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Binary Decompositions for High-Order
Entropy Coding of Grayscale Images

Steve S. Yu, Member, IEEE, and Nikolas P. Galatsanos, Senior Member, IEEE

Abstract—High-order entropy coding (HOEC) has the potential
to provide higher compression ratios than the usually used zero-
order entropy coding (ZOEC) approaches. However, serious
implementation difficulties severely ‘limit the practical value of
HOEC for grayscale image compression. We examine the bit-
plane decomposition (BPD) representation as a simple alternative
that bypasses some of the implementation difficulties of HOEC.
We show, however, that BPD introduces undesired coding over-
head when used to represent grayscale images. We therefore
propose a new binary image representation called magnitude-
based binary decomposition (MBBD) which avoids any coding
overhead when used to represent grayscale images. Thus, MBBD
both bypasses the implementation difficulties of HOEC and does
not have the drawbacks of the BPD. We present numerical
experiments that verify the theoretical analysis of the BPD and
MBBD representations. In addition, our experiments demonstrate
that MBBD-HOEC yields better results than ZOEC for lossy
image compression and is also very effective for progressive image
transmission.

I. INTRODUCTION

NTROPY coding is a data compression approach which

exploits the nonuniformity of the probability distribution
of the data and encodes them using a variable length code.
A representative example of this approach is the well-known
Huffman code [1]. It is also known that the high-order entropy
properties of a source can be exploited effectively using either
the joint probability of a group data or their conditional
probability [2].

In order to apply high-order entropy coding (HOEC), the
data model must describe how the outcome of a datum depends
statistically on its neighbors. In an Lth order data model, the
redundancy of the data can be exploited using the Lth order
conditional probability. To achieve optimal compression of a
given data source, two basic problems must be considered.
Firstly, from Shannon’s basic encoding theorem, we know
that for a given data sequence, the minimum average length
of a code is equal to the entropy, H, of the sequence [3].
Finding such a code is not a trivial problem. Fortunately,
arithmetic coding which was recently developed fulfills this
expectation [4], [5]. Secondly, the entropy, H, is determined
by the statistics of the source, i.e., the probability density
function (pdf) of the source. Generating optimal codes for a
source model requires knowledge of the pdf. Thus, estimating
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Fig. 1. Tree structure of Lth order Markov model.

the pdf of the data for a given source model at the receiving
side is another difficult problem. One approach of estimating
the pdf of the source is to adaptively update it at both
the transmitter and the receiver. Universal modeling is an
adaptive technique which generates the statistics during the
actual coding operation by adapting on-line [6]. Langdon
and Rissanen successfully used tenth order source model and
arithmetic coding for binary image compression [7].

The application of HOEC to high quality grayscale images
with many gray levels requires the estimation of a formidably
large number of conditional pdf’s. This results in a huge imple-
mentation complexity. To better explain this, the conditional
model of a source will be represented as a tree. In Fig. 1 such
a tree is shown for an Lth order model with M = 2¥ symbols.
It is clear that a Lth order model will contain M~ entries. In
addition, the severe inaccuracies of estimating the high-order
statistics would diminish the gains through HOEC.

HOEC has been used in many studies for both lossy and
lossless image compression. Gharavi [8] suggested that the
simplest solution to the large number of pdf’s was to reduce
the number of grayscale values for conditioning. For example,
in a first order source model, if a pixel (8 b, 256 grayscale
values) is counted as a previous condition, we can quantize this
pixel to 3 b so that only eight conditioning states are required.

1051-8215/96$05.00 © 1996 IEEE
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Using a second order source model, his experiments indicated
that when the grayscale values for the conditioning pixels is
reduced to 3 b, the HOEC can no longer preserve its superiority
over zero-order entropy coding (ZOEC) approaches. However,
even in this case, 64 tables with 256 probabilities in each table
are required. It has been reported that conditional pdf’s can be
eliminated or merged without significant effect on the coding
results [9], [10]. These approaches start with a first-order
conditional tree and then extend the tree iteratively by growing
only those branches which yield maximum entropy reduction.
The tree extension process continues until the desired number
of leaves is obtained. This method was further developed to
achieve more reduction [11] by limiting the number of code
tables and the size of the tables using vector quantization
[12]. Although these reduction techniques do not require
knowledge of entire tree, they still require a large number
of conditional probabilities to start the process of reduction.
Another alternative is to grow the tree, from the root, with
the coding operation. Generally, the probabilities gradually
generated by this process will be closer to the image statistical
characteristics than those obtained by assuming that each state
contains the same initial probabilitics. However, one needs to
assign suitable probabilities to code data which have “brand
pew” conditioning states, i.e., states which are encountered for
the first time. To solve this zero frequency problem, Bar—Ness
and Choi [13] employed flags to signify nonexisting states.
This not only makes coding more complex but also increases
the coding cost because the flags introduce coding overhead.

