1784 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 10, OCTOBER 2000
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Abstract—In this paper, we examine the restoration problem To our knowledge, restoration of an image when the PSF is
when the point-spread function (PSF) of the degradation system modeled by known mean and an additive random component
is partially known. For this problem, the PSF is assumed to be the 55 addressed for the first time in [23]. In this work, the linear
sum of a known deterministic and an unknown random compo- . - ’ .
nent. This problem has been examined before; however, in most minimum mean-square-error (LMM_SE) solution VYaS_ derived
previous works the problem of estimating the parameters that de- for the continuous case only assuming known statistics for the
fine the restoration filters was not addressed. In this paper, two it- PSF and the additive noises and no experimental results were
erative algorithms that simultaneously restore the image and esti- provided. In [7], [8], [24], and [25], this problem was revis-
mate the parameters of the restoration filter are proposed using ev- ited. In [7], [8], and [24], the LMMSE filter was derived for this
idence analysis (EA) within the hierarchical Bayesian framework. T ’ . .

We show that the restoration step of the first of these algorithms is problem for the discrete ca;e a”‘?' numerical experiments were
in effect almost identical to the regularized constrained total least- Shown. In these works, a white noise model for the PSF and ob-
squares (RCTLS) filter, while the restoration step of the second servation errors was used and knowledge of the error statistics
is identical to the linear minimum mean square-error (LMMSE)  was assumed. A difficulty with the LMMSE filter in general
filter for this problem. Therefore, in this paper we provide a solu- is that the signal covariance is not usually known in practice.

tion to the parameter estimation problem of the RCTLS filter. We In 171 the si | . . d k but in I8 d
further provide an alternative approach to the expectation-max- N [7], the signal covariance is assumed known, but in [8] an

imization (EM) framework to derive a parameter estimation al- [24], an iterative algorithm was proposed in which the current
gorithm for the LMMSE filter. These iterative algorithms are de- LMMSE signal estimate is used to update the signal covariance
rived in the discrete Fourier transform (DFT) domain; therefore,  estimate. However, the algorithm is ad-hoc and its convergence
they are computationally efficient even for large images. Numer- |, .q5arties were not analyzed. The expression derived in [24] for
ical experiments are presented that test and compare the proposed . . )
algorithms. the_LMMSE f||ter is n<_)t correct._ Furthermore_, the filter and the
o ) ) _ _ estimation algorithm is not derived for the circulant case; thus,
mc')gifsx i-lr—T?;g]eS?eBSltlgt(’jatlirgr?ge restoration, hierarchical Bayesian it cannot be efficiently calculated for large images. In [25], the
‘ ' Backus-Gilbert method is proposed for this problem. However,
the parameter that controls the tradeoff between resolution and
|. INTRODUCTION noise was not estimated systematically.

In [2] and [22], the problem under consideration was
xddressed using the theory of projections onto convex sets.
cent years, a significant effort has been devoted to solving t WEVe, these convex sets \were descrlped by parameters
so-called blind deconvolution problem, in which it is assumed ich were agsumed knovmprlorl. In [15]. this problem was
that little or nothing is known about the underlying blurrin ddressed using the regularized constrained total Ieast_-squares
process, see for example [9]. In most practical applications, { CTLS) framework. However, the parameters that define the

point-spread function (PSF) is neither unknown nor perfect LTS filter were again assumed knoarpriori.

known. Usually, some information about the PSF is available.In the classical rgstoratlon proble.m, wh_ere th? PSF is ex-
However. this information is never exact actly known, the ratio of the observation noise variance and the

smoothness parameter needs to be estimated (see, for example,
[5]). This ratio is usually called the regularization parameter and

Manuscript received May 26, 1998; revised February 15, 2000. N. P. Galghptyres the tradeoff between fidelity to the data versus con-
sanos and V. Z. Mesarovigere supported by the National Science Foundati

[o] . . . . .
under Grant MIP-9309910 and R. Molina was supported by the Comisién V\lﬂ:\dence to the pr|o_r information used by the .reStorat'on f'lter'.
cional de Ciencia y Tecnologia under Contract TIC97-989. The associate eddoplethora of algorithms has been proposed in the past to esti-

coordinating the review of this manuscript and approving it for publication wag ate this parameter (see for example [5]) The estimation of
Prof. Patrick L. Combettes. ' ’

N. P. Galatsanos is with the Department of Electrical and Computer Endf1€ parameters of the restoration filter in the pa'ft'a"y known
neering, Armour College of Engineering and Science, lllinois Institute of Tecl®SF problem is a much more difficult for the following reasons:

RADITIONALLY, image restoration algorithms have as-
sumed exact knowledge of the blurring operator. In r

nology, Chicago, IL 60613 USA (e-mail: npg@ece.iit.edu). ___1)Inthe classical restoration problem, there is only one param-
V. Z. Mesarovicis with the Crystal Semiconductor Corporation, Austin, TX . . . .

78744 USA. eter to be estimated and the restoration filter in most cases can
“R. Molina is with the Departamento de Ciencias de la Computacion, Univdde found in closed form; therefore, a subjective trial-and-error
sidad de Granada, 18071 Granada, Spain. . search of a one-dimensional (1-D) space can be easily imple-

A. K. Katsaggelos is with the Department of Electrical and Computer En% d btai d value for th larizati
neering, Northwestern University, Evanston, IL 60208-3118 USA. ented to obtain a goo \_/a ue for the regu ar'zat'(_)n parameter.
Publisher Item Identifier S 1057-7149(00)06131-5. 2) In contrast, for the partially known PSF restoration problem,

1057-7149/00$10.00 © 2000 IEEE



GALATSANOS et al. HHERARCHICAL BAYESIAN IMAGE RESTORATION FROM PARTIALLY KNOWN BLURS 1785

there are three parameters to be estimated: the variance ofghmregressive model. It is easy to see that the PDFs in (1) and
PSF noise, the variance of the observation noise, and the paré)-are equivalent whem{;1 = aQ!Q. For simplicity, but
eter that captures the image smoothness. Thus, it is impossibithout loss of generality, we shall use a circulant Laplacian
to implement a trial-and-error subjective search in a three-diigh-pass operator fa@ throughout the rest of this paper [12].
mensional (3-D) space.

