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Abstract

In this paper we propose a new methodology for analysis of microarray images. First a
new gridding algorithm is proposed for determining the individual spots and their borders.
Then, a Gaussian Mixture Model (GMM) approach is presented for the analysis of the
individual spot images. The main advantages of the proposed methodology are modeling
flexibility and adaptability to the data, which are well known strengths of GMM. The
maximum likelihood (ML) and maximum a posteriori (MAP) approaches are used to
estimate the GMM parameters via the Expectation Maximization (EM) algorithm. The
proposed approach has the ability to detect and compensate for artifacts that might occur
in microarray images. This is accomplished by a model-based criterion that selects the
number of the mixture components. We present numerical experiments with artificial
and real data where we compare the proposed approach with previous ones and existing
software tools for microarray image analysis and demonstrate its advantages.

Keywords: DNA microarray image analysis, microarray gridding, Gaussian mixture mod-

els, maximum likelihood, maximum a posteriori, Markov random fields, Expectation-Maximization

algorithm, cross-validated likelihood

1 Introduction

DNA microarrays [1] are used to measure the expression levels of thousands of genes simulta-

neously over different time points and different experiments. In microarray experiments, the

two mRNA samples to be compared are reverse transcripted into cDNA and then hybridized

simultaneously to a glass slide. The end product of a comparative hybridization experiment

is a scanned array image, where the measured intensities from the two fluorescent reporters

have been colored red (R) and green (G) and overlaid. This array image is structured with

intensity spots located on a grid and must be scanned to determine how much each probe is
∗To whom correspondence should be addressed.
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bound to the spots when stimulated by a laser. Yellow spots have roughly equal amounts of

bound cDNA from each sample and so have equal intensity in the R and G channels (red +

green = yellow). Gene expression data derived from arrays measure spots quantitatively and

can be used further for several analyses [2, 3].

It has been shown [1] that background correction is an important task in the analysis of

microarray images. This is necessary in order to remove the contribution in intensity which

is not due to the hybridization of the cDNA samples to the spotted DNA. The R and G

intensities of a perfect microarray image depend only on the dye of interest. However, due

to system imperfections and the microarray image generation process, the resulting images,

in addition to background fluorescence, contain also other types of undesired signals which

are termed in the rest of this paper as artifacts. The correction of such artifacts is crucial

to making accurate expression measurements, because unlike background fluorescence their

spatial location is unknown and can lead to errors propagated to all subsequent stages of the

analysis [4].

Processing microarrays images requires two tasks. First, the individual spots and their

borders are determined. This process is also known as gridding. Second, each spot is analyzed

to determine the corresponding gene expression level. A number of software tools have been

introduced that are available either commercially or for research only purposes for the analysis

of the microarray images [1, 5, 6, 7]. These tools use simple gridding methods, which are

based either on a grid with uniform cells, or on manual specifications of the spot borders. For

spot analysis some existing tools assume circular spots for example, the ScanAlyze [6] and

the GenePix [7]. Others use simplistic local thresholding based techniques, for example the

Spotfinder [5].

Histogram-based clustering methods have been also proposed for spot segmentation [8, 9,

10]. However, these methods use the well known K-means and the K-medoids algorithms

that do not adapt well to irregularly based clusters and do not utilize all the available prior

knowledge about the data. Furthermore, all previous proposed methods correct only for
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background fluorescence and ignore the presence of artifacts.

The main contributions of this work are two; first, a new automatic gridding scheme and

second, the application of Gaussian mixture models (GMM) for analyzing microarray spot

images [4]. This allows to bring on bear to this problem all the known advantages and powerful

features of the GMM methodology, such as adaptability to the data, modeling flexibility and

robustness, that make it attractive for a wide range of applications [11, 12]. The proposed

methodology consists of three main steps. First, the new scheme for determing the individual

spot borders in a microarray image is presented. This method does not require any human

intervention and is very simple and fast. It is hierarchical in nature since it first uses the

global and then the local properties of the microarray image, thus it is also very robust.