In this paper, we examine the well-known bit-plane decom-
position (BPD) representation as an alternative approach to
bypass the implementation difficulties of HOEC. However,
we found that this representation introduces coding overhead.
We, therefore, introduce a new binary image representation
called magnitude-based binary decomposition (MBBD). The
advantages of MBBD are: first, it significantly reduces the
complexity and the storage requirements of the HOEC imple-
mentation. Second, it does not introduce any coding overhead
as BPD representation. Finally, it is very simple to implement.
The rest of this paper is organized as follows: in Section II,
we present the necessary background for this study and discuss
the practical restrictions that apply to the implementation of
HOEC. In Section III, we present the theoretical analysis of the
BPD and MBBD representations. In Section IV, we give some
implementation details for the application of MBBD-HOEC to
lossy transform-based image compression. In Section V, we
present experimental results that verify the theoretical analysis
and the value of this approach for lossy image compression
applications. Finally, in Section VI we present our conclusions
from this work.

II. BACKGROUND

Based on Shannon’s fundamental theorem [2], the mini-
mum bit rate required for the representation of a source is
determined by the entropy of the source. Two commonly used
source models are the zero-order (statistical independent or
memoryless) and the high-order source. They can be used,

respectively, to characterize the amount of information and
thus the low bound limits of the coding cost for each case.

A. Memoryless Entropy and High-Order Entropy

For an independent source, the entropy is given by

H(X)=- Z P(z) log, P(z)

ey

where X is a random variable, x is a possible realization
with probability P(z), and the units of H(X) are b/pel. The
entropy H (X)) establishes a low bound on the average bit rate
for a memoryless source and gives the amount of information
carried by random variable X.

Twe commonly used measures of the information for a
correlated source are the block entropy and the conditional
entropy. Block entropy is used to characterize the source when
a block of data is combined. For an L-dimensional vector, the
block entropy is defined as

Hi(X) 2 Hy(Xs, Xa, -, X1)

——ZP ) logz P(x)

where X is a random vector and x is a possible realization
vector with probability P(x). The summation is over all the
25K possible L-tuples for each pixel with K b grayscale.

For conditional entropy, we assume that L — 1 components
from L-dimensional vector x, z1, z2, ---, £z, — 1, have al-
ready been received by the receiver. Component z, can then
be coded according to the conditional entropy as

@

H(X5|X1, Xy, -
__Z P(x

It is well known [14] that for block entropies we have

- Xp1) =

) logy P(aplzt, ©9, -+, p—1). 3
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Hl(X)
H(X)
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G
and for the conditional entropies

H(Xp| X1, X, -+, Xp—1)

H(Xp1]X1, Xo, -+, X1o2)

H(X,|X1)
H(X1)
H(X).
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The previous results indicate that the higher the order of
the probability used, the lower the resulting entropy. These
equations are satisfied with the equality if and only if the pixels
are statistically independent. Nevertheless, most images of
practical interest are spatially correlated even after apphcanon
of a decorrelating transform.
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B. Practical Difficulties in Implementation of HOEC

From our earlier discussion, it is clear that- HOEC can
theoretically improve coding efficiency. However, the com-
plexity of HOEC implementation increases exponentially with
the order L. Therefore, the practical value of this approach is
much smaller than that theoretically expected.

The implementation complexity of high-order conditional
coding to image data can be easily understood by examining
the tree structure of the conditional probability model. As
mentioned in the introduction, an Lth order source model
with a K b representation levels requires 25% codes tables
with M = 2K probabilities in each table. As an example, a
typical image pixel is usually quantized to 8 b, K = 8. If
we consider tenth order source model, L = 10, then we need
280 (about 10?%) tables with 256 probabilities in each table.
This number is too large to even consider implementing with
present computer technology.

Another problem of using HOEC is the inaccuracy that
occurs when estimating the conditional probabilities. In most
practical applications, the source model is not known and is
incrementally built at the receiver as data arrives. Two strate-
gies can be used to estimate the conditional probabilities. The
first one starts with the full tree using certain initial pdf’s, for
example uniform. This method immediately requires a large
tree structure and yields unacceptable transient characteristics
of the estimated statistics. The second one grows the tree
from the root, simultaneously with the coding operation. In
this situation, the initial pdf tables are all empty (zero value).

Generally, the probabilities gradually generated by this process -

will be closer to the statistical characteristics of the image.
However, the drawback in both approaches is that they use
estimated statistics. This leads to inaccurate estimates of the
average code lengths and, hence, the coding advantages of
using HOEC implied by (4) or (5) cannot be materialized. It
is clear that as the order of the source model increases, since
the number of the data remains the same, fewer data can be
used to estimate the required conditional probabilities. Thus,
in practice there is a point after which the use of a higher order
source model does not reduce the coding cost.