In [16] and [17], an iterative algorithm for simultaneous paB. Observation Model

rameter estimation and image restoration based on the EM aly, [7] and [24], the space-invariant PSF was represented as the

gorithm [11] was proposed. It was derived under the assumg; of 4 deterministic component and a stochastic component
tion that the observed data on the image-dependent noise t€ar5_mean. i.e.

is Gaussian, and two models for the image prior were used. Due
to this assumption, the restoration step of this algorithmis linear h=h+Ah 3)
and is identical to the LMMSE filter for this problem.

In this paper, we apply evidence analysis (EA) within th@hereh € R andAh € RY are the deterministic (known)
hierarchical Bayesian framework to the partially known blugnd the random (unknown error) components of the PSF, re-
restoration problem [1], [18], [19], [21]. Hierarchical Bayesiagpectively. This is a very general model that attempts to incor-
analysis is performed in general by combining the prior infoporate the random (unknown error) component of the PSF in
mation and the observed data into what is calledpbsterior  the restoration algorithm. The unknown component of the PSF
distribution, from which all the inferences are made. is modeled as Stationary zero-mean white noise Withx NV

The rest of this paper is organized as follows. In Section @ovariance matriR A;, = (1/8)1, wherel /3 denotes the vari-
the imaging and image models are discussed. In Section Ill, §ce of the PSF noise aiids the identity matrix. The observa-
basic philosophy behind EA is briefly presented and its apption vectorg is also contaminated by zero-mean additive white
cation to the restoration problem from partially known blur igoise withiV x NV covariance matriRa, = (1/7)I, wherel /
discussed. In Sections IV and V, two EA based algorithm agnotes the variance of the observation noise. Furthermore, the
derived using two models for the conditional distribution of thgpises in the observed data and the PSF are assumed indepen-
data. The relationship between the restoration steps of the pfient of each other and independent from the source ifiadge

posed two EA algorithms is discussed in Section VI. In Segis case, the image-degradation can be described by the model
tion VII, we present numerical experiments which compare thg], [15], [24], [25]

proposed approaches. Finally, in Section VIII we present our
conclusions and suggestions for future research. g=Hf+ Ag 4)

Il. COMPONENTS OF THEHIERARCHICAL MODEL in which

Let us now examine the components of the hierarchical model
used for the partially known blur restoration problem, that is,
the image model, the observation model, and the model for tgﬁdg,f, Ag € RY
unknown hyperparameters.

H=H+AH %)

are lexicographically ordered representa-
tions of the observed degraded image, the source image, and the
additive noise in the observed image, respectively. The matrix
] o H is the known (assumed, estimated or measured) component
A commonly used model for the image prior is based of the ¥ x N PSF matrixd; AH is the unknown component
the stat?onary Gaussian zero-mean probability density functigpie psk matrix, generated byh defined in (3). Throughout
(PDF), i.e., the rest of this paper a circulant approximation of Toeplitz ma-
L 1 trices [12] will be used to allow calculations to be performed
P(f) = [det(27Ry)] > eXP{—§ftR,71f} (1) using the discrete Fourier transform (DFT); thiis,and AH
together withRap, Ra, areN x N circulant matrices [12].
whereR; is the N x NV circulant covariance matrix df, and  From (3)—(5), it is clear that the form of the conditional dis-
det(-) denotes the determinant of a matrix (see, for examplgipution of g is not simple. In what follows we propose two
[10]). In many practical situation® ; in (1) may not be avail- models forP(g |f, v, 8, 7).
able and must be estimated from the blurred and noisy dataj) Fixedf Covariance Model:For this model, we use

However,R; may not be identifiable from a single degrade@d Gaussian assumption for both the PSF naisk and
image due to a large number of unknown parametel® jn the additive noiseAg [see (3)—(5)]. Then, to determine
To avoid this problem, the simultaneously autoregressive (SAR)g | £, «, 3,~) since vectorf is not a random quantity but

image models have been proposed, see for example, [18]-{28}her a fixed one, following [14] it is straightforward to see
These models can be described by the following condition@bm (4) thatP(g | f, «, 3, ~) is given by
PDF:

A. Image Priors

1

P(g|f,a,B,7) o [det(R,) ;)] %

1 _ _
. " ><exp{——(g—Hf)tR_|]L (g—Hf)}.
where « is positive unknown parameter that controls the 2 glf
smoothness of the image arj3 f||> captures the image (6)

N—-1

P(f]a) = const- o esp{-IQEF} @
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The conditional covariancB,, | s in (6) is given by According to the EA approach, the simultaneous estimation
of f, «, 3, and~ is done as follows.
Rg ;= E{(AHf + Ag)(AHf + Ag)t |f} Parameter estimation step:
_ t oA
= E{(FAh+ Ag)(FAh + Ag)' [f}  (7) &, 3,4 = arg max {P(a, 5,7 )} (10)

27

where we have used the commutative property of the convo-
lution operationF denotes the circulant matrix generated by
the imagef, Ah is the unknown PSF noise vector from (3) and
E{} denotes the expectation operator. Equation (7) can be fur-
ther simplified as follows:

Restoration step:

~

£(a,0,9) = mgmax{P(f|g. 4. /. 4)}. (A1)

The estimatesy, /3, and#¥ from the parameter estimation step
depend on the current estimate of the image. Likewise, the esti-

— Tyt t T
Ry s =FE{ADARIF + E{AgAg’) matef from the restoration step will depend on current estimates

=FRanF' + Ry, of the parameters. Therefore, the above two-step procedure is
_ lpp n 1 (8) 'epeated until convergence occurs.
B v In order to findP(«, 3,7 |g), as required by the parameter

. ) estimation step, we take into account that from the distributions
2) Averagedt Covariance Model:For this model, We afined in Section Il we have

assume that thebservationsg are Gaussian and instead of
usingFF! in the expression for the covariance we use its mean P(g,f,a,8,7)

value from the prior. In other words, the expectation in (7) is _

taken ovelf also. Thus, for this model we assume a Gaussian Plglf, o p,7)P(E |0, 5,7 P(@PB)P(y). (12)