Second, after determing the spot boundaries, the probability density of each spot pixels

is modeled using a GMM with K components. Two scenarios are possible. First, K = 2

in which case two components are used corresponding to pixels labeled as background and

foreground. Second, K = 3 when in addition to background and foreground we have pixels

which are labeled as artifacts. The identification of the appropriate value of K is accomplished

using the cross-validated likelihood criterion [13]. This can be considered as artifact detection

and correction mechanism, since when K = 3 an artifact is identified which is ignored in

the subsequent analysis of this spot. Two approaches are proposed for estimating the GMM

parameters. The first one is based on the Expectation-Maximization (EM) algorithm [14] for

maximum likelihood (ML) estimation of the parameters, while the second on a maximum a

posteriori (MAP) formulation. The latter takes also into account prior knowledge about the

spatial assignment of the pixel labels using a Markov Random Field (MRF) model [15].

Finally, based on the clustering results, the means of the background and foreground Gaus-

sian components are used to calculate the normalized log-ratio for the fluorescence intensities

(log2 R/G). This task constitutes the reduction step of our approach and characterizes qual-

itatively each spot by finding its corresponding gene expression value.

The rest of this paper is organized as follows: In section 2 we present the proposed
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technique for automatic gridding. Section 3 describes the two GMM approaches for spot

image segmentation and the model-based criterion for estimating the number of mixture

components. In section 4 we present numerical experiments that test the proposed gridding

and clustering methodologies and compare them to existing software packages for microarray

image analysis, as well as to recently published methods. For this purpose we used both

artificial data, where the ”ground truth” is known, together with real data. Finally, we

present our conclusions in section 5.

2 Automatic Microarray Gridding

The process of determining the spot boundaries is frequently refered to as gridding. A vari-

ety of microarray gridding methods have been previously suggested in the literature. They

determine individual spot boundaries either with user-defined anchor points [6] and semi-

automated geometric techniques [10], or with complex methods that are computationally

expensive [16]. Since typical microarray images contain hundreds or thousands of spots, a

practical gridding method must be fully automatic, fast and simple.

The proposed gridding method uses a scheme that combines global and local segmenta-

tion mechanisms for defining the boundaries of each microarray spot. It initially creates global

boundaries, which are horizontal and vertical straight lines spanning the entire image. To

define the global boundaries we add the sums of the R and G intensities along the rows and

columns of the microarray image. The resulting signals have multiple peaks each correspond-

ing to the coordinates of a spot center. We use the mid point of two successive peaks of the

row and column sums to define the global horizontal and vertical boundaries, respectively.

Fig. 1 (a) illustrates this process for a 5 × 5 grid.

In the next step, the global boundaries are refined. The horizontal boundary between

spots S(i, j) and S(i+1, j) is refined by locating the minimum of the sum of the rows (within

the global boundary) of the R and G intensities of these spots. In the same spirit, the

vertical boundary between spots S(i, j) and S(i, j + 1) is refined by locating the minimum
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of the columns (within the global boundary) sums of the R and G intensities of these spots.

This procedure is repeated in a row-by-row or column-by-column fashion, scanning the entire

microarray image. Fig. 1 (b) illustrates an example of the global border refinement process.

It must be also noted that in many cases the color channels are not aligned with each

other. In such cases one can use image alignment algorithms prior to the gridding task, see

for example [17, 18, 19].

3 Mixture Models for Spot Analysis

Spot analysis refers to the task of labeling each pixel of a spot as background (B), foreground

(F), and artifact (A). This can be viewed as a clustering problem which is tackled using GMM.

Let xi = [xi
R, xi

G]T (i = 1, . . . , N) denote the ith pixel value in a spot area, where the R and G

correspond to the red and green intensities, respectively. In other words, the segmentation is

applied to the color image and not to each color seperately. GMMs [11, 12] represent density

functions as a convex combination of K Gaussian component densities φ(x|θj) = N (x|µj, Σj),

where µj is the mean and Σj the covariance matrix of the jth Gaussian, according to the

formula

f(xi|ΨK) =
K

∑

j=1

πjφ(xi|θj) . (1)

The parameters 0 ≤ πj ≤ 1 represent the mixing weights satisfying that
∑K

j=1 πj = 1, while

ΨK is the vector of all unknown parameters of the model, i.e. ΨK = [π1, . . . , πK , θ1, . . . , θK ],

with θj = [µj, Σj ].