III. BINARY IMAGE REPRESENTATIONS

In order to use HOEC successfully, two critical issues must
be addressed: first, the complexity of the implementation, and
second the inaccuracy in estimating the conditional probabil-
ities. Both problems are inherent to HOEC implementations
which require 257 code-tables (or states) and total 2K (1+L)
conditional probabilities.

One way to solve these problems is to reduce K. Since
for grayscale images K determines the quantization levels
of the pixels, it cannot be reduced infinitely. However, if a
multilevel image (K > 1) can be represented using a group
of binary subimages (K = 1), the representation levels of
the original pixels can be determined by the number of the
subimages. Thus, if HOEC coding is applied to the subimages
instead of the original image, the implementation complexity
will be significantly reduced and the accuracy of estimating
the statistical model will also be increased.

However, there are some concerns for any new image
representation. First, an exact replica of the original image
should be reconstructible from the new representation. This
means whatever information is contained in the old represen-
tation must be included in the new representation without any
loss. Second, the new representation should still maintain the
statistical redundancy of adjacent pixels so it can be further
exploited by utilizing HOEC. Finally, the new representation
must avoid introducing any kind of redundant information that
will increase the coding cost.

A. Bit-Plane Decomposition Image Coding

The bit-plane decomposition (BPD) is an image represen-

tation that was originally designed for coding certain types

of telemetric data [15]. The potential applications of BPD
extend beyond telemetric data and the merits of its technique
are summarized in [16] and [17]. For BPD, each pixel of a
grayscale image is represented by a K bit binary code so
that the grayscale image is decomposed into K images, each
having only two levels denoted by zero or one. Each two-level
or 1 b image is referred to as a bit-plane, and one can think of
an ordering of these bit-plane images from the most significant
to the least significant. For an N x N image, each bit-plane
contains N x N picture elements to be coded. The advantage
of this decomposition is that each bit-plane can then be coded
using a binary image compression technique. Thus, HOEC can
be used to code each bit-plane separately. It is clear that if the
BPD representation is used, the implementation of HOEC is
greatly facilitated since the number of possible states in each
bit-plane is only 2%.

Although BPD-based image coding is a well-known com-
pression technique, to the best of our knowledge, no one in
the past looked into analyzing rigorously the theoretical coding
cost of this representation. We believe that it is important to
analyze the coding cost of the BPD for a zeroth order source
model before using it with a higher-order source models. This
analysis could give an indication whether BPD can at least in
theory yield a reduction in the coding cost when it is used in
conjunction with HOEC.

Letting Hgpp represent the memoryless entropy of the
BPD of an image, and H represent the memoryless entropy
of original image, we show in Appendix A that:

Theorem I—Hppp > H: This theorem implies that the
BPD representation of a grayscale image requires a larger
code than that of the original image. This is not surprising
since dependencies among the bit-planes are not used by the
BPD during coding. Indeed, in our proof of Theorem 1 in
Appendix A we show that the entropy of the original data is
equal to the conditional entropy of the bit-planes of the BPD,
H(X) = Hppp(X|BP).

The conditional entropy of the BPD for an Lth-order
source model is Hgpp(X|ST), where ST indicates the con-
ditional state defined by L components. Based on (5) we have
Hppp(X|S*) < Hppp. However, since H < Hgpp, 10
conclusion can be drawn from the relation of Hgpp(X|S*)
and H. This indicates that the BPD decomposition cannor
theoretically guarantee a reduction of the memoryless coding
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Fig. 2. An example of binary decomposed representation of image.

cost when HOEC is applied. In fact, if we consider both
within a bit-plane and among bit-planes correlations, we will
get Hppp(X|BP, St) < H. However, the implementation
of a HOEC scheme that would capitalize on such a 3-D
model would be quite complicated. Nevertheless, because of
its simplicity and progressive transmission capabilities, BPD
representation is still a rather promising technique that can be
used with HOEC for compressing some types, of images.

B. Magnitude-Based Binary Decomposition Image Coding

Motivated by the coding cost analysis of the BPD and the
desire to use HOEC, we propose a new binary representation
of grayscale images called MBBD. An image with K b/pixel,
M = 2% representation levels is decomposed into M —
1 binary subimages. In each subimage, a “1” denotes the
corresponding representation level and a “0” all the other
uncoded outcomes. These subimages are arranged in the order
from the one containing the largest pixel value to the one
containing the smallest. It is important to notice that the
effective number of “pixels” reduces as we move from the
subimage with the largest pixel value to the subimage with
the smallest one.

