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The Relevance Vector Machine(RVM) is a widely accepted Bayesian model commonly
used for regression and classification tasks. In this paper we propose a multikernel version
of the RVM and present an alternative inference algorithm based on Fourier domain
computation to solve this model for large scale problems, e.g. images. We then apply
the proposed method to the object detection problem with promising results.
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1. Introduction

The Relevance Vector Machine (RVM)1 is a Bayesian treatment of the linear model

given by:

y(~x) =

M
∑

i=1

wiφi(~x) , (1)

where {φi(~x)}M
i=1

is a set of basis functions. Learning on such a model, is the process

of estimating the weights {wi}
M
i=1

, using a training set {( ~xn, tn)}N
n=1

. The weights

are typically assigned those values that maximize the likelihood of the training set,

however the training examples must be significantly more than the parameters in

order to achieve good generalization performance. The RVM overcomes this limita-

tion by following Bayesian principles and assuming prior knowledge for the model.

Specifically, a suitable hierarchical prior distribution is assumed for the weights of

the model, which has most probability mass concentrated in sparse solutions, mean-

ing that it forces most of the weights to be assigned to zero values.1 This results

in pruning basis functions that are not sufficiently supported by the training data.

There are several reasons to seek sparse solutions:

• Sparseness automatically adjusts the complexity of the model, thus very complex

models may be considered.
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• The basis functions that remain on the model provide information about which

basis functions are relevant with the data. This may be useful in many applica-

tions.

• The output of sparse models is computed very efficiently, since only few basis

functions are considered.

In a typical RVM there is one basis function centered at each training example,

resulting in the following model:

y(~x) =

N
∑

i=1

wiφ(~x − ~xi) , (2)

As in most Bayesian models, inference in RVM is analytically intractable. The

most well-known approximations are based on the expectation maximization (EM)

algorithm1 and the variational approximation.2 Both approaches seem to provide

similar results, but the first is generally preferred because it is computationally

more efficient. However, time complexity is of order O(N 3) and memory complexity

of order O(N2), making inference on large training sets extremely difficult. The

method based on the EM algorithm can be accelerated by incrementally adding

basis function to an initially empty model,3 improving time complexity to order

O(M3), where M is the number of the basis functions that are included in the

model. Since the model is sparse, M could be only a small fraction of the total

number of basis functions N .

In this paper we use the RVM for modeling images. Unfortunately, the stan-

dard RVM training algorithms are too computationally demanding, even for small

images. We notice that if the training points xi lie on a uniform grid, the RVM

model given in Eq. (2) can be rewritten as the convolution of the weight vector

~w = (w1, . . . , wN )
T

with a vector ~φ = (φ( ~x1), . . . , φ( ~xN ))
T
, which consists of the

basis function φ(~x) evaluated at the training points ~xi. The RVM output can then

be written as:

~y = ~φ ∗ ~w , (3)

where ~y = (y( ~x1), . . . , y( ~xN ))
T

is the output of the model evaluated at the training

points. In section 2 we present in detail the RVM model and propose an alternative

implementation of the EM-based algorithm.1 Our implementation computes con-

volutions in the DFT domain, improving both time and memory requirements and

allows to train RVM models on high resolution images, with reasonable computa-

tional costs. In addition we propose a multikernel RVM model, where more than

one types of basis functions is allowed to be simultaneously used. The proposed

implementation is evaluated in subsection 2.4.

We then use the proposed algorithm to solve the object detection problem, which

is the problem of finding the location of an unknown number of occurrences of a

given ‘target’ image in another given ‘observed’ image, under the presence of noise.

The ‘target’ may appear significantly different in the observed image, as a result of
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being scaled, rotated, occluded by other objects, different illumination conditions

and other effects.