Having found the parameters of the GMM, the posterior probabilities that the ith pixel

is assigned to the j component is given by

P (j|i) =
πjφ(xi|µj, Σj)

K
∑

l=1

πlφ(xi|µl, Σl)

. (2)

Therefore, the ith pixel is assigned to the label l with the largest posterior probability (P (l|i) >

P (j|i) ∀j 6= l).
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3.1 Maximum Likelihood (ML) Estimation of GMM Parameters

A common approach for estimating the model parameters of the GMM (Eq. 1) is based on

maximization of the likelihood (ML)

L(X|ΨK) =
N

∑

i=1

log f(xi|ΨK) =
N

∑

i=1

log{
K

∑

j=1

πjφ(xi|θj)} . (3)

The EM algorithm is a popular method for ML estimation since it is simple to implement

and guarantees convergence to a local maximum of the likelihood function [14, 12].

Starting from an initial guess of the model parameters ΨK , at each iteration (t) the EM

algorithm proceeds in two steps. The E-step, where the posterior probabilities are computed

zi(t)

j =
π

(t)
j φ(xi|µ

(t)
j , Σ

(t)
j )

K
∑

l=1

π
(t)
l φ(xi|µ

(t)
l , Σ

(t)
l )

, (4)

and the M -step, where the model parameters are updated

π
(t+1)
j =

1

N

N
∑

i=1

zi(t)

j , (5)

µ
(t+1)
j =

N
∑

i=1

zi(t)

j xi

N
∑

i=1

zi(t)

j

, Σ
(t+1)
j =

N
∑

i=1

zi(t)

j (xi − µ
(t+1)
j )(xi − µ

(t+1)
j )T

N
∑

i=1

zi(t)

j

. (6)

In image segmentation the spatial adjacency of pixels with the same label is an important prior

information that could be also taken into account [20, 21]. Since the ML approach does not

provide this capability, an alternative method for maximum a posteriori (MAP) estimation of

GMM parameters will be described next. However, before we address this problem, we will

elaborate on the problem of selecting the number of the mixture components K, and see how

it fits in the proposed microarray image analysis methodology.

3.2 Cross-validated Likelihood for Artifact Identification

The application of the EM algorithm to GMM requires knowledge of the number of the

mixture components K used in the model. Since previous approaches for microarray spot
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analysis assume 2 labels, background (B) and foreground (F), it is reasonable to consider

GMMs with K = 2. However, this assumption cannot handle the existence of artifacts which

must also be taken into account, see spots in Fig. 7. In this case an additional cluster appears

in the data, therefore they are better modeled by a GMM with K = 3. This effect can be

visualized by comparing the scatter plots in the Fig. 6 with those in Fig. 8. Thus, the artifact

detection problem corresponds to a model order selection problem between a 2-component or

a 3-component GMM.

Cross-validated likelihood [13] provides an efficient model order selection framework for

GMMs. Following this scheme, a K-component model is evaluated by splitting the data in

u disjoint partitions (folds) Xs, s = 1, . . . , u (of approximately equal size). For each fold we

estimate the Ψs
K parameters of a GMM with K components using the dataset X − {Xs}.

Then, we calculate the likelihood of this model L(Xs|Ψs
K) using Xs as a test set. Next

L(Xs|Ψs
K) is averaged over the u folds in order to obtain the cross-validated evaluation for

the K-component model

CVK =
1

u

u
∑

s=1

L(Xs|Ψ
s
K) . (7)

The CVK value is computed for the two candidate values K = {2, 3} and we select the model

order with the largest CVK . It must be noted that in our experiments we have selected u = 10

for the number of folds. When K = 3 (existence of artifacts) the criterion used to determine

which one of the three is the artifact cluster is the aggregate variance in all dimensions. In

other words, the cluster with the largest Tr(Σj) is considered as artifact.

3.3 Maximum A Posteriori (MAP) Estimation of GMM Parameters

According to this approach [15], the probabilities πi
j = P (j|position i) of the pixel located at

the ith position is assigned to the jth label are considered as additional model parameters that

satisfy the constraints: 0 ≤ πi
j ≤ 1 and

∑K
j=1 πi

j = 1. By denoting as Π = {π1, . . . , πN} the

set of probability vectors and Θ = {θ1, . . . , θK} the set of Gaussian component parameters,
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the density function is given by

f(xi|Π, Θ) =
K

∑

j=1

πi
jφ(xi|θj) . (8)