One of the examples for the MBBD representation is illus-
trated in Fig. 2. The original image is a four-level grayscale
(0 < I <3)image of size 4 x 4. The original four-level image
in Fig. 2(a) is decomposed into three two-level subimages, as
shown in Fig. 2(b)-(d). For each subimage, “1” represents
the information pixel in the subimage, “0” represents the
noninformation pixel and “*” represents the position with no
symbol to be coded. In the first subimage, Fig. 2(b), the “1”
indicates the position of the pixels with value three in the
original image and the “0” the position of the pixels with
smaller values. In the second subimage, Fig. 2(c), the “1”
indicates the position of the pixels with value o and the
“0” the pixels with values one and zero. The “*” indicates the
positions of the image that we already know their pixel value
and thus they can be omitted in this bit plane. It is obvious
that the last subimage contains all the information about pixel
values of one and zero.

For the similar reason as for the BPD case, the memoryless
entropy of the MBBD representation was compared to the
memoryless entropy of the original image data. Let H and
Hyppp denote the memoryless entropy of the original data
and the MBBD representation, respectively. In Appendix B
we show the following theorem.

Theorem 2—H yppp = H: The implication of this theo-
rem is that when the MBBD representation is used, ZOEC
of the data yields the same coding cost as ZOEC of the
original representation. Assuming that an Lth order source

model is used to independently code each subimage of the
MBBD representation. We shall indicate the entropy of this
representation by Hy spp(X|ST). Then, it follows directly
from Theorem 2 and the properties of high-order entropy, that
Huypep(X|St) < H. This guarantees, at least in theory,
if the exact probability model of the source is known, that
HOEC of the MBBD representation yields a reduction of the
coding cost compared to the use of ZOEC on the original
image. In practice, however, the reduction of the coding cost
through the use of MBBD-HOEC depends on the accuracy of
the estimation of the probability model.

MBBD is a method that provides an efficient platform for

exploiting the statistical redundancy in images for compression
purposes. Moreover, this representation provides a natural
approach for progressive image transmission [18]-[20] when
transform-based image coding is used. In this case it is logical
to transmit the largest coefficients first followed by the smaller
ones. .
A similar method for progressive transmission of images
was proposed for DCT-based image coding [21]. That method
was based on partition priority coding (PPC) which allows
the transmission of data in magnitude order without overhead
due to prioritization. In fact, MBBD, which provides complete
magnitude prioritization, can be viewed as a special case
of the PPC. However, there are some significant differences
between the two approaches. Firstly, MBBD is designed
to be used with HOEC. Thus, MBBD not only provides
prioritization capabilities without coding overhead but also
provides the capability of lowering bit rate of a memoryless
entropy based approach. Secondly, the MBBD yields binary
images so that the techniques available for compressing binary
images can be used for MBBD image coding. Finally, MBBD
is not specifically designed for progressive image transmission,
which is usually used for lossy image compression. MBBD-
based image coding is effective for lossless image compression
as well [22].

IV. Lossy IMAGE COMPRESSION UsING MBBD-HOEC

MBBD high-order entropy coding is applicable to a wide -
range of image compression applications. One such application
is low bit rate lossy transform-based image compression. In
this paper, we used the MBBD decomposition with the discrete
cosine transform (DCT) and the subband/wavelet transform
(ST/WT). A block diagram of the MBBD-based image codec
is shown in Fig. 3.

Successful compression of images at low bit-rates has two
requirements: first, the removal of the redundancies in the
image data, and second, the elimination of the irrelevant
information. A typical low bit rate image compression al-
gorithm contains three basic blocks: transform, quantization,
and eniropy encoding. During the transform, the image is
subjected to an invertible transform with aim to reduce the
statistical dependencies of the image elements. The transform
coefficients are then quantized to reduce the size of the
data. Thus, irrelevant information is discarded through the
quantization process. However, this process results in a loss
of information which can never be recovered. The entropy
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Fig. 3. Block diagram of the MBBD codec for low bit rate image compres-
sion.

encoding process takes the quantized data and produces an
efficient code for them. The transformed coefficients, although
less correlated than the original image pixels, still exhibit
some correlation. Moreover, the quantization of the transform
coefficients may actually increase spatial correlation. Further
exploitation of the remaining correlations is achieved through
HOEC.

The success of the MBBD approach is based on the accuracy
that the probabilities of the high-order source models can be
estimated. We assume that the entire MBBD output is a nonsta-
tionary source, but each subimage of the MBBD representation
is a stationary sub-source. Therefore, the probability model
for each subimage is estimated using only the data from that
subimage.