The most common approaches to solve the object detection problem are vari-

ants of the matched filter, such as the phase-only7 and the symmetric phase-only8

matched filters. These are based on computing the correlation image between the

‘observed’ and ‘target’ images and then using a threshold to determine the locations

where the ‘target’ object is present. Alternatively, the problem can be formulated

as an image restoration problem, where the image to restore is considered as an

impulse function at the location of the ‘target’ object. This technique allows many

interesting background models to be considered, such as autoregressive models.9

A different object detection approach, which has been successfully applied on face

detection,10 is to split the observed image in several regions and train a classifier

with some features of the target ‘object’ in order to decide which regions contain

the ‘target’ object.

In section 3 we propose a method for object detection, which is based on training

a multikernel RVM model on the ‘observed’ image. The RVM model consists of two

sets of basis functions: basis functions that are used to model the ‘target’ image

and basis functions that are used to model the background. After training the

model each ‘target’ basis function, whose corresponding weight is larger than a

specified threshold, is considered as a detected ‘target’ object. Examples of the

RVM based object detection algorithm and a comparison with the autoregressive

impulse restoration9 method are provided in section 4.

2. Large Scale Multikernel RVM

2.1. RVM for image analysis

The linear model in (1) is very efficient provided that suitable basis functions φi

are selected and that there exist adequate training examples. Thus, finding a basis

function set that describes the data well is an important problem, that is very

difficult to solve. In this paper, we use several different types of basis functions

φ1, . . . , φM centered at each training point, resulting in the following model:

y(~x) =
M
∑

m=1

N
∑

i=1

wmiφm(~x − ~xi) , (4)

where M is the number of different basis function types. Although we use so many

basis functions (and therefore parameters), overfitting should not be a concern,

because of the sparseness of the RVM model.

In order to model a Ni ×Nj image t using a RVM, we assume that the intensity

t(i, j) of the observed image at location (i, j) has been generated from the output

y(i, j) of the model at the same location, after addition of independent white noise

ε(i, j):

t(i, j) = y(i, j) + ε(i, j) , (5)
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ε(x, y) ∼ N(0, β−1) , (6)

where β is the inverse variance of the noise.

Defining ~t = (t(1, 1), . . . , t(1, Nj), . . . , t(Ni, Nj))
T to be a vector that contains

the intensities of the image pixels in lexicographical order and similarly for ~ε =

(ε(1, 1), . . . , ε(1, Nj), . . . , ε(Ni, Nj))
T , Eq. (5) can be rewritten as:

~t = Φ~w + ~ε =
M
∑

m=1

Φm ~wm + ~ε , (7)

where Φ is the N × (MN) design matrix, each column of which is a vector with

the values of a basis function at all the training points. The design matrix can

be partitioned as Φ = (Φ1, . . . , ΦM ), with Φm = ( ~φm1, . . . , ~φmN ) being the part

of the design matrix corresponding to basis functions of type φm(~x) and ~φmi =

(φm( ~x1 − ~xi), . . . , φm( ~xN − ~xi))
T being a vector consisting of the basis function

φm(~x− ~xi) evaluated at all the training points. The weight vector ~w can be similarly

partitioned as ~w = ( ~w1

T , . . . , ~wM
T )T , with each ~wm = (wm1, . . . , wmN ) consisting

of the weights corresponding to basis function φm(~x).

The likelihood of the data set can then be written as:

p(~t|~w, β) = (2π)−N/2βN/2 exp

{

−
1

2
β‖t − Φ~w‖2

}

. (8)

Given that the described model has M times more parameters than the training

examples are, it is essential to seek a sparse solution. Under the Bayesian framework

sparseness is obtained by assigning suitable prior distributions on the parameters.

Specifically, independent Gaussian prior distributions with unknown variances are

assigned on the weights ~w:

p(~w) =
M
∏

m=1

N
∏

i=1

p(wmi) =
M
∏

m=1

N
∏

i=1

N(0, α−1

mi) , (9)

where αmi is a hyperparameter controlling the inverse variance of the corresponding

weight wmi. These hyperparameters are assumed unknown and Gamma hyperpriors

are assigned to them. The inverse noise variance β may also be assumed unknown

and similarly, a Gamma prior distribution is assigned to it:

p(~α) =
M
∏

m=1

N
∏

i=1

Γ(a, b) , (10)

p(β) = Γ(c, d) , (11)

where ~α = (α11, . . . , α1N , . . . , αMN ).