Spatial adjacency of pixel labels is taken into account by using a suitable prior density

function for the parameter set Π. This is given by the Markov Random Field (MRF) model

[20, 15, 21]

p(Π) =
1

Z
exp(−U(Π)) , and U(Π) = β

N
∑

i=1

VNi
(Π) , (9)

where Z is a normalizing constant, and β a regularization parameter. The function VNi
(Π)

is the clique potential function of the pixel label vectors {πm} within the neighborhood Ni

(horizontally, vertically, and diagonally adjacent pixels) to the ith pixel and is computed as

follows

VNi
(Π) =

∑

m∈Ni

g(ui,m) , where ui,m = |πi − πm|2 =
K

∑

j=1

(πi
j − πm

j )2 . (10)

The function g(u) must be nonnegative and monotonically increasing [20] and we used g(u) =

(1 + u−1)−1.

Given the above prior density (Eq. 9), a posteriori log-density function can be formed as

follows

p(Π, Θ|X) =
N

∑

i=1

log f(xi|Π, Θ) + log p(Π) , (11)

and maximized for the MAP estimation of the model parameters Π, Θ. The EM algorithm

can also be used for this case [15]. The E-step is given by

zi(t)

j =
πi(t)

j φ(xi|µ
(t)
j , Σ

(t)
j )

K
∑

l=1

πi(t)

l φ(xi|µ
(t)
l , Σ

(t)
l )

, (12)

while the M-step requires the maximization of the following log-likelihood [15]

QMAP (Π, Θ|Π(t)Θ(t)) =

N
∑

i=1

K
∑

j=1

zi
j{log(πi

j) + log(φ(xi|θj))} − β

N
∑

i=1

∑

m∈Ni

g(ui,m) . (13)
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This gives update equations for the parameters of the component densities, µj and Σj similar

to those of Eq. (6) of the ML-approach of the GMM.

However, the maximization of the function QMAP with respect to the label parameters

{πi
j} does not lead to closed form update equations, since we must take into account the

constraints: 0 ≤ πi
j ≤ 1 and

∑K
j=1 πi

j = 1. Due to this difficulty, a Generalized EM scheme

was adopted in [15] based on an iterative Gradient Projection method. For this approach,

the gradient of the MAP function is first projected onto the hyperplane of the constraints,

and then a line search is performed along the direction of the projected gradient to find the

parameters {πi
j} that maximizes the QMAP function.

Here we use an improved M-step in order to maximize QMAP with respect to πi
j by

formulating the problem as a constrained convex quadratic programming (QP) problem. We

found that this is advantageous, since it provides a better and faster update rule for estimating

label parameters {πi
j} that meets all the available constraints [22]. A more detailed description

of the M-step for this method is given in Appendix A.

4 Experimental results

A variety of experiments have been performed to evaluate the proposed methodology for the

analysis of DNA microarray images. The test images used were artificially created or obtained

from publicly available microarray databases described in [2] and [3].

4.1 Gridding experiments

At first, we tested the proposed gridding technique for partitioning grid structures into dis-

tinct spot areas. In order to objectively evaluate and compare our method the following

experimental study was contacted:

We applied our gridding method, and two other widely used microarray image analysis tools,

the Spotfinder [5] and the ScanAlyze [6], to ten (10) spot arrays, (arbitrarily) selected from

ten (10) different real microarray images. Thus, in total, nearly 3500 spots were used in
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this experiment. Each method was evaluated by visually inspecting the gridding results and

assigning each spot to one of three categories: perfectly, marginally and incorrectly gridded.

A spot was perfectly, marginally, or incorrectly gridded if the entire, at least 80%, or less than

80% of the spot area was contained in the assigned grid.

The results of this study are shown in Table 1. These results clearly indicate that our

method determines the spot areas more accurately than the two other methods. It must be

also noted that the Spotfinder and ScanAlyze methods are based on manual gridding. More

specifically, the size of the spot array is first defined. Then a rectangle is placed manually on

the image. Based on the provided dimensions the rectangle is divided into equal rectangular

or circular cells each corresponding to the region of a spot. Thus the outcome of the gridding

process for these methods is user dependent, while our method is fully automated. In these

experiments, we tried to the best of our ability to optimize the results obtained by the

Spotfinder and ScanAlyze tools.