In the codec shown, Fig. 3, the conditional pdf tables
are built incrementally by including the currently encoded
pixel. When starting with limited information, the accuracy
of estimation is poor. Therefore, another model is maintained
simultaneously, and the currently best performing model is
used to make predictions. An initial model based on an average
statistical model obtained from a group of training images is
used when the coding begins. The algorithm for switching
from the initial model to the adaptive model is based on
two criteria: switch the initial model to the adaptive model
if n > T and H'; < H},, or n > 2T, where n is the
number of the encoded data and T is the threshold. T defines
the minimum number of data required to generate a credible
adaptive model. H!, is the entropy of the adaptive model for
the [-most recently encoded data starting from each subimage,
and H! is the entropy of the initial model for the same [
data. T was chosen experimentally and differs from subimage
to subimage. A rule of thumb is to set T' to be 1/5-1/3 of the
total number of data in the entire data stream of that subimage
source. [ is selected to satisfy T' < | = n < 27T.

When applying MBBD-HOEC, the selection of the scanning
order of the transform coefficients results in a difference in
performances. For stationary Markov models, the conditional

states of a 2-d Markov source are usually defined by neigh-
borhood templates. A description of different templates for
modeling a stationary binary Markov model appears in [7]. For
MBBD-HOEC coding, since the positions of the binary pixels
vary unpredictably in each subimage, there is no fixed template
to fit the conditional states. Therefore, instead of seeking a
fixed 2-D template, we search for a 1-D scan. This scan is
selected to maximize the correlation between the current pixel
and its predecessors. For the block DCT data, as an example,
we used a zig-zag 1-D scan within the block and a head-to-
head and tail-to-tail connection between blocks [22]. For the
wavelet/subband transform, the scan was determine based on
the correlation direction of each band.

V. EXPERIMENTAL RESULTS

A. Experiment 1

The purpose of this experiment is to verify the theoretical
results obtained from BPD and MBBD representations. In
this experiment, MBBD-HOEC was applied to the subband
transform (ST) of a group of eight grayscale images. The size
of each image is 256 x 256. The images were decomposed
into 16 equal subbands. The filters used to compute the
subbands were the 16-tap quadrature-mirror filter bank [23].
The transformed coefficients were quantized by a 5-b midstep -
uniform quantizer.

The resulting entropies from this experiment (not includ-
ing the lowest frequency subband data) are summarized in
Tables I and II. In Table I, we calculated the memoryless
entropy and the tenth order conditional entropy of BPD
representation. As expected, the memoryless entropy of the
BPD representation is higher than the entropy of the original
representation. Although the conditional entropy of BPD is
lower than the memoryless one, no conclusion can be derived
when comparing the conditional entropy to the memoryless
entropy of original representation. In Table II, we calculated
the memoryless entropy and tenth order conditional entropy
of the MBBD representation. As expected, its memoryless
entropy is exactly same as the memoryless entropy of the
original representation, and the conditional entropy is lower.
The entropy of a tenth order source models for the tested
image data was from 12.46 to 28.26% with an average of
18.44% lower than their memoryless counterparts.

If we knew exactly the pdf’s of the data, we could code
them at bit-rates as low as their entropies using arithmetic
coding. However, since we must estimate the pdf’s during the
coding process, the real coding costs are expected to be higher
than the corresponding entropies. The real coding rates for the
same group of test image data using a tenth order source model
and a memoryless model are listed in Table III. The results
show that, in practice, the coding gains obtained by using
a tenth order source model are only from 7.58 to 22.22%,
with an average of 13.22% lower than their memoryless
counterparts: As expected, the real coding costs for both
memoryless and high-order source models are higher than their
theoretical counterparts. Taking the data for the Lena image
as an example, we see that the practical coding cost of a zero-
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TABLE 1
HiGH-ORDER ENTROPY VERSUS MEMORYLESS
ENTROPY FOR BPD REPRESENTATION

imagd
rate

h (b/p)

lena  scene pepper area crown couple skull karen

1.2892 2.0200 1.2543 1.1696 0.9323 0.9256 0.4385 0.9643

0.9966 1.7042 0.9920 0.9364 0.6231 0.6899 0.2954 0.7293

H (b/p)

h: memoryless entropy of BPD source

H: conditional entropy of 10th order BPD Markov source

TABLE II
HiGH-ORDER ENTROPY VERSUS MEMORYLESS
ENTROPY FOR MBBD REPRESENTATION

{289 lena  scene pepper area crown couple skull karen average

rate

h (b/p)

0.9594 1.5625 0.9483 0.8688 0.6733 0.6809 0.3093 0.704%

H (b/p) |0.7690 1.3678 0.8125 0.7293 0.4829 0.5490 0.2465 0.5856

D (%) 19.85 1246 1432 1606 28.26 1935 2031 1692 1844

h: memoryless entropy of MBBD source (bits/pel)
H: conditional entropy of 10th order MBBD Markov source (bits/pel)
D: the percentage of difference [%o: 100(h-H)/h]