P(g|f, ., §,7) with meanHf and covarianc®, | ; givenby  rpop 4, obtairP(«, 3,~ | g) as required in (10) we marginalize

the PDF in (12) with respect tb[1], [18], and [19], i.e.,

I

R 5<aQtQ>—1+; . ©)

el Pla,B.7|g) x / P(g.f,a,3,7)df. (13)
Note that by using this approximation we have incorporated

the uncertainty of the image prior model, in the conditional
distribution. Thus, we made tHeg P(g |f, «, 3,~) function

uadratic with respect tb. This yields a linear estimator for
?as will be shown[?n what foIIOV\)//s. Pg.f, o, f,7) o PE| o, B, 1) P(g|f, o, B, 7). (14)

. Becaus.e of the attractiveness of the Bayesian formulatlonﬂl'e use of Gamma hyper-priors for this problem is described in
iS convenient to use priors on the hyperparameters even w 8'and [17]

very little prior information is available about certain param
ters [1]. According to [1], in situations where no prior informa-
tion is available a noninformative prior is used. This applies
the hyperparametets € {«, 3,7} that were previously intro-
duced. In this paper we use improper, non informative priors P(f g,&,/?,fy) - P(f|5éa/§’ A\ P(g]| f’&’/g’,?) (15)
p(w) o const over[0, o).

Since we assumed “flat” noninformative hyper-priors,
P(a)P(B)P(+) can be discarded in (12) and so we have

" Now, as required in (11) for the restoration step, the image
osteriorPDF P(f | g, &, 3,%) can be obtained applying Bayes
le to the joint PDF, i.e.,

where P(f | &, B, 4) and P(g|f,A€y,/§, 4) are given in (2) and
[ll. HIERARCHICAL BAYESIAN ANALYSIS (6), respectively, evaluated at 3, and+.
._Using the two different choices for the conditional covariance
Ren in given in (8) and (9), we will now proceed with the
vidence analysis.

Let us examine how the hierarchical Bayesian analysis
performed on our partially known blur restoration proble
After defining P(«, 3,v,f,g), the Bayesian analysis can be
carried out in two different ways. In the evidence analysiR/ EVIDENCE ANALYSIS BASED ON THEFIXED-f COVARIANCE
(EA) framework, P(«, 3,7, f,g) is integrated ovef to give : MODEL
the evidenceP(«,3,~v|g) which is then maximized over
the hyper-parameters; the restoration is then performed usingubstituting (2) and (6) into (12) we obtain
the estimated hyper-parameters. In the MAP framework

P(a, 3,7.f,g) is integrated over, 3 andy to obtain the true P(g,f,a,3,7) o a7 [det(R, D
likelihood which is then maximized with respect foln this 1
work we shall use EA instead of MAP analysis. We have found x exp{—§J(fa a, B3, ’7)} (16)

that the EA formulation provides better results since it allows

to estimate the hyper-parameters for restoration—reconstructigmere

problems. In [13] and [19], a detailed discussion is provided of

the merits of EA over MAP for these problems. J(£, o, 3,7) = of|Qf|* + (g — I:If)th_llf(g —Hf). (17)



GALATSANOS et al. HHERARCHICAL BAYESIAN IMAGE RESTORATION FROM PARTIALLY KNOWN BLURS 1787

A. Parameter Estimation Step Taking “—2log” of both sides of (22) we obtain the following

To computeP(a, 3, v | g) as required by the parameter estifunctional:

mation step, we substitute (16) into (13). This gives L{a, 8,%) = —(N — 1)log a + log det [Rg|f<n>]

P, B,v|g) ) /[det(Rglf)]_% + logdet [G(")} +J (f("), oc,/},fy) (24)

1 which has to be minimized.
% eXp{_QJ(f’ 5, 7)} dr. - (18) To minimize this functional we can use the following iterative
) o . scheme whose complete derivation can be found in Appendix A
Now, we are ready to perform the integration in (18). First,
2 —1
ttr [GW QtQH / (N - 1) (25)

we expand/(f, o, 3,~) in Taylor series around a knowfi™, 1 [HQf(n)
I, 0. 8,7) /j(n%l) - [tr [R;ﬁf(n)H/ [Nﬁ(")’v(")}

where(n) denotes the iteration index, i.e., antl)

t
~J (f(")7 oc,/},fy) + (f — f(")) VI, o, B,7)|gon n [tr [G(n)—lﬁtRfﬁf( >]5‘(71)]5‘(n)t1:1}
e
1 t
+ 2 (f =) V2I(E, o, 8.0 (£ =) . (19) , t .
2 ( ) ( ) + (g _ Hf(")) R.Z, . FWE®
Next, we observe that in (19 _ 2
(19) X (g—Hf("))} / [Nﬁ(”) } (26)
VI Bl =0 €0 o tr |[FOFC) R-L N R (R)
if £0) | N , w<n+1>—[r[ glfWH/[ P }
if £} is chosen to be the minimizer dff, «, 3, ) in (17), and
that the Hessian matrix can be approximated by + [tr [G(n)*‘ ﬁth—fﬂn)ﬁ}
V2I(E, @, 8,7)|go = G _ t _ >
A —_ |Jfm -2 —_afrm (n)
=aQ'Q+HR ' JH (21) +(g Hi ) Ry (g Hi )}/ [N'V }

| f(n>
! 7)

where we have not taken into account the derivativeRq]f o) .

with respect tcf. g wheref(™ G F®) () 3" ~(0) gre calculated at itera-
Finally, substituting (19) into (18), and by using the fact th{on (). It is important to note that this iterative scheme can

[det(R,| f)]_(1/2) depends orf weakly, compared to the ex- also be carried out in the _Fourler dpmam (see Appendlx B). _

ponential term under the integral and so it can be substituted byl "€ Parameter estimation cycle in (25)—(27) is repeated until

[det(R, | f<n>)]’% and that integral of a PDF is equal to 1, (18fonvergence in (24) occurs. Although the proof of convergence

becomes of the resulting parameter estimators seems to be analytically
intractable, in all our experiments with this EA algorithm we
1 _1 . . .
Pla, B,7|g) x o255 det [R, | ;o] " det [G(")} z observed not only convergence in fhesteriorfunctional, but
g also in terms of the parameter values.
1
_z (n)
X eXp{ 57 (f ’a’ﬁ”y)} : (22) B Restoration Step

It is interesting to note that thgosteriorfunctional in (22) is To perform the restoration step, we take into account that

equivalent to the likelihood functiond®(g | f, «, 3, v) for this
problem since we assumed uniform priorscar3, and-~y.