Unfortunately, computation of the posterior distribution of the parameters is

analytically intractable and an approximation has to be used. An effective ap-

proximation is to consider the posterior distribution of the weights treating the
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hyperparameters as known parameters and then optimize the hyperparameters.1

The posterior weight distribution is:

p(~w|~t, ~α, β) = N(~w|~µ, Σ) , (12)

with

Σ = (βΦT Φ + A)−1 , (13)

~µ = βΣΦT~t . (14)

Then the hyperparameters are set to those values that maximize their posterior

distribution given by:

p(~α, β|t) ∝ p(t|~α, β)p(~α)p(β) . (15)

The quantity p(t|~α, β) is known as the marginal likelihood and is given by:

p(~t|~α, β) = (2π)−MN/2|Σ|−1/2 exp

{

−
1

2
(~w − ~µ)T Σ−1(~w − ~µ)

}

. (16)

Differentiation of (16) leads to the following updates for the hyperparameters:

αmi =
1 − αmiΣii

µ2

mi

, (17)

β =
N −

∑N
i=1

(1 − αiΣii)

‖~t − Φ~µ‖2
. (18)

Equivalent updates can also be derived from an EM formulation, treating the

weights as hidden variables.

The learning algorithm proceeds by iteratively computing the posterior statistics

~µ, Σ of the weights, given by (13) and (14) and then updating the hyperparameters

using (17) and (18). Computation of Σ involves inverting a N–by–N matrix which

is an O(N3) procedure, where N is the initial number of basis functions. During

the training process, many of the hyperparameters are set to infinite values and the

corresponding basis functions can be punned, allowing computation of the posterior

statistics in O(M3) time, where M is the number of functions that remain in the

model. This results in significant speed-up of the latter iterations of the algorithm,

however in the first iteration all the basis functions have to be considered and the

overall complexity is still O(N 3).

An alternative algorithm3 starts by assuming an empty model and incrementally

adds basis functions in each iteration. Computing the posterior statistics require

O(M3) time, since the full model never has to be considered. However, only one

basis function may be considered at each iteration and if this is chosen at random,

then the algorithm requires much more iterations to reach convergence. Alterna-

tively, the most significant basis function may be selected at each iteration, but

this selection is computationally expensive. Overall, this algorithm is an important

improvement, but it still cannot be used for large scale problems, such as modeling
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images. In this paper we propose an RVM implementation based on DFT compu-

tations, that successfully resolves the problem of computational complexity.

2.2. RVM sparseness

Since the properties of any Bayesian model are based on the prior distributions that

are used, sparseness in the RVM is achieved by assigning to the weights a suitable

prior distribution. This is a hierarchical prior, consisting of a Gaussian distribution

for the weights ~w (eq.(9)), and a Gamma distribution for the hyperparameters ~α

(eq.(10)) that define the inverse variance of the distribution of the weights. It is

important that there is a separate hyperparameter that controls the variance of

each weight, since this makes the hierarchical prior equivalent to a Student-t prior

distribution with a
b variance and 2a degrees of freedom:

p(~w) =

∫ M
∏

i=1

(p(wi|αi)p(αi)) d~α =

M
∏

i=1

(
∫

p(wi|αi)p(αi)dαi

)

=

M
∏

i=1

(
∫

N(wi|0, αi)Γ(αi|a, b)dαi

)

=

M
∏

i=1

St
(

wi|0,
a

b
I, 2a

)

. (19)

It is well known that most probability mass of the Student-t distribution is

concentrated on the origin of the axis of definition and along the axis, which explains

why this prior distribution produces sparse solutions. Actually, the basis functions

that are used in the final model, are those basis functions that are more relevant

with the data. For this reason, this prior is also known as automatic relevance

determination (ARD) prior,5 and the points that correspond to basis functions

that remain in the final model are called relevance vectors (RV).