TABLE III
ExPERIMENTAL CODING RESULTS
ratelmage- lena  scene pepper area crown couple skull karen average
r(b/p) {0.9701 1.5957 0.9700 0.8884 0.6818 0.6905 0.3127 0.7164
R(b/p) [0.8711 1.4745 0.8715 0.7816 0.5303 0.5887 0.2633 0.6224
D(%) | 1019 7.58 10.14 1202 2222 1474 1576 13.12 1322

r: coding cost of memoryless MBBD source with adaptive modeling
R: coding cost of 10th order MBBD Markov source with adaptive modeling
D: the percentage of difference [%: 100(r-R)/r]

order source model is 0.9701 b/pel, just slightly higher (about
1%) than its entropy 0.9594 b/pel. In contrast, the practical
coding cost of tenth-order source model is 0.8711 b/pel, and it
is more than 10% higher than its tenth order entropy which is
0.7690 b/pel. This indicates that the estimation of probabilities
for higher order models is less accurate than those for lower
ones. In fact, this is an expected result since more data can be
used for the estimation of lower order probabilities.

Fig. 4 shows the coding costs for the subband data of two
images, (a) Lena and (b) Crown, as functions of the different
orders of the source models. Curve A is the coding cost for an
estimated model of the MBBD representation. Curve B is the
coding cost with an ideal model assuming that the statistics
of the MBBD representation are exactly known. Curve C
is the coding cost using the original representation of the
coefficients and assuming that its statistics are exactly known.
These results clearly show that the higher the order, the lower
the coding cost, especially when the probabilities are known
exactly. However, because of the inaccuracies in estimating
the probabilities as the order of the model increases, the
practical coding gain cannot infinitely increase with the order.
Our experimental results indicate that for the Lena image, the
optimum coding gain is obtained with a tenth order conditional

A: Estimated model of MBBD source

B: Ideal Model of MBBD source
7200

C: Ideal Model of original source

7000 T

bytes 6800

A: Estimated model of MBBD source
B: Ideal Model of MBBD source

C: Ideal Model of original source

bytes

3600 T T T T T T order
0 2 4 6 8 10 12

®)

Fig. 4. Coding cost (bytes) versus order of source model. (a) Lena, (b)
Crown,

probability model. For the Crown image, the optimum coding
gain occurs with a ninth-order model. The comparison of
curves C and B indicates that the data in their original
representation have higher spatial correlations compared to the
MBBD representation. This result supports our intuition that
the MBBD representation reduces the correlation among the
neighboring pixels. However, this is the penalty that has to be
paid for the simplification that the MBBD offers.

From curves B and C in Fig. 4, we can make some interest-
ing observations. For the Lena image, the second-order HOEC
of the original data results in the same coding performance
as the seventh-order MBBD-HOEC. For the second order
HOEC of the original data, since a 5-b quantizer is used,
we have 22%5 states ‘each with 25 probabilities, thus a total
of approximately 2!5 probabilities must be estimated. In
contrast, for the seventh order MBBD-HOEC we have 27
states each with two probabilities. We also have 25 — 1
subimage planes for which we compute the probabilities
separately. Thus, the total number of probabilities that must
be estimated are 2'%. Therefore, 2 times more probabilities
have to be estimated for potentially equal performance using
the original representation. Moreover, for the MBBD-HOEC
implementation the 2'2 probabilities are estimated from 25 — 1
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subimage planes while in the other case 2'° probabilities are
estimated from only one image plane. Therefore, apart from
the simplification in the implementation, MBBD also allows
more accurate estimation of the conditional probabilities. For
the “Crown” image, the third order HOEC of the original
data yields the same coding performance as the fifth order
MBBD-HOEC. Using a similar analysis, the implementation
MBBD-HOEC requires the estimation of approximately 210
probabilities. In contrast, the implementation of HOEC of
the original source requires 22° probabilities. From these two
examples the advantages of MBBD-HOEC become obvious.

B. Experiment 2

The purpose of this experiment is to test MBBD-HOEC
for lossy transform-based image compression and progressive
image transmission. We tested two compression approaches: a
DCT and a WT based one. For both cases the standard 256 x
256 and 512 x 512 grayscale Lena images were used.

Case 1—WT-based Image Compression: A four-level and
a five-level hierarchical wavelet-based decomposition was
used for the 256 x 256 and the 512 x 512 images, re-
spectively. The biorthogonal spline variant filters [24] were
used to implement this decomposition. A uniform scalar 5-b
quantizer was initially used for the WT coefficients. Then,
zero-tree quantization [25] was applied to the transformed
coefficients. The zero-tree quantization was aimed to achieve
optimal results at a bit rate around 1.0 b/pel. All other bit-rates
were obtained using progressive transmission. MBBD-HOEC
was applied using different order models for every scale. A
second-order model was used at the coarsest scale and an
eighth-order at the finest scale level. The reason for using
a relatively low order Markov model for the coefficients at
the coarser scale (lower frequency) is that the number of
coefficients at coarser scale are much fewer than those in
finer scales. Since limited data can cause severe inaccuracies
in estimating conditional probabilities, we use relatively low
order models for these coefficients.