In the above equations we have used the fact that (28)
[det(R, f)]—% depends onf weakly, compared to the
exponential term under the integral. To justify this we obser
that the eigenvalues @t | ; in (8) are given by

(&, 3,4) = argmin { (Hf — g)'R_ L (Hf —
1 PP+ 1 lNSf(z) L1 23) (&,3,%) “Lrgmfm{( g) g|Af( g)
i + &]|Qf|J? + log [det (Rm)” (29)

argmax{ P(f|g, o, 4, 7)} = argmax{ P(£, g, o, ,7)}-

\'/Aés a result substituting (16) and (17) into (28) and taking the
negative log

B vy B

whereF (i) is theith DFT coefficient of the imag@andS (¢) is
the periodogram estimate of tlh power spectrum coefficient wheref{g“c = (1//§)FFt + (1/4)1. The functional in (29)

of the imagef (theith eigenvalue of the image covariance mais honconvex and may have several local minima. In general, a
trix). The power spectrum (or the covariance matrix), howevearosed form solution to (29) does not exist and numerical opti-
is a statistic of; it depends on the class of imagékelongs to, mization algorithms must be used. A practical computation of
not onf. The same reasons justify the approximation used f29) can be obtained by transforming it to the DFT domain. In
the Hessian. Appendix B we show using the diagonalization properties of the
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DFT that minimization of (29) can be performed in the DFT dowhere
main as follows:

2 _ t
- 1 [|H@E
F 7) = arg 1 J—
(1) = arg min { I l

xR, (g - f{f<")) (34)

F(i)

and
VA a8k =G =0QQ+HR | H.  (35)

Clearly, the functional relationship ¢f and~ remains the
1}} (30) same in the two likelihood function&(c«, 3,~) in (24) and
L, 3,~) in (33). However, the functional relationship of
changes in (24) and (33). Therefore, we expect the update equa-
tions for /3 and~ to be very similar to the ones of the previous
&Ryorithm but not the update far. Furthermore, sinc®,,

for each frequency=0,1,...,N — 1. In (30),G(¢) and F'(¢)
are the DFT coefficients of the observed and restored imag
H(:) and@() are the eigenvalues # andQ, &, §, andyare o oy depend dh J(f™) «, 3,~) is quadratic with respect

the_estlmates of the hyper-parameters obtained in the param%e{ As a result, the image restoration step gives a linear esti-
estimation step and | denotes the modulus of a complex quan-

tity mate forf for this algorithm.
The “log” term in (30) is weakly dependent dhand can A parameter Estimation Step

be discarded when optimizing with respectftoWe verified To find th . f th . 3 b

this experimentally by comparing the solutions of (30) with and . © find the estimates of the parametdrtx, 5, ) must be

without the “log” term. We used a number of choices for thiinimized. Taking the derivatives df(«, 3, 7) with respect to

initial points for our optimization algorithm (the source, the de= p}, 7, setting them equal to zero and taking these equations to

graded, and the EM-restored images) to test the point of CJH? DFT dojr\r;ain, yields the following iterations far 3, and:
vergence. In all cases we found that the selection of the initialv — 1 i w2 (s L oy nl?

points did not alter the solution of (30), regardless of whethef,(n+1) — Z Q)] <S (1) + N ‘F (%) )
the “log” term was present. Thus, for all practical purposes in =0

N—1 N-L

the restoration step we minimiz&f, «, 3, v) with respect td. _ Z B
— Nat) s + o’ [Q(0)|2
C. Comparison with RCTLS Image Restoration ]:,__1 ’ L K
It was shown in [15] that the RCTLS estimate of the DFT of + s

N

f, F(i), is found by minimizing the following function! (£(¢)) i=0 a™?|Q(i)|? [WHQO)IZ + ﬁ} :

fori=0,1,...,.N -1 1
T O - < {IHOPS™) + GIEOF) - GO}
sy = HOIO = GO0 jompiror. e N
FIE@OP + 2 (36)
From (31), it is clear that when the variance of the noise 1 A 1
in the PSF1/3 becomes zero, th_e RCTLS estimate degenerg(n—ﬂ) =N Z L g S S————
ates, as expected, to the RLS estimate [5]. In that case, the PSF =0 F) ol |Q(1”)| s
matrix H coincides withH and the regularization parameter 1= 1 N ovame
Ny 2
N & g

arrs becomes equal tol /y)arcrrs. An open problem with

2
1 1 1
the RCTLS estimator is how to estimate the parameters [ o atjomE T —Ww}

and~. However, (31) and (30) are very similar and in fact the 2 a(n) (s Lo )y o
“log” termin (31) is, as already mentioned, discarded when op- x {|H('L)| SYV(E) + N|H(Z)F (1) = G(3)| }
timizing. So, the proposed EA provides, together with an alter- (37)
native interpretation of the RCTLS method, an algorithm to es- N1 N 1
timate the unknown hyper parameters. 1 — 1 Z 1 a(IQ()[2
T N 5 B N o + 50
V. EVIDENCE ANALYSIS BASED ON THE AVERAGED-f N 1
COVARIANCE MODEL + — Z
N £ ) 1 1 1 17
We follow identical steps as in the previous section with =0 [N 3 atamE T W}
_ 1 -
R, = o)+ 1 @) < IBOPS O + LRGP - GO
Taking “—2log” of the correspondingP(«, 3, |g) yields a (38)
similar form to (24) log-likelihood function given by with
L(a, 3,7) = —=(N — 1) log v + log det[R,; | 4] S = SJ(C )(z) [Nﬁm + ﬁ} (39)