2.3. Multikernel RVM implementation in the DFT domain

It can be observed that if the training points are the pixels of an image, or generally

uniform samples of a signal, then the RVM given by (4) can be written using a

convolution as:

~y =
M
∑

m=1

~φm ∗ ~wm . (20)

Equation (7) still holds, with the additional property that matrices Φm are circulant.

This is an important property, implying that the product Φm ~wm is a convolution

which can be efficiently computed in the DFT domain by multiplying the DFT Fm

and W of the basis function φm and the weight vector w.

Ti =

M
∑

m=1

FmiWmi , (21)

where T is the DFT of the observations vector ~t. This observation allows computa-

tion of the output of the model without using the complete design matrix but only
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one basis vector, improving memory complexity from O(N 2) to O(N) and time

complexity from O(N2) to O(N log N).

The posterior statistics of the weights µ and Σ can also be computed in the DFT

domain, benefitting from the same advantages. Beginning with (14), the posterior

mean of the weights can be found by solving the equation:

Σ−1~µ = βΦT~t , (22)

(βΦT Φ + A)~µ = βΦT~t . (23)

Instead of analytically inverting the matrix βΦT Φ+A, which is computationally

expensive and requires inversion of the large design matrix Φ, we solve equation

(23) by using the conjugate gradient method6 to minimize the following quadratic

function:

~µ∗ = argmin
µ

(~µT (βΦT Φ + A)~µ − ~µT β~ΦT~t) . (24)

The quantities βΦT Φ~µ and βΦT~t can be easily computed in the DFT domain

since Φ is circulant, while computation of A~µ is straightforward since A is diagonal.

In the ideal case, the conjugate gradient method is guaranteed to find the exact

minimum after N iterations. In practice, a very good estimate can be obtained in

only a few iterations.

Unfortunately, in order to compute the posterior weight covariance we have

to invert the matrix βΦT Φ + A, which is a computational burden. Instead, we

notice that we only need to compute the diagonal of Σ and consider two possible

approximations.

The simplest approximation is to consider only the main diagonal of the matrix

βΦT Φ + A, and compute Σii as:

Σii = (β‖φ‖2 + αi)
−1 , (25)

with φ = (φT
11

, . . . , φT
1M )T . Although this approximation is not valid in general,

it has been proved very effective in the experiments, because the matrix A has

generally very large values and is the dominant term in βΦT Φ + A.

An alternative approximation that has been considered is to approximate the

matrix βΦT Φ + A with a circulant matrix and compute Σii as:

Σii = (βΦT Φ + αiI)−1 =
1

N

M
∑

j=1

(βF2

j + αi)
−1 . (26)

Notice, that a different (circulant) approximating matrix has to be inverted for the

computation of each element of the diagonal of Σ. For this reason, this approxi-

mation requires more computations than the first and may be impractical for large

images.
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Fig. 1. (a) An artificially generated image with added noise. Estimates of (b) the RVM algo-
rithm and the DFT-RVM algorithm using (c) the diagonal approximation of Eq. (25) and (d) the
circulant approximation of Eq. (26).

Table 1. Mean square error of the typical RVM algorithm and the DFT
based algorithm with the two approximations for several choices of the
kernel width w. Inside parenthesis is the number of relevance vectors for
each case.

Algorithm w = 1 w = 2 w = 4 w = 8

RVM 0.055(229) 0.038(84) 0.040(45) 0.052(70)
DFT-RVM 0.055(249) 0.039(120) 0.048(49) 0.111(12)
DFT-RVM(2) 0.058(234) 0.041(105) 0.077(165) 0.111(190)

2.4. Evaluation of the proposed modification

In order to verify the validity and evaluate the performance of the proposed DFT-

based implementation we sampled uniformly the function:

t(x, y) =
sin(‖x + y‖)