In Fig. 2 we provide the gridding results with one of the ten spot arrays using our approach

as well as the two other image analysis tools, the ScanAlyze and Spotfinder. We also provide

more detailed gridding results for individual spots in the first column of Figures 5 and 7.

4.2 Spot analysis experiments

After identifying the spot regions, we used the proposed GMM-based approach to analyze

each spot region. More specifically, the procedure we followed consists of the following four

stages:

1. Select the number of components K of the GMM model using the cross-validated like-

lihood method. In other words, test for the presence (K = 3) or absence (K = 2) of

artifacts in a spot.

2. Estimate the parameters of the K-component GMM model using the ML or MAP

technique and label each spot pixel with one of the K labels.
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3. If K = 3, the artifact component (A) of the GMM is identified by using the maximum

variance criterion. Then, the remaining two clusters are labeled as F and B using the

criterion ||µF || > ||µB||.

4. Calculate the expression value of the corresponding gene according to the normalizing

logarithmic ratio:

r = log2(
µF

R − µB
R

µF
G − µB

G

) .

For comparison purposes we have also implemented two other methods proposed in [8, 9]

for spot clustering, namely the K-means algorithm and the partitioning around medoids

(PAM) method. These two methods do not provide model selection capabilities, and thus

only two clusters (K = 2) were considered, B and F .

At this point it should be also noted that filtering, such as low-pass or median, could be

used for noise removal in a separate step prior to segmentation [9]. In our methodology, the

proposed MAP approach provides a coherent framework for segmentation in which ”noise

filtering” is implicitly integrated. Furthermore, it uses a GMM to model the data and thus,

unlike filtering, it also adapts to their statistics.

4.2.1 With artificial spot images

In order to objectively compare the proposed GMM based methodology with previous ones

we conducted Monte-Carlo simulations using artificially created spots for which the ”ground

truth” is known. The artificial spots were constructed with known mean intensities for the

red (R) and green (G) channels both for the background (MB) and the foreground (MF ).

Then, the images were corrupted with additive white Gaussian noise at ten different levels. For

statistical significance, the experiment at each noise level was repeated ten times with different

noise realizations. Two criteria were used to evaluate the methods tested: a) the classification

(segmentation) error defined as the percentage of mis-classified pixels after clustering, and

b) the mean squared error (MSE) of the ratio r̂, as estimated by each method over the ten
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repetitions of each experiment, with respect to the true ratio rtrue = (MF
R −MB

R )/(MF
G −MB

G ),

i.e.

MSE =
1

10

10
∑

t=1

(r̂t − rtrue)
2 .

The MSE from the true ratio was used as a comparison metric since, as mentioned previously,

this ratio is the feature used for further analysis of microarray data.

In Fig. 3 (a), (b) we show the resulting classification error and MSE curves as functions

of the noise level to illustrate the performance of the four methods. In both curves, the x-axis

corresponds to the signal-to-noise ratio (SNR) calculated in decibel units, while the y-axis

in Fig. 3 (b) is in logarithmic scale. These results, demonstrate that the MAP GMM-based

method outperforms all other methods. Furthermore, at all SNR levels, both the ML and the

MAP GMM-based approaches provide both better segmentation accuracy and MSE values

compared to the other methods, with these differences being quite significant at low SNR

levels. In Fig. 4 three examples are displayed corresponding to three different SNR levels

showing the segmentation and the ratio value for each one of the compared methods. It must

be noted that in the above experiments all clustering methods were identically initialized.

Furthermore, MAP parameter β = 1 was used for all cases.

4.2.2 With real spot images

We also tested the proposed spot analysis methodology with real data. Figures 5 and 7

illustrate the results obtained for several real spot examples. In each case we present the

image segmentation results after labeling the pixels using each of the compared approaches.

The spot segmentation map is constructed by setting the intensity value of each pixel equal

to the mean value of the cluster that is assigned to. In the case of the proposed MAP

approach, three different segmentation maps are presented that correspond to three values

(0.01, 0.1, 1.0) for the regularization parameter β of the Gibbs prior (Eq. 9). In total, for each

spot we provide six segmentation maps along with the corresponding fluorescent ratios.

More specifically, Fig. 5 represents comparative results from five spot examples where
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no artifacts were detected according to the cross-validated likelihood criterion, i.e. K = 2.