+logdet[G] + J (£, a,8.7)  (33) (HOP +N35) sobe + 0
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The above algorithm is identical to the EM-based algorithsource signal and the noise [11]. However, in this problem, the
derived for this problem in [16] and [17]. To derive the EMbbservation modelin (4) is not linear, owing to the signal-depen-
algorithm a SAR priorimage model was used for the image prident noise terrA Hf + Ag. Furthermore, the produgA Hf is
andz = [f7 g”]" andg were the complete and incompletenot Gaussian if botlf and AH are Gaussian. Therefore, the
data, respectively. This is no surprise since both the EM and theMSE and the MAP approaches in our problem do not nec-
proposed algorithm find ML estimates for the parameters. essarily yield the same solution. The restoration step of the first

evidence analysis based algorithm is the MAP estimate for this
B. Image Restoration Step problem in the “classical” sense sinfés assumed fixed in the

For the image estimation step we can write similarly to (29¢onditional of (6). However, the restoration step of the EA2 al-
gorithm, where the conditional covarianﬂemf is assumed to

f‘(&, B, 4) = argmin{J(f, &, B, )} be given by (9), is also a MAP estimate. This conditional in ef-
f B B fectlinearizesthe observation model and then the MAP and the
= argmin {(Hf - g)'R; |, (Hf — g) LMMSE estimates become identical.
. ) In an attempt to derive rigorously the mathematical relation-
+ & Qfl +10g[det(5g|f)]} (40) ship between the restoration steps of the two evidence anal-

R S ysis based algorithms we perform a perturbation analysis in Ap-
whereR, | ; = (N/3)[aQ'Q] ! + (1/4)L. This minimization pendix C, under the small noise assumption. There we show that

yields the image estimate obtained by the restoration step of the second
o _ _ 1 algorithm is identical to the “linear” approximation of the image
(&, 3,4) = [Ht(ﬁg | f)_lH + thQ} estimate obtained in the restoration step of the first algorithm.
oy 1 This result is valid for small noise perturbations only. For com-
xH'R, ;) '8 (41) ) . .
parisons at moderate and high noise levels we resort to computer
Taking (41) in the DFT domain we get simulations in the experimental section.
ﬁ( ) H*(i)m Gl VII. NUMERICAL EXPERIMENTS
1) = 4 ) . . .
(|g(i)|2 + %) W + L In this section, we test and compare the two previously de-
& ) ~

rived EA algorithms. For brevity we shall refer to the first one
which is based on the fixefl-covariance prior model as EA1

whereQ(i) and # (%) are the eigenvalues & andH, respec- and to the second one which is based on the averfigestari-

fori=0,1,...N -1 (42)

tively, andG(s) is the DFT ofg. ance model as EA2. These algorithms are tested under white and
' correlated PSF-noise perturbations. First, the restoration capa-
C. Relation to LMMSE Image Restoration bilities of the proposed algorithms are compared using synthetic

images that satisfy exactly the SAR image model. Second, these
algorithms are compared with natural images for simultaneous

f— Lg = R,H'[HR H" + Ry ()] 43) Parameter egtimation a.nd re_storation.
& H [HR; r(O"s (43) The (per pixel) MSE is defined as

The LMMSE filter for this problem [7], [24] is given by

whereR ; andR(f) are the covariances of the sigifiaind the 1 o
combined PSF and additive noigeHf + Ag, respectively. MSE = +[If - fl2 (45)
A few comments are in order regarding the LMMSE esti- .
mator in (43). When the PSF and the observation noise are whifgeéref andf are the original and the restored (upon conver-
with variancesl/# and1/+, as assumed in Section II, it wasdence) images, respectively.
shown in [16], [17] that the LMMSE filter in the DFT domain To obtain statistically meaningful results we performed

assumes the form Monte-Carlo simulations in which the MSE was averaged over
N five different noise realizations. We experimentally observed
F(i) = Sp@H" () -G, that more than five noise realizations does not change the
[|H(i)|2 + %} Sp(@) + 2 nature of the MSE curves.
fori=0,1,...N—1. (44) The MSE is a function of two noise parameteirss and1/+.

In order to enhance the clarity and the visibility of the results we

Thus, (42) is identical to the DFT expression of the LMMSE eglotinstead of 3-D plot of the MSE versus both noise parameters

timate for this problem in (44) with a SAR image prig, (i) = WO representative 2-D MSE plots: (a) For a fi8NR, = 30
(1/a|Q()|?)). dB we plot MSE versu$NR;,, by varying1/3, and label this

plot as Plot-H. (b) For a fixe@NR; = 20 dB we plot MSE
VI. COMPARISON OF THERESTORATION STEPS OF THETwo ~ VErsusSNR, by varying1/v, and label this plot as Plot-G. In
PROPOSEDALGORITHMS these plots the noise parameters are expressed in terms of the

) ] o signal-to-noise ratios (SNR), i.e.,
Itis a well-known fact that the linear minimum mean square- 2

error (LMMSE) estimator is identical to the MAP solution under SNR), — |[h] (46)
a linear observation model and a Gaussian assumption for the ' N%




1790 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 10, OCTOBER 2000

Plot-H: SNA_g=30d8 Plot-G: SNR_h=20dB
T 1500

ea? —i—
eal —x—

n L A s - . n n L
10 15 20 25 30 5 10 15 20 25 30 35 40
SNR_h [dB] SNR_g [dB]

(a) (b)

Fig. 1. (a) Experiment I: MSE plot: white PSF noise case, Gaussian random field image, carista¢it) Experiment |I: MSE plot: white PSF noise case,
Gaussian random field image, constanp3.

where||h||? is the energy of the known part of the PSF, and system we obtained the zero-mean Gaussian random field with
covariance equal tthQQ?) L.

I1£]12 In this experiment, the MSEs for EAL1 and EA2 are com-

NI (47) pared assuming exact knowledge of all three parameters. The
gl constantt/y and the constarit/3 MSE plots are shown in

Figs. 1(a) and (b), respectively. From these curves we observe

where||f||? is the energy of the original image. that the EA1 algorithm that uses the exact model outperforms
In all experiments presented in this paper, unless explicitly ithe EA2 algorithm that uses the approximate one. Furthermore,

dicated, the following Gaussian-shaped PSF was used for blfipm the constant/ curve we observe that as the PSF noise

SNR, =

ring: gets smaller the performance of the two algorithms becomes
similar. This is expected since when the PSF noise becomes
24 52 zero both algorithms coincide. From the constafit we ob-
h(i,j) = c-exp {— 5 32 } , serve that as the additive noise gets smaller the difference in
fori,j = —15.—14.....~1,0,1.... 14,15 (48) performance between the EA1 and EA2 algorithms gets wider.