‖x + y‖
, (27)

to generate a 30 × 30 image shown in Fig. 1. We then added white Gaussian noise

of variance 0.1 and applied both the typical and the DFT-based algorithm to es-

timate the parameters of an RVM model, which was then evaluated at each pixel

location to produce an estimate of the original image t. Figure 1 shows the estimates

obtained using the typical RVM algorithm and the DFT-based algorithm with the

two different approximations respectively. Averages over 10 noise realizations of the

mean squared error (MSE) of each estimate and the number of relevance vectors

are shown in Table 1 for many different widths w of the kernel. We notice that the

first (diagonal) approximation typically gives better results than the second (cir-

culant) approximation and it also requires less computations. Also notice that the

approximation gives excellent results when the size of the kernel is small, because

the matrix Σ is almost diagonal.

Unfortunately, we cannot compare the algorithms for larger images because we

cannot apply the typical RVM algorithm on larger datasets. However, we demon-

strate the effectiveness of the proposed algorithm on large scale regression prob-

lems, by training an RVM model with Gaussian kernels of sizes w1 = 2, w2 = 4 and

w3 = 8 on a 256 × 256 image. The estimated image, shown in Fig. 2, is improved
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(a) (b)

Fig. 2. (a) An 128 × 128 image with added gaussian noise. (b) Estimate of the DFT-RVM
algorithm using gaussian kernels with variance 2, 4 and 8.

with respect to the initial noisy image, having ISNR = 2.2, where ISNR is defined

as ISNR = 10 log
(

‖f − g‖2/‖f − f̂‖2

)

and is a measure of the improvement in

quality of the estimated image with respect to the initial image.

3. Object Detection Using the RVM Model

In the rest of this paper, we present an alternative method for object detection,

which is based on training a multikernel RVM model on the ‘observed’ image. The

RVM model consists of two sets of basis functions: basis functions that are used to

model the ‘target’ image and basis functions that are used to model the background.

After training the model, each ‘target’ basis function that remains in the model

can be considered as a detected ‘target’ object. However, if the background basis

functions are not flexible enough, ‘target’ functions may also be used to model

areas of the background. Thus, we should consider only ‘target’ basis functions

whose corresponding weight is larger than a specified threshold.

We denote by ~t = (t(1, 1), . . . , t(1, Nj), . . . , t(Ni, Nj))
T a vector consisting of the

intensity values of the pixels of the ‘observed’ image in lexicographical order. We

model this image using the following RVM model:

~t =
N

∑

i=1

wtiφt(~x − ~xi) +
N

∑

i=1

wbiφb(~x − ~xi) + ~ε , (28)

where φt is the ‘target’ basis function which is a vector consisting of the intensity

values of the pixels of the ‘target’ image, and φb is the background basis function,

which we selected to be a Gaussian function. After training the RVM model we

obtain the vectors ~µt and ~µb, which are the posterior weight mean for the kernel

and background weights respectively. Ideally, ‘target’ kernel functions would only be
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used to model occurrences of the ‘target’ object. However, because the background

basis functions are often not flexible enough to model the background accurately,

some ‘target’ basis functions may have been used to model the background as well.

In order to decide which ‘target’ basis functions actually correspond to ‘target’

occurrences, the posterior ‘target’ weight means are thresholded, and only those

that exceed a specified threshold are considered significant:

Target exists at location i ⇔ |µti| > T . (29)

Choosing a low threshold may generate false alarms, indicating that the object

is present in locations where it actually does not exist. On the other hand, choosing

a high threshold may result in failing to detect an existing object. There is no

unique optimal value for the threshold, but instead it should be chosen depending

on the characteristics of the application.

The Support Vector Machine (SVM)11 is another sparse learning method that

has been used in regression problems. Although it is usually much more compu-

tationally efficient than the RVM approach,12 it requires that the basis functions

are valid kernel functions. This limitation, prohibits using SVMs with the proposed

object detection method, since the basis functions that we use are the ‘target’ image

and are not valid kernel functions.

