the set C, is the f vector in C, that minimizes the
distance function

N
If=F17 = L If - £
i=1
where f= {ji,fz,"-,f,\,} € C,. In the case of N =512
and 8 X 8 blocks, Of is given by (11). Thus, IOf]l < E

only constrains columns in the block boundaries.
Define

(A-3)

fs fo
x = f}é and y = fj7
Fuon Fos

Then Qf = x — y. It follows immediately from Lemma 1
that the distance function defined in (A-3) is minimized
when

fi=a'f,-+(1—a)'fi+l
and f:H =0-a)fi+af,,

for i =

1 E 1 otherwise. 7
_E[mﬁ— ],ot erwise, f; = f,. ]

8-k and k = 1,2,--,31, where «a

APPENDIX B: PROOF OF PROPOSITIONS 1 AND 2

First we prove the following lemma:
Lemma 2: The matrix A, defined in (26) satisfies the
following identities:

l' A(_#l>1_c = 1_cA<_;L1) = {CA(JLI)I_C
2 AN, = ICA(#) = ICA(M)IC
and
_2 T - T _ _ T _ 7
3o A5 = ICA(#Z) =14 2) c
Proof:

Identity 1: By the definition of A, in (26), we have
Ay = ul + I.BS'SB'I.
By the idempotent property of I, in (17), we have
Agole = (ul + I.BS'SB'L)],
= ul. + I BS'SB'?
= ul, + I’BS'SB'I,
=I(ul+ I.BS'SB'I,)

= CA(M)

Thus we have established the first half of Identity 1:
Al = 1.4, Now, applying _Ic to both sides of the
previous equation from the left yields

LA, = IczAm =LA,
Thus, the second half of Identity 1 is shown.
Identity 2: First apply A(,) to both sides of the first half

of Identity 1 from the left; we have
I =A4GNL A,

Then apply A("#’) to both sides of the previous equation
from the right,

LAagh = AGML
which is the first half of Identity 2. Applying I. to both
sides of the previous equation from the left yields the
second half of Identity 2.
Identity 3: Identity 3 can be shown using Identity 2.

Applying A7) to both sides of the first half of Identity 2
from the right yields

IcA(_uz) = A(ﬁﬂl)[CA(#l)
From the first half of Identity 2, we have

=A 2]

T 42 = g4-1 4-17F
LA =A AN, Gole

(n) (W7 (wy
which is the first half of Identity 3. The second half
directly follows by applying 7. to both sides of the previ-
ous equation from the right. [ ]

Lemma 3: The matrix defined by

D, = (I~ A5\, BS'SB) A2

is positive-definite.

Proof: Let (A;,e;) denote an eigenvalue and eigen-
vector pair of the matrix I, BS'SBI.. Clearly, A, > 0.
From the definition of matrix A y» we have

Ape = (u+ A)e;.
Hence

Dye; = (I - AGANIBS'SB'T,) A7 3e,

= (I - A N BS'SB'L || ——— |e;
(1-43 )UM)z]
1
B (p+ A) [e: = Auihe]
= — e;
(u+ ) Mt A
(IJ«"' )\i)3 i

Thus each eigenvector e; of the matrix I, BS'SB'I, is also
an eigenvector of the matrix D,. Furthermore, the ith
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. 1
eigenvalue of D, is equal to ———— and is positive. -
¢ W B (p+ ) POy = 2401 Bs's T [(-402) L. BS s ]

Since both matrixes are of the same di'mension, it follows
that the matrix D, is positive-definite. [ ] = —2f"S'SB'I. A }I.BS'Sf'.

Lemmas 2 and 3 will be used to show Proposition 1
First, consider Jg,,,. Since A, is symmetric, so is A, w Note that since A4, is positive definite, so is 4. Hence
from (37), and we have

= D .

for the general case that I BS'Sf' # 0, y ) s always

d d 2 M
% - ” S( I-BAM BS'S] f ” negative. Thus, J,,, is a strictly decreasing function
M dp of u. [ ]
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