This can be explained by the fact that, in this case, the PSF noise
dominates and the EA1 algorithm handles it better.
wherec is a constant chosen so thaf, ; (i,j) = 1. The Experiment II: In this experiment, the “Lena” image was
same kernel as in (48) with the additive white-noise compased. In this case, the source image cannot be accurately mod-
nent of variancé /3 was used for restoration. The blurred dateled as a Gaussian random field with the power-spectrum in-
was further degraded with additive white observation noise wérsely proportional to the transfer function of the Laplacian op-
variancel/~v. We also performed the experiments where therator, as is the case with the Gaussian random field in the first
“smooth” PSF from (48) was used for restoration, while thexperiment. Since exact knowledge of the parametées not
noisy one ((48) plus the additive PSF noise) was used in thessible inthis case, the proposed algorithms simultaneously es-
blurring process. Similar results were obtained in both casestimated the known parameters while restoring the image. More
In all experiments for both the EA1 and the EA2 algorithmspecifically, two cases are shown. In the first;y is held con-
after each iteration of the parameter estimation step the furstant and is assumed known whileand1//3 are estimated. In
tionsL(«, 3,v) in (24) andL(«, 3, ) in (33) are examined, re- the secondl// is held constant and is assumed known while
spectively. In all cases we observed that the proposed iteratienand 1/ are estimated. The constahtss and constant-//3
reduced the value of both functions at each step. The terminatMSE plots are shown in Fig. 2(a) and (b), respectively. From
of the iterative algorithms was determined based on the conviitese curves we observe that the EA1 and EA2 algorithms give
gence of the values of these functions. almost identical performance. The slight difference in perfor-
Experiment I: In this experiment, we assume white-noisenance can be explained by the fact that in this case the SAR
PSF perturbations with exact knowledge of the noise parametinsige model is also not exact and any difference due to the ap-
1/8 and1/~ (simulated experiment). The parametgrhow- proximation inR, | ; for the EA2 algorithm is not significant.
ever, depends on the original image. In order to have control over Experiment Ill; In this experiment, the EA1 and EA2
« we generate the source image based on the Gaussian imgggroaches are compared under the correlated PSF perturba-
model in (2). More specifically, a white zero-mean Gaussidions. In these experiments we assume that the restoration is
random field was passed through the linear filter with impulggerformed under PSF modeling errors. More specifically, we
response equal t(axQQt)*%,wherea was preselected angg assume that the PSFs used for blurring and restoration are
is the circulant Laplacian operator. At the output of this lineaBaussian shaped, but with different widths. The blurring PSF
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Fig. 2. (a) Experiment Il: MSE plot: white PSF noise case, “Lena” image, consfant{b) Experiment Il: MSE plot: white PSF noise case, “Lena” image,
constantt/ 3.
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Fig. 3. (a) Experiment Ill: MSE plot: Correlated PSF noise case, “Lena” image, exact knowledge of power spectrum of the PSF errors. (b) Expafigtent 111:

plot: Correlated PSF noise case, “Lena” image, algorithms fit white-noise model to PSF errors.

@ () (©)

Fig. 4. Experiment lll: Sample images corresponding to the MSE plots in Fig.&)};, = 25 dB. (a) Degraded image, (b) EA2 with SAR prior, and (c) EA1
with SAR Prior.

had standard deviation 3.0 while the restoring PSF had standB&F errors in both algorithms. The paramétér was assumed
deviation 4.0. Both PSFs had region of supportléfx 15 known for comparison purposes, while the parametes)s es-
pixels. The “Lena” image was used in this experiment. timated simultaneously while restoring. The constaft-MSE

In the first part of this experiment, we compare the MSHEglot for this experiment is given in Fig. 3(a). Corresponding
of the EA2 and EAL restoration filters for SAR image priorsample images from this experiment are shown in Fig. 4.
assuming exact knowledge of the PSF errors. For this purposén the second part of this experiment, we assume that no
we used the periodogram estimate of the power spectrum of kmowledge is available about the PSF errors, and we let the al-
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@ ] (c)

Fig. 5. Experiment Ill: Sample images Corresponding to the MSE plots in Fig. 3tH}, = 20 dB; (a) Degraded Image; (b) EA2 with SAR Prior; (c) EAL
with SAR Prior.

Plot~H: SNR_g=40 dB
T T

gorithms fit a white noise model to the correlated PSF errors. I 200 - ; ;
other words, we simultaneously estimate both parametarsd ——  EAZwihSARpior
1/73 and restore the image. The constayt- MSE plot for this 7 Ebaed o deeomouten
experiment is given in Fig. 3(b) and the corresponding image
are shown in Fig. 5.

From this experiment we observe that the EAl algorithm out &%}
performs the EA2 algorithm. This can be explained by the fac
that for this experiment where the PSF noise is not white an 8 coof
a white model is used for restoration the approximation intro
duced in the EA2 algorithm becomes more significant. Further
more, we observed that the performance gap increases as |
additive noise decreases. This behavior was also observedin E
periment | and can be explained similarly. 200~

Experiment IV:In order to compare the proposed ap-
proaches with previous ones blind deconvolution based o | , } . ‘ , ,
the EM algorithm [10] using a SAR prior image model was ~ ° ° " SNR_h ] ® % *
used. This algorithm was compared to the EA2 approach
using the same image data as those in Experiment Il (the Lé—}i_@ 6. Experiment IV: Comparison of blin_d-decpnvolut_ior] based on the EM
image degraded by the same PSF and with additive whﬁ’g'utr?ngrt%pg:iﬂfﬁi %popr:;’g;'&ggep‘?gff'g‘r’gggjejtigsé'ésfor both cases are
noise). In both algorithms was assumed known and the other

parametersy and ; for the proposed EA2 approach and ’39; Davidon-Fletcher—Powell optimization algorithm [4].

