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Abstract—In this paper, we present a new approach for segmen-
tation of image sequences by clustering the pixels according to their
temporal behavior. The clustering metric we use is the normalized
cross-correlation, also known as similarity. The main advantage of
this metric is that, unlike the traditional Euclidean distance, it de-
pends on the shape of the time signal rather than its amplitude. We
model the intra-class variation among the time signals by a trun-
cated exponential probability density distribution, and apply the
expectation-maximization (EM) framework to derive two iterative
clustering algorithms. Our numerical experiments using a simu-
lated, dynamic PET brain study demonstrate that the proposed
method achieves the best results when compared with several ex-
isting clustering methods.

Index Terms—Clustering, dynamic PET, fMRI, image segmen-
tation, similarity.

I. INTRODUCTION

I N time-sequence imaging modalities, such as dynamic PET
and fMRI, an important problem is how to group the image

pixels into spatial regions in which the pixels exhibit similar
temporal behavior. This is useful, for example, in kinetic-mod-
eling and functional neuroimaging applications.

The key issue for choosing an unsupervised clustering ap-
proach to this problem is to select a metric as a basis for de-
termining class membership. In this paper, we propose to use
the normalized cross-correlation coefficient (orsimilarity) be-
tween two signals as the metric.

The similarity metric is appropriate for our application be-
cause it compares the shapes of the time signals rather than their
amplitudes. This is desirable in applications where the goal is to
identify image regions consisting of pixels showing similar be-
havior, but not necessarily with uniform amplitude.

Many traditional clustering algorithms, such as the-means
algorithm [1] and Gaussian mixture approach [2], are based on
Euclidean or Mahalanobis distance metrics. In the field of nu-
clear medicine, several algorithms for dynamic image segmen-
tation have been proposed [3]–[5] based on these traditional
clustering approaches. In recent work in [6], clustered compo-
nent analysis (CCA) was developed for fMRI applications to
partially remove the amplitude dependency of traditional clus-
tering algorithms.
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In the following sections, we introduce our data model and
derive maximum-likelihood (ML) clustering algorithms using
a generalized expectation-maximization (EM) framework [7].
We then describe evaluations of the proposed methods using
simulated dynamic PET brain data.

II. M ETHODS

A. Problem Formulation

Let us denote the time sequence at pixelby a vector
, , and let denote the class label (i.e.,

region assignment) for . Assuming the image is to be seg-
mented into classes (spatial regions), we describe the ob-
served time sequences by the following model:

(1)

where is the unknown amplitude of , and is a unit
vector that defines the mean direction of classwithin the
space. The class labels are assumed to be independent with
unknown prior probabilities .

Given the data , our objective is decide the class label
for each pixel. Since the parameters required to make this deci-
sion are unknown, we estimate them by a maximum-likelihood
(ML) approach, according to the statistical model described in
the following section.

B. Statistical Model

We begin by defining the following similarity metric that will
form the basis for the clustering procedure:

(2)

Geometrically, is the cosine of the angle between and
; thus, is invariant to the magnitude of , and is close

to 1 when the intra-class variation is small.
To implement our approach, we require a likelihood func-

tion for . We begin by selecting a probability model for,
which relates to the variations in . The variation in and,
therefore, in , results principally from physiological varia-
tions, but also includes the effect of imaging noise. Since the
probability density function (pdf) representing these variations
cannot be expressed exactly, we instead select a reasonable pdf
model, which is standard practice in developing unsupervised
clustering approaches.
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To represent variability in the similarity metric , we adopt
the following truncated exponential pdf model:

(3)

where is known as the concentration parameter (describing
the degree of intra-class variation), and is a normalizing
constant.

The pdf in (3) has been shown numerically [8] to approximate
the pdf of the similarity metric under a Gaussian noise model.
This pdf is also similar to the von Mises distribution [9], which
is the analog of the normal distribution for angular data.

When the magnitude of the observation vector is large
compared with its variability about a given class direction (i.e.,
when the signal-to-noise ratio is high), will tend be close to
unity. The pdf model in (3) reflects this fact, becoming narrower
as the concentration parameter increases. Later, this interpreta-
tion of the concentration parameter will be used in the estima-
tion procedure.

From the relation between and in (2), we can imme-
diately express the pdf in terms of as follows:

(4)

C. ML Estimation by a Generalized EM Approach

We aim to estimate the model parameters by ML estimation;
however, direct maximization of the likelihood function is in-
tractable. Therefore, we develop generalized EM algorithms [7],
[10] to find the solution iteratively.

To put the problem in an EM framework, we define
the complete data as a concatenation of the observa-
tions and their class labeling

. The likelihood function for the complete data
is

(5)

where , in which ,
and .

Each iteration of the EM algorithm consists of maximization
of the conditional expectation , where
denotes the parameter estimate at theiteration. In the E-step,
one computes

in the M-step, the parameter estimate is updated as follows:

The EM algorithm starts with an initial estimate, then re-
peats the E- and M-steps until convergence, i.e., until

for some .

Fig. 1. Simulated data: (a) Zubal brain phantom and (b) time-activity curves.

Soft-Decision Similar Component Analysis:We develop two
clustering algorithms, the first of which is calledsoft-decision
similar component analysis(SCA). In the SCA algorithm, the
E- and M-steps of the EM algorithm are as follows.

E-Step:

(6)

where

(7)
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Fig. 2. Segmentation results by various methods. The number of assumed classes for all methods was three. The proposed wtaSCA and SCA methods produced
the most accurate segmentations.