In cases where the shape of spots is not regular and their contour is not round (mostly due

to retrieval of the microarrayer’s spotting pin), both GMM-based methods generate more

regular foreground regions in comparison with the K-means and PAM clustering approaches.

To better comprehend the behaviour of the different clustering methods, we present in Fig.

6 four scatter plots of the R and G pixel intensities for the spot S2 after labeling using GMM

with the MAP (MAP-GMM), the ML (ML-GMM), the K-means and the PAM methods,

respectively.

The main disadvantage of the K-means and PAM methods is that they are restricted

to use as error metric the L2 distance from the mean or median of the cluster. Thus, they

generate clusters which are separable by simple borders as shown in Figures 6, (c) and (d).

In contrast, GMM-based methods generate ellipsoidal clusters with complex boundaries as

shown in Figures 6, (a) and (b). As a result, the K-means and PAM methods in this example

tend to overestimate the background clusters and provide spots with background ”wholes”,

while the GMM-based methods provide more ”uniform” spots.

Fig. 7 illustrates comparative results with another four spot examples that correspond

to cases where an artifact was detected, i.e. K = 3. After labeling, the artifact pixels

are excluded from the calculation of the fluorescent ratios. In the absence of an artifact

correction methodology, the K-means and the PAM methods erroneously classify these pixels

as foreground since the contribution of the artifact pixels is significant. The differences in the

fluorescent ratios r, among these methods is noticeable. For example, in the case of spots S3

and S5 of Fig. 7, the K-means and PAM methods produce a ratio close to zero (r = 0), since

they consider as foreground the (yellow) artifact pixels. On the other hand, the proposed

MAP-GMM and ML-GMM approaches, detect the presence of the artifact and generate more

realistic foreground regions. Thus, the produced fluorescent ratios of about r = −0.7 and

r = 0.45 seem to be more realistic for the spots S2 and S3, respectively. We also present in

Fig. 8 four plots of the R and G pixel intensity values for these two spot areas after labeling
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pixels with the four approaches being compared. Again, the enhanced data fitting capabilities

of the GMM-based approaches are obvious.

Another point to make in our experimental study concerns the comparison between the

MAP-GMM and ML-GMM estimators. The results in Figures 5, 7 show that both approaches

yield similar results in terms of the fluorescent ratios. However, they do not produce the

same segmentation maps. For low values of the regularization parameter β (β ≤ 0.01) both

methods generate identical segmentation maps. As the value of β grows in MAP-GMM, the

contribution of the prior term increases and generates smoother foreground and background

regions. Thus, it eliminates isolated foreground pixels located in background regions. While

the value of the parameter β must be tuned, in our experiments we observed that a β value

in the range [0.1, 1.0] gives satisfactory results. From this point of view, the MAP-GMM

approach can be viewed as a method for noise reduction in the sense that it eliminates the

effects of the microarray manufacturing imperfections.

In Fig. 9 we show some comparisons for spot quantification between the proposed method

and two existing image analysis tools, more specifically the GenePix [7] and the Spotfinder

[5]. Comparisons with the ScanAlyze [6] were not included since GenePix uses the same

principle for spot segmentation. From Fig. 9 it is clear that the circle used in GenePix is

not representative on many occasions, when the spot is irregularly shaped or when artifact

islets are present, of the spot area. In other words, the analysis provided by GenePix is

based only on the spatial properties of the spot and does not take into consideration the

intensity of the pixels. For example, in spot S5 shown in Figures 5 and 9 the circle used

by GenePix misses completely the cresent shaped spot which the proposed method captures

quite accurately. This is also reflected in the large difference of the fluorescent ratios provided

by these methods. Also in spot S4 in Figures 7 and 9 it is clear that the region selected by

GenePix segmentation as foreground includes pixels that our algorithm labels as artifact and

this is also reflected in the computed fluorescent ratios. Similarly, the thresholding based

algorithm used in Spotfinder in certain instances of irregular spots and spots with artifacts
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produces faulty segmentations, see for example spots S1 in Figures 5 and 7, respectively. In

these spots also the fluorescent ratios provided by Spotfinder and our method are significantly

different.