4. Numerical Experiments

In this section we present experiments that demonstrate the improved perfor-

mance of the DFT-RVM algorithm compared to autoregressive impulse restoration

(ARIR), which is a state-of-the-art method, found to be superior to most existing

object detection methods.9 We first demonstrate two examples where the ‘observed’

images have been constructed by adding the ‘target’ object to a background image

and then adding white Gaussian noise. Images consisting of the values of the kernel

weights computed with the DFT-RVM algorithm are shown in Fig. 3 and compared

with the output of the ARIR method. Notice that because of the RVM sparseness

property, the output of the algorithm is zero at most locations where there is no

target object. This property of the DFT-RVM detection method, is the main reason

for the improved detection performance, which will be more thoroughly evaluated

later.

When evaluating a detection algorithm it is important to consider the detection

probability PD , which is the probability that an existing ‘target’ is detected and the

probability of false alarm PFA, which is the probability that a ‘target’ is incorrectly

detected. Any of these probabilities can be set to an arbitrary value by selecting an

appropriate value for the threshold T . The receiver operating characteristics (ROC)

curve is a plot of the probability of detection PD versus the probability of false

alarm PFA that provides a comprehensive way to demonstrate the performance

of a detection algorithm. However, the ROC curve is not suitable for evaluating

object detection algorithms because it only considers if an algorithm has detected
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Fig. 3. Two object detection examples. (a) and (d) are the ‘observed’ images, (b) and (e) are
the results of the ARIR algorithm and (c) and (f) are the results of the DFT-RVM algorithm.
The target object is the tank in image (a) and the jeep in image (d). In the results, only a small
area around the target is shown. In all cases, the the output of both algorithms is maximum at
the location of the target. However, at all other locations, where there is no target and the output
should ideally be zero, DFT-RVM outperforms the ARIR algorithm, since its output is zero at
most locations.

an object or not; it does not consider if the object was detected in the correct

location. Instead, we can use the localized ROC (LROC) curve which is a plot of

the probability of detection and correct localization PDL versus the probability of

false alarm and considers also the location where a ‘target’ has been detected.

In order to evaluate the performance of the algorithm, we created 50 ‘observed’

images by adding a ‘target’ image to a random location of the background image,

and another 50 ‘observed’ images without the ‘target’ object. White Gaussian noise

of variance σ2 = 20 was then added to each ‘observed’ image, that corresponds to

signal to noise ratio 22dB. The DFT-RVM algorithm was then used to estimate the

parameters of an RVM model with a ‘target’ kernel and a Gaussian background ker-

nel for each ‘observed’ image, generating 100 kernel weight images. The background

basis functions were Gaussian functions of the form φi(~x) = exp(− 1

r2 ‖~x− ~xi‖
2) with

the width parameter set to r = 6. The kernel weight images were then thresholded

for many different threshold values and estimates of the probabilities PDL and

PFA were computed for each threshold value. Similar experiments were also per-
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Fig. 4. LROC curves of the ARIR and DFT-RVM algorithms for the two detection problems
shown in Fig. 3.

formed for the ARIR algorithm and an LROC curve was plotted for each algorithm.

Figure 4 shows the LROC curve of each algorithm for the two cases of background

and target images shown in Fig. 3. It can be observed that the area under the LROC

curve, which is a common measure of the performance of a detection algorithm, is

significantly larger for the DFT-RVM algorithm. Another important observation

is that the LROC curve is high for small values of PFA, since usually the threshold

is chosen so that only a small fraction of false detections is allowed.

5. Conclusions

We have proposed an approximate but accelerated inference method for training

the RVM model on large scale images, based on fast computation of the poste-
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rior statistics in the Fourier domain. Experiments on images demonstrate that the

proposed approximation allows inference on large scale images, where the typical

RVM algorithm is too computationally demanding to run. We then presented an

application of the method to the object detection problem. Experimental results

indicate that this approach is more robust than existing methods. Furthermore,

the proposed technique can be extended to solve the rotation and scaling invariant

object detection problem, by optimizing the model with respect to rotation and

scaling of the basis functions.
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