Fig. 3. Segmentation results by various methods. The wrong number of classes (four) was assumed for all the algorithms. Compared to other algorithms,the
wtaSCA and SCA algorithms still performed reasonably well.

M-Step:

The maximization problems in the M-step can be solved by
using Lagrange multipliers as follows:

(8)

which leads to

(9)

Similarly

(10)

where is the normalization constant that makes .
The calculation of the concentration parameteris analyt-

ically intractable. As explained earlier, can be viewed as a
signal-to-noise ratio; therefore, we compute it as follows:

(11)
The E- and M-steps in (7)–(11) are performed for a fixed

number of iterations to obtain estimates of the parameters. In
our experiments, the objective function was found to
be monotonically increasing at every iteration.
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TABLE I
RELATIVE ACTIVITY LEVELS BY BRAIN REGION

Once the parameters have been estimated, we cluster the
pixels according to a maximuma posteriori (Bayesian) deci-
sion strategy, i.e., we choose the class label for pixelto be

, where

(12)

and is the final estimate of .
Winner-Take-All Similar Component Analysis:The second

clustering algorithm, which we refer to aswinner-take-all sim-
ilar component analysis(wtaSCA), is similar to the SCA above.
It is derived by letting . In this algorithm, we replace
(7) by the following:

otherwise
(13)

In summary, the wtaSCA algorithm consists of iterative com-
putations of (13), (9), and (10). Note that a similar “winner-
take-all” approach to forming the decision is used to derive the

-means method.

III. N UMERICAL EXPERIMENTS

A. Evaluation Data

In this study, to evaluate the performance of the proposed
method, a single slice (no. 70) of the Zubal brain phantom
[11] (see Fig. 1(a)) was used to simulate a dynamic PET study
of carfetanil binding to -selective opiate receptors.
A four-compartment and a three-compartment tracer kinetic
model were used to produce time-activity curves (TACs) for
each brain region (Fig. 1(b)). The model parameters were
derived from the data in [12], and an input plasma-concentra-
tion function obtained in an actual PET study conducted by
the Department of Radiology at the University of Chicago.
We simulated 23 image frames with a total Poisson mean of
four million counts. The pixel size was 4.36 mm/pixel and
the intrinsic blur was 8 mm in full width at half maximum
(FWHM).

The reconstructed images contain regions characterized by
three different types of TACs. These regions are indicated in
Fig. 2 and 3 (labeled “Ideal”). The regions of interest are: (a)
background and ventricles, represented by black; (b) areas
having TACs that are similar in shape, but differing signifi-
cantly in amplitude (represented by gray, including thalamus,

TABLE II
PERCENTAGE OFPIXELS CORRECTLYCLASSIFIED (THREECLASSESASSUMED)

TABLE III
PERCENTAGE OFPIXELS CORRECTLYCLASSIFIED (FOUR CLASSESASSUMED)

caudate, frontal cortex, temporal cortex, and white matter; see
Table I for amplitudes); and (c) occipital cortex (represented by
white). More details about the model can be found in [13].

Prior to clustering, in order to reduce the noise level, a
low-pass filter with cutoff frequency of 0.5 cycles/pixel was
applied.

B. Other Methods Considered

In addition to the two proposed clustering algorithms, we also
considered three well-known clustering procedures for compar-
ison: a) Gaussian mixture model (GMM) parameter estimation
[10]; b) -means (also called the Linde-Buzo-Gray (LBG) algo-
rithm [14] or generalized Lloyd algorithm), which is a winner-
take-all equivalent of GMM; and c) clustered component anal-
ysis (CCA) proposed by Boumanet al. [6]. The CCA can be
viewed as a special case of a probabilistic principal component
analysis (PPCA) mixture model [15].

C. Results

Two experiments were performed to test the proposed clus-
tering algorithms. In the first experiment, the number of classes
was correctly assumed to be three. The clustering results ob-
tained by different algorithms are shown in Fig. 2. In the second
experiment, the number of classes was assumed incorrectly to
be four, the purpose being to test the robustness of the proposed
methods. The clustering results are shown in Fig. 3.

In addition, we show in Tables II and III the rates of correct
classification obtained by the various algorithms for both exper-
iments. As shown, the proposed wtaSCA and SCA significantly
outperform the other methods.

One can see that in the second experiment the-means al-
gorithm failed to correctly recognize any of the regions. The
GMM and CCA algorithms correctly classified the occipital
cortex area, but failed to discriminate the other regions correctly.

It is also worth noting that the wtaSCA algorithm achieves
good performance with very low computational complexity. The
SCA algorithm is computationally more complex than wtaSCA,
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TABLE IV
COMPUTATION TIME (RELATIVE TO wtaSCA)

but less complex than the CCA and GMM algorithms. The CCA
approach requires the computation of eigenvectors of an
data correlation matrix, while the GMM approach requires com-
putation of the inverse of the covariance matrix. The computa-
tion times (on Pentium IV, 2.3 GHz) are shown in Table IV. All
times are given relative to wtaSCA method.

IV. CONCLUSION AND FUTURE WORK

Our experimental results demonstrate the feasibility of the
proposed similarity-based clustering methods. The results in-
dicate the ability of the proposed algorithms to correctly iden-
tify regions having distinct TACs. Among the methods tested,
the proposed algorithms produced the best accuracy with the
lowest computational complexity in our experiments. We antic-
ipate that the proposed algorithms will be useful for automated
kinetic-parameter estimation. In the future, we plan to augment
this work by testing criteria that will allow automatic deter-
mination of the number of classes such as minimum descrip-
tion length (MDL). Furthermore, the incorporation of priors that
constrain pixels of the same class to be spatially adjacent also
will be investigated [16].
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