1000}

and the PSF for blind deconvolution were estimated. For bli . . . . .
deconvolution the known mean of the PSF was used as thec gradient required b_y this e_llgonthm was foun(_j in closed
initial value for the PSF estimates. A Monte-Carlo study fop - Convergence of this algorithm was achieved in about ten

SNR, = 20,30 and40 dB with SNRy, = 5, 10, 15, 20, 25 and 'te;at'9”5' ot observation that e based on al
30 dB was performed, resulting in 18 different cases total. As h important observation that was made based on all the nu-

before five different noise realizations were used for each ca$ grlcal experm_1ents that we performed W"?‘? that .n e|ther_ algo-
The constant; average MSE plots foNR, = 40,30, and rithm could estimate the PSF and the additive noise variances

20 dB are shown in Figs. 6, 7(a), and (b), respectively. Frogf{ﬁ andl/~ sim_ultaneously. _Since the sum of these noise vari-
these figures it is clear, as expected, that the EA2 approach Qs appears in the data th'.s was fo be e>_<pected._To overcome
explicitly takes into account the statistics of the PSF model l'ilgls d|ff|culty_ prior knowledge in the form of informative priors
superior to blind-deconvolution which does not. The interestirﬂ;aS to be utilized fory, 3, .

observation here is that as the additive nalsg increases the
difference between EM-based blind-deconvolution and EA2
gets more significant. This seems to imply that in EM-based In this paper, we applied evidence analysis (EA) within the hi-
blind-deconvolution the additive noisAg interferes more erarchical Bayesian framework to the parameter estimation and
with the estimation of the PSF than in the EA2 approach.  image restoration problem from partially-known blur. In this ap-

In all previous experiments, convergence was achieved proach the unknown parameters are treated as random variables
about 50 iterations between the restoration and paramdteyper-parameters) with certain probability density functions
estimation steps. To implement the restoration step of the EARDF), through which the prior knowledge about the hyper-pa-
approach we minimized (30) with respect to the real and thameters is incorporated into the algorithm. Only the uniform
imaginary parts ofF'(¢) for every discrete frequencyusing (noninformative) hyper-priors were utilized in this paper. Two

VIII. C ONCLUSIONS AND FUTURE WORK
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Plot-H: SNR_g=30 dB
1200 T T

Plot-H: SNR_g=20 dB
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Fig. 7. Experiment IV: Comparison of blind-deconvolution based on the EM with the proposed EA2 approach. The additive noise statistics for brgh cases
assumed to be known. (a) ConstaniSE plot forSNR, = 30 dB, (b) constanty MSE plot forSNR, = 20 dB.

EA algorithms are derived based on the SAR image model usingAs a final remark, we would like to point out that that there
two different assumptions faP(g | o, 3, ~). In the restoration is no rigorous proof of convergence for the EA framework. In
step of the first EA algorithm we obtain the image estimata&l our numerical experiments however, we did not experience
which is the output of the regularized constrained total leaashy convergence difficulties with either one of the proposed al-
squares (RCTLS) filter proposed in [15]. In the restoration stgmrithms.

of the second proposed EA algorithm for Gaussian image prior

we obtain the image which is the output of the LMMSE filter APPENDIX A
for this problem. It is interesting to note that when the PSF PARAMETER ESTIMATION STEP FOR THEEAL ALGORITHM
noise becomes zero both algorithms coincide and become iden- (FIXep-f COVARIANCE MODEL)

tical to the “iterative” LMMSE filter for the classical restora-

. Equation (24) represents the logarithm of gesteriorPDF
fuo_n problem (PSF completely_ known) [10], [19] Therefore\}vhich should be minimized with respect tg 3, and~, ac-
it is expected as the perturbations from the known part of the . PP

rding to (10). To perform minimization of (24) we make use

PSF become smaller the differences in performance betweencfﬁﬁ1 . ) )
. ) o : ; e following matrix algebra formulas:
proposed algorithms and “classical” restoration algorithms &

minish. -1
oC—1(6 aC(0
The two algorithms were experimentally studied under both T() = —C—l(e)w)c—l(e) (A1)
white and correlated point-spread function (PSF) noise pertur- I[log desC(0)] ac(6)
bations. Based on the experimental results we conclude that the & 70 =tr {Cl(e)w} (A2)

EAZ2 algorithm is quite robust to the approximation that the av-
eragedf model introduces. Indeed, when the PSF noise is WhU\%ereC

tr:e E.A;]Z a:cgorithm gives} ZIESSt igentical resalts with t(;‘; .EAéF\rameter vectat, andtr(-) denotes the trace of a matrix.
algorithm for a range o s. However, when an additional rpying the partial derivative of (24) with respect do and

approximation is introduced to the EA2 algorithm as in EXpeE’etting it equal to zero we obtain
iment Il where colored PSF noise is modeled as white noise,

then the EA1 algorithm outperforms the EA2 algorithm. Fur- N -1
thermore, the EA1 algorithm worked better in Experiment | =
where bothAh the PSF noise antlwere Gaussian. This is at-
tributed to the fact that the assumptions used in the EA1 algtking the partial derivative of (24) with respecttave obtain
rithm capture better the statistics of the teHf which was

(6) denotes the square matwhich depends on the

H Q™| + [GW“QtQ} . (A3)

«

assumed Gaussian for the EA2 algorithm. 1 1 ey
. ) . . tr | R ey g FVVF
Another point that became obvious in our experiments was glr g
that neither of the tvyo algorithms pmﬁnultaneousl;estimatg _ (g B ﬁf(n)>t R iF(n)
1/7,1/~ when noninformative priors are used. To alleviate al s 32
this problem, in some initial work on this problem, informative x P R-! (g _ ﬂf(n))
Gamma priors were used (see [16] and [17, ch. 5]. It was then gl

observed_ that an inf_ormative pr_ior for one hyper-parameter Tt |:G(n)1HtR—1 (MLF(")F(")tR_l o H
only suffices to obtain good estimates for all three of them gl g2 glf
using the proposed algorithms. (A4)
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Using the identity derivation will be done for the restoration step of the EA1 al-
gorithm which is based on the fixefleonditional covariance
1 () ()t 1 1.4 model; the other implementations follow very similar steps.
tr Rg| £ /32F F trfl] - tr Rg|f<”> Let W denote theN x N DFT matrix with [W],,, =

N 1 exp{—j(2r/N)mn}. Denoting by(-)~* and(-)¥ the inverse
= _ —R! iti i ik~ L H
=3 tr [[3 Rg|f<n>} . (A5) andthe Hermitian operations, respectivd¥, * = (1/N)W