Coding performance is measured using the PSNR fidelity
criterion which is defined by

2 2
PSNR = 10 log;, '1\71% (6)

where MSE is the mean squared error. The PSNR results at
different bit-rates are plotted in Fig. 6(a) for 256 x 256 Lena
image and Fig. 7(a) for 512 x 512 Lena image. The simulation
result shows that hierarchical WT with zero-tree quantization
can achieve good PSNR’s. Most importantly, the simulations
indicate that MBBD-HOEC outperforms ZOEC approach by
over half a dB on average.

Case 2—DCT Based Image Compression: We applied 8-
by-8 block DCT transform on our test images and then used the
quantization matrix, shown in Fig. 5, to obtain the quantized
DCT coefficients. An adaptive bit-map based on energy was
used to achieve optimal results at around 1.0 b/pel. Other
bit-rates were obtained using progressive transmission. PSNR
results at different bit-rates of MBBD-HOEC and ZOEC are
shown in Figs. 6(b) and 7(b) for the 256 x 256 and 512 X

12233445
22334455
23344556
334455606
34455667
44556677
455667738
556 677 88
Fig. 5. DCT quantization matrix.
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Fig. 6. Coding results for 256 x 256 Lena image. (a) WT-based compression
and (b) DCT-based compression.

512 Lena images, respectively. It is clear that MBBD-HOEC
provides better PSNR results than those of ZOEC,

A comparison of the progressive performances using the
PSNR fidelity criterion for the hierarchical WT, uniform ST
from Experiment 1, and DCT based coding approaches for
the 256 x 256 Lena image is shown in Fig. 8. The superior
performance of the hierarchical WT coding scheme is primar-
ily attributed to zero-tree quantization. The results in Fig. 8
are also compared with PPC based priority DCT compression
[21]. This comparison shows that MBBD-HOEC based DCT
outperformed PPC-based DCT progressive transmission by
more than 1 dB at low bit-rates.

From this experiment we observed some interesting prop-
erties of MBBD-HOEC. We observed that the improvements
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Fig. 8. MBBD-HOEC using different transformed sources of Lena image.

obtained when using the MBBD-HOEC algorithm on larger
images are slightly higher than those with smaller images.
The explanation of this phenomenon is that in dealing with
larger images, more pixels dre used to build the adaptive

model. The more data used, the less zero frequency problems
are encountered and the more accurate probabilities can be
predicted. Another observation from these experiments is
that the imprevement in rate of MBBD-HOEC over MBBD-
ZOEC grows as the progressive transmission continues, which
means that higher improvements are achieved at higher bit-
rates. This is expected since our progressive transmission
process transmits the subimage represented by the largest
coefficient first and then the subimages with the smaller ones.
The subimages with the large coefficients are relatively less
redundant, and are described and coded with relatively lower
order models than those with the small coefficients. Thus,
MBBD-HOEC can only achieve less improvements for these
subimages. .

VI. CONCLUSIONS

In this paper, motivated by the potential gains of HOEC
when applied to image compression, we first examined the
entropy properties of BPD decomposition. We showed that
independent coding of the bit-planes increases the coding
cost of the original representation. Motivated by this result,
we introduced MBBD. This decomposition is a simple new
binary representation that significantly reduces the complexity
of implementing the HOEC, and improves the accuracy of
estimating the statistical models that are required. The penalty
paid for this simplification is a loss in the spatial correlation
of the data. However, our experiments indicate that even
with this loss MBBD-HOEC is a more efficient approach for
exploiting the statistical redundancy of the sources than its
ZOEC counterpart. The experiments also verified that MBBD-
HOEC can be used for both lossy compression and progressive
transmission of images.