Finally, the last series of experiments uses an interesting family of microarray images pro-

vided by Agilent Technologies that have a specific imperfections: the spots in these images

although perfectly circular, contain sometimes artifacts in their perimeter. Agilent provides

analysis software that ignores the perimeter of the spot based on what is called as the ”Cookie

Cutter algorithm” [23]. We tested the proposed methodology with such images1 and found

that it is able to detect the presence of artifacts in these spots using the cross-validation crite-

rion. Furthermore, it classifies as artifact a ”don’t like” region which is not taken into account

during the ratio calculation. For comparison purposes, we also provide the segmentation and

the ratio r results using the K-means and the PAM algorithms. Since the cross-validation

method is specific to the GMM, only two clusters were used in these methods. In Fig. 10

we show five spot examples of this type of images. It is interesting to notice the considerable

difference in the r ratios obtained by the proposed methodology with respect to the other

methods for certain spot cases (e.g. case 5).

5 Conclusions

In this paper we have proposed a new fully automated approach for the analysis of microarray

images. First we describe a new hierarchical gridding procedure based on the vertical and

horizontal projections of the color images. This approach is simple, automatic, and provides

better results compared with popular existing tools. However, the main novelty of this work

is the proposed GMM-based methodology for spot image segmentation. Two methods for

estimating the GMM parameters are presented: the ML and a MAP. Both approaches are

based on the EM algorithm. A cross-validated likelihood criterion is also used to select

the number of components of the GMM. This provides the capability to detect and correct

1Test images were downloaded from http://www.silicocyte.com/dis/imagesforevaluation.htm
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artifacts in the spot area. As our experiments demonstrated, the proposed methodology

produces better and more accurate results in terms of segmentation maps and fluorescence

ratios as compared with existing software tools and other clustering methods proposed in

previous works.

Appendix A: An M-step for estimating the parameters π
i
j

To maximize QMAP (Eq. 13) with respect πi
j we set its derivative equal to zero and obtain

the following quadratic expression

4β

[

∑

m∈Ni

ġ(ui,m)

]

(πi
j)

2 − 4β

[

∑

m∈Ni

ġ(ui,m)πm
j

]

(πi
j) − zi

j = 0 , (14)

where ġ(u) indicates the derivative. Let us denote with aj the positive root of the above

equation. The problem can be formulated as follows:

”Given a vector a ∈ RK with elements aj ≥ 0 and the hyperplane
∑K

j=1 yj = 1, find the point

y on the hyperplane with yj ≥ 0 that is closest to a”.

This defines the following constrained convex quadratic programming (QP) problem:

min
y

1

2

K
∑

j=1

(yj − aj)
2

subject to

K
∑

j=1

yj = 1 and yj ≥ 0 , ∀j = 1, . . . , K .

(15)

In order to solve this QP problem several approaches can be employed such as active-set

methods and penalty-barrier methods [24]. For this purpose, we have implemented an active-

set type of method [22] where we exploit the fact that the Hessian is the identity matrix which

in turn leads to closed form expressions for the Lagrange multipliers. The detailed steps for

solving this QP problem are given in the next Algorithm 1.
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Proposed Spotfinder ScanAlyze

Perfect (%) 89.6 72.8 48.7

Marginal (%) 9.2 14.3 22.6

Incorrect (%) 1.2 12.9 28.7

Table 1: Performance of three gridding methods using ten (10) spot arrays.
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Figure 1: (a). These signals are obtained by summing up the rows and columns of both R
and G channels for a 5×5 grid structure. Mid points of successive peaks define the horizontal
vertical global borders, respectively. (b). The global borders (dotted lines) are refined (solid
lines) based on the local sums. The signals on the left and above the microarray image are
the local row and column sums, respectively.
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(a) (b) (c)

Figure 2: Comparative gridding results of our method (a) with two widely used microarray image analysis tools: (b) the Spotfinder
and (c) the ScanAlyze.

2
2



3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

SNR (DB)

C
la

ss
ifi

ca
tio

n
 e

rr
o

r 
(%

)

MAP
ML
PAM
K−means

3 4 5 6 7 8 9 10 11 12
10

−4

10
−3

10
−2

10
−1

10
0

SNR (DB)
M

e
a

n
 s

q
u

a
re

d
 e

rr
o

r 
o

f 
ra

tio
 

MAP
ML
PAM
K−means

(a) (b)

Figure 3: (a) classification error and (b) mean squared error of ratio versus SNR using artificial
spot images.