K [12]. InsertingW —1W into (29) and using the diagonilization
properties of the matri®%, in other wordsSWCW ™! = D,
whereC andD are a circulant matrix and a diagonal matrix
with the eigenvalues of’, we obtain

(A4) can be rewritten as follows:

N —1 n tp—
e A T e 11

) o I = (B~ ) W oW
x L popm R wa} + (g - HE™) £

-1
X <FFH + 1I) W IW(HSf —g)
gl

- (M) g—1 — HfM
xR /pF FORCL (g HED). (A6) 1
+ fHWHNW(&QQt)W_1Wf
Similarly, taking the partial derivative of (24) with respectito 1 1
setting it equal to zero, and using (A5) the following equation is + log [det <W <7FFH + TI> W‘lﬂ . (B1)
obtained:
N . Now, examining the terms in (B1) separately, and using the di-
== [ FME® R_| fw} agonalization properties of the DFT for circulant matrices, we
v Py obtain
+tr [G(") Ht “R77 H} _
gl f( ) W(Hf _ g)
+(g- ﬂf<">) —R—| oo (8- HE™) . (AT) = WHW 'Wf - Wg = D;Frr —Grr - (B2)
w GFF” + lI) w1
We note that both sides of (A6) are decreasing functiorisfof B v
a fixed~ and that both sides of (A7) are decreasing functions 1 1 o1 1 -t 1
of ~ for a fixed 5. Equations (A3), (A6), and (A7) can then be _§WFW WF W™ + §I =Dp (B3)
iteratively solved as shown in (A8)—(A10) at the bottom of the N1
page, wherd™ G F) o) 30 40 are calculated at gt <EAFF” + 11> =11 <—|F( N2 + 1) (B4)
iteration (). B o Y
APPENDIX B whereFrr and Gy are the DFT transforms df andg, the
DERIVATION OF ALGORITHMS IN THE DFT DOMAIN eigenvalues of the circulant matrk are the DFT values df,

In this Appendix, we describe the use of the DFT to imple andDH andD are given by

ment the iterative schemes proposed in this paper. The complete Dy = diag[H(0), H(1),...,H(N — 1)] (B5)
o -

L |]ee] +u e i) .

D) = N1 (A8)
1 B tI‘ |:R;| f(”>:|
Bntl) | Npm~m)

tr [GOVTHR, P, FOORCVH] + (g - HE™) R 2 FOFO (g - HEW)
+ N B (A9)
mEpm'R-1 M HIR 2 —HfM)' R 2 = ()
. o [FOFORL ] o [GWTHR, 2 H] + (g - BE™) 'R, 2, (g — HE™) a0

NCEE N30~ + N~
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and
) 1
Dp:dlag[ﬁ| (0 )|2+ % AIF( )

1

1 1
e = | F(N = D)? 7}. B6
+,y /3| ( l +,y (B6)
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the consistent solutiofy,. Then, the consistent solutidp be-
comes perturbed bAAf, whereAf is caused byAH andAg.
The sum of the perturbation errdkf and the consistent solu-
tion f, constitute the LMAP solution.

Neglecting the “log” term in (29), the necessary condition for
aminimum of (17) is that its gradient is equal to zero. Setting the

Having established the above, (B1) can be now transformed it@dient ofJ (f, «, 3, v) with respect td equal to zero yields

1(i)F (i) — Gi (£, B,7)
1 [JH@GFGE) = G@EP 2o J(f| e, B,7)
J(F) = il D2
() ; {N LF@E+ 1L + &|Q)[7[F(4)] of 1
, 7 ) 1 -
= 9H' — (Hf — t<_FFt+_I>
+10g[ |F(i)% + }J } (B7) ( g) 3 5
Since each termin (B7) is independent of others, the sumin (B7) %

can be minimized by minimizing each frequency component of

the sum separately.

Similar to the derivation of the above restoration step,
(25)—(27) can be efficiently implemented in the DFT domain

as shown in (B8)—(B10) at the bottom of the page.

APPENDIX C
RELATIONSHIP BETWEEN THE RESTORATION STEPS OF THE
Two EA-BASED ALGORITHMS

We begin by observing that (4) can be rewritten as

9 (%FFt + %I)
T]

t 1 g -1
</3FF + I) (Hf — g) + 2R} 'f
with R7* = aQ'Q. (C4)

UsingHf, = g and neglecting higher-order termsf, AH,
andAg, and their products, we find from (C4) that

dJ(f) 1\7"
T 0o B SFF, + -1
of 0& </3 okFo+ )

x (HAf — AHf, — Ag) +R;(fo + Af) = 0.

g=8+Ag (C1) (C5)
where Letting
_ —1
g = Hf (C2) _ 1IN
and A=|H </3F0F0+ I) H+R, (C6)
Ag=AHf + Ag (C3) 1\"!
B=H' < FoF, + I) (C7)
is the image-dependent noise term. Now, suppose that the un- p
perturbed (noise-free) system of linear equatibifs= g has a and
consistent solutiofyy. Perturbg by Ag tog = g + Ag around c= R;lfo (C8)
() ()2 4 Lo
1 |Q 8(”) F ()| (n) 1 . 2
+ = ‘F(") i ‘ BS
o) Z HOP + a7 QOP OGP + o Ljaer TN 11 Y ®9)
N—1 " =
o 3 1 [E @) _ |H ()
Pt = A NB? S5 [F @O + 6 [HE? + ot 555 Q@ PIF™ ()2 + o 551Q(0) 2
N
1 1 1 [FOG |GE) - BGHFO()] (89)
Ni(n> (") 1 n N 32 N 2 2
/ 8 |F( ) | —+ (n> / |:@(n) F(n )| + ﬁ}
1 J‘i 1 1 |H (i)
n+1 = n .
PO | NV PO @)+ s [H@R + a0 S QO [ FO G + a5 1Qe)|2
12 . S () /oy [ 2
N 1 | ) (3) 11 |G@E) — H@F™ (i) (B10)
n n N2 n)2 2
Nﬁ( )fy( ) ﬁ |F(")('L)| + ﬁ ny( 2N |: |F(") | + :|
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