APPENDIX A

Proof of Theorem 1: For a k b, 2% grayscale image, its
memoryless entropy is defined as

2k —1

H(X)== " pm log; pm (A1)
m=0

where py, is the probability of pixels having value m. The
entropy of BPD of this grayscale image is defined by

k-1
Hppp(X) =Y H(X;)
2=0

k—1 1
==Y > P(Xi=j)log, P(Xi=j) (A2)
i=0 j=0

where H(X;) is the entropy of the ith bit-plane and the
probabilities for the bit-plane ¢ (0 < ¢ < k — 1) are given by

ok—l=i_j 9i_3

P(Xl = 0) = Z Z Pm2i+iqin,
zkin:?—'l 2n:?—1 )
PXi=1)= > > Puptipn. (A3

m=0 n=2%
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The previous definition of Hppp(X) assumes that bit-planes
are statistically independent. However, if we consider the
statistical dependencies among the bit-plane to be transmitted
and bit-planes being transmiited, we can have the following
conditional entropy

k-1
= H(Xi| Xi-1 -+ Xo). (A4

i=0

Hppp(X|BP)

For each bit-plane, from information theory [14], we know

H(X;) > H(X;| Xi—1 - -+ Xo) (AS)
therefore, from (A2) and (A4) it is clear that
Hppp(X) > Hepp(X|BP). (A6)
For bit-plane 7, we can write
H(X;| Xi-1 - Xo)
== Z P(X;X;-1 - Xo)
X -+ Xo
- logy P(X;| Xi—1 -+ Xo)
= -P(X;=0---Xo=0)
-logy P(X;i=0]X;—1=0--- Xo=0) -
—P(X;=1-Xo=1)
clogy P(X; =1/ X1 =1---Xo=1). (A7)
Using the definition of conditional probability, P(A|B) =

P(AB)/P(B), we get

H(X,' Xi1 - Xo)
ok—1—i_ g

= - Z Prait1

n=0

gle—1—i_q

E Pn2it+t
=0

2k—i_1

Z DPn2i

n=0

- logy

gk—1—i__q
- E P2it1_14n2itt

gk—1-i_

E Pai+1 _14n2itt

n=0

- lo -
82 ok—i_1
_S_ P2i—14n2t
n=0
9it+1_yq ok—1—i_1
= - E Prm4n2it1

m=0 n=0
2k: 1—i_q

: 10g2 Pm+4n2i+1

2k—i_1

Z Pm+n2i
n=0

2kt 1

Z Pm+4n2t
n=0

Combining (A4) and (A7), we have

2t-1

+ 2
m=0

- log, (A8)

Hppp(X|BP)
= H(Xg—1| Xp—2 -+~
+ H(Xp—2| Xp_3 -
2k -1

== Pm10gs Pm
m=0
2k=1.1
+ Z (P + Pmy26-1) 1089 (Pm + Prmyar-1)
m=0
2k—1_1

Z (Pm + Prms2r—1)

1032 (Pm + Pgoe-1) + -
1 2k 1

Xo)
Xo)+ -+ H(Xo)

pm+2n log,

n=0 )
1 gk—1 )

Z Pm+2n

log,

2k —1
(A9)

Sin(}:ce most of the terms in (A7) cancel each other and since
Ziz_ol Dn 2 1, we have

2k 1
Z DPm 10g2 Pm

m=0

= H(X).

Hppp(X|BP) =—
(A10)

From (A6) and (A10), we have Hppp(X) > H(X), which
proves Theorem 1.

APPENDIX B

Proof of Theorem 2: We start our proof by introducing
some notation. Let P; represents the probability of information
pixels in the Ith MBBD image plane. Py represents the
probability of noninformation pixels in the /th MBBD image
plane. Ny is the number of pixels to be coded in the Ith
MBBD image plane. C(MBBD) is the total coding cost, at the
low bound, of the MBBD representation. For the Ith MBBD
image plane, the probabilities are given by

_pr
Pr=q71
> v
i=TI
and
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M-1
> P
PT=EI+_1 (B1)

M-1
Z Di
=TI

where Pr + P7 = 1. The entropy of the /th MBBD image
plane is given by

H]:-P[ 10g2 P]—P-I-logz PT' (B2)

Then the total coding cost at the low bound for the MBBD
image representation is

M-1
C(MBBD)= Y N;H;
I=0

M-1

=N Z
I=0

(—Pr logy Py — Pt log, P7)l.

M-1
Z i

=1
(B3)

The entropy of the MBBD representation is given by

C(MBBD)
N

1>

Hyep

M-1 M-1

Zpi

i=I

_ b1
M-1

Z Di
i=I
M-1
Z Y2
i=I+1
2 M-1

zpi

=TI

or
loge 777

Epi

i=I

Il

I=0

M—1

> i

i=I+1
T M-1 08

2P

=1

B4

After some simplification in (B4), we get

M-1
Pr
Hupep = ) |—prlog, o7

=0 Z Di

=T

M1 a
Pyl
- Z pi | logy

(BS)
i=I41 :

Unfolding this equation by using log (4/B) = log A—log B,
we have

M-1 M1
Hypep = — Z pr logy pr — Z
=0 =1
M—1 M—-1
> piflogy 3 p
=1 =1

M-1 M=1
—{ > i) log, Y p
=T i=1

M-—1
> pilogs pi
=0

H (B6)

(>

which proves Theorem 2.
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