SNR=8DB SNR=6DB SNR=4DB

MAP ML 

PAM K−means 

r = −0.663 r = −0.656 

r = −0.636 r = −0.632 

MAP ML 

PAM K−means 

r=−0.654 r=−0.645 

r=−0.610 r=−0.845 

MAP 

PAM 

ML 

K−means 

r = −0.665 r = −0.557 

r = −0.394 r = −0.332 

Figure 4: Segmentation maps and fluorescent ratios at different SNRs using three artificial
spot images
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Original MAP-GMM ML-GMM K-means PAM Existing

image β = 0.01 β = 0.1 β = 1.0 tools

GenPix: 0.333

S1 r = 0.293 r = 0.294 r = 0.296 r = 0.293 r = 0.212 r = 0.323 Spotfinder: -0.213

GenPix: -0.673

S2 r = −0.922 r = −0.890 r = −0.888 r = −0.892 r = −1.120 r = −1.183 Spotfinder: -0.871

GenPix: 0.875

S3 r = 0.808 r = 0.807 r = 0.801 r = 0.808 r = 0.839 r = 0.889 Spotfinder: 0.775

GenPix: -0.360

S4 r = −0.316 r = −0.318 r = −0.266 r = −0.318 r = −0.289 r = −0.053 Spotfinder: -0.136

GenPix: 2.795

S5 r = 1.507 r = 1.528 r = 1.533 r = 1.527 r = 1.495 r = 1.819 Spotfinder: 1.474

Figure 5: Comparative results for 5 real microarray spots without artifacts. For each method
we give the segmentation map and the estimated fluorescence ratio.
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Figure 6: Plot of all pixel values of spot S2 of Fig. 5 after labeling them with MAP-GMM
(a), ML-GMM (b), K-means (c) and PAM methods (d), respectively. The ellipsoidal clusters
resulting from the GMM approaches and the linear boundary between the two clusters in the
K-means case are also shown.
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Original MAP-GMM ML-GMM K-means PAM Existing

image β = 0.01 β = 0.1 β = 1.0 tools

GenPix: 0.498

S1 r = 0.173 r = 0.207 r = 0.297 r = 0.175 r = 0.874 r = 0.644 Spotfinder: 0.992

GenPix: -0.732

S2 r = −0.633 r = −0.619 r = −0.686 r = −0.699 r = 0.435 r = 0.286 Spotfinder: -0.598

GenPix: 0.500

S3 r = 0.567 r = 0.464 r = 0.431 r = 0.442 r = 0.025 r = −0.053 Spotfinder: 0.423

GenPix: 0.834

S4 r = 0.648 r = 0.650 r = 0.690 r = 0.647 r = 0.573 r = 0.507 Spotfinder: 0.588

Figure 7: Comparative results for 4 real microarray spots with artifacts. For each method we
give the segmentation map and the estimated fluorescence ratio.
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Figure 8: Plot of pixel values in spot S3 of Fig. 7 after labeling with MAP-GMM (a), ML-
GMM (b), K-means (c) and PAM methods (d), respectively. The ellipsoidal clusters resulting
from the GMM approaches and the linear boundary between the two clusters in the K-means
case are also shown.
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Original GenePix Spotfinder Original GenePix Spotfinder

image image

S1 S3

(Fig. 5) r = 0.333 r = −0.213 (Fig. 5) r = 0.875 r = 0.775

S5 S1

(Fig. 5) r = 2.795 r = 1.474 (Fig. 7) r = 0.498 r = 0.992

S2 S4

(Fig. 7) r = −0.732 r = −0.598 (Fig. 7) r = 0.834 r = 0.588

Figure 9: Calculated fluorescent ratios for 6 spot examples using the GenePix and the
Spotfinder microarray image tools.
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Original MAP-GMM ML-GMM K-means PAM

image

r = 2.270 r = 2.211 r = 2.104 r = 2.071

r = −13.153 r = −16.397 r = −11.779 r = −9.223

r = −7.034 r = −6.751 r = −8.924 r = −10.064

r = −0.905 r = −0.744 r = −0.777 r = −0.744

r = −3.825 r = −3.833 r = −11.974 r = −7.950

Figure 10: Five examples of Agilent Technologies images. The segmentation result together
with the calculated ratio value are provided for each clustering method.
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