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Abstract—In this paper, we examine the restoration problem
when the point-spread function (PSF) of the degradation system
is partially known. For this problem, the PSF is assumed to be the
sum of a known deterministic and an unknown random compo-
nent. This problem has been examined before; however, in most
previous works the problem of estimating the parameters that de-
fine the restoration filters was not addressed. In this paper, two it-
erative algorithms that simultaneously restore the image and esti-
mate the parameters of the restoration filter are proposed using ev-
idence analysis (EA) within the hierarchical Bayesian framework.
We show that the restoration step of the first of these algorithms is
in effect almost identical to the regularized constrained total least-
squares (RCTLS) filter, while the restoration step of the second
is identical to the linear minimum mean square-error (LMMSE)
filter for this problem. Therefore, in this paper we provide a solu-
tion to the parameter estimation problem of the RCTLS filter. We
further provide an alternative approach to the expectation-max-
imization (EM) framework to derive a parameter estimation al-
gorithm for the LMMSE filter. These iterative algorithms are de-
rived in the discrete Fourier transform (DFT) domain; therefore,
they are computationally efficient even for large images. Numer-
ical experiments are presented that test and compare the proposed
algorithms.

Index Terms—Blind image restoration, hierarchical Bayesian
models, image restoration.

I. INTRODUCTION

T RADITIONALLY, image restoration algorithms have as-
sumed exact knowledge of the blurring operator. In re-

cent years, a significant effort has been devoted to solving the
so-called blind deconvolution problem, in which it is assumed
that little or nothing is known about the underlying blurring
process, see for example [9]. In most practical applications, the
point-spread function (PSF) is neither unknown nor perfectly
known. Usually, some information about the PSF is available.
However, this information is never exact.
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To our knowledge, restoration of an image when the PSF is
modeled by known mean and an additive random component
was addressed for the first time in [23]. In this work, the linear
minimum mean-square-error (LMMSE) solution was derived
for the continuous case only assuming known statistics for the
PSF and the additive noises and no experimental results were
provided. In [7], [8], [24], and [25], this problem was revis-
ited. In [7], [8], and [24], the LMMSE filter was derived for this
problem for the discrete case and numerical experiments were
shown. In these works, a white noise model for the PSF and ob-
servation errors was used and knowledge of the error statistics
was assumed. A difficulty with the LMMSE filter in general
is that the signal covariance is not usually known in practice.
In [7], the signal covariance is assumed known, but in [8] and
[24], an iterative algorithm was proposed in which the current
LMMSE signal estimate is used to update the signal covariance
estimate. However, the algorithm is ad-hoc and its convergence
properties were not analyzed. The expression derived in [24] for
the LMMSE filter is not correct. Furthermore, the filter and the
estimation algorithm is not derived for the circulant case; thus,
it cannot be efficiently calculated for large images. In [25], the
Backus-Gilbert method is proposed for this problem. However,
the parameter that controls the tradeoff between resolution and
noise was not estimated systematically.

In [2] and [22], the problem under consideration was
addressed using the theory of projections onto convex sets.
However, these convex sets were described by parameters
which were assumed knowna priori. In [15] this problem was
addressed using the regularized constrained total least-squares
(RCTLS) framework. However, the parameters that define the
RCLTS filter were again assumed knowna priori.

In the classical restoration problem, where the PSF is ex-
actly known, the ratio of the observation noise variance and the
smoothness parameter needs to be estimated (see, for example,
[5]). This ratio is usually called the regularization parameter and
captures the tradeoff between fidelity to the data versus con-
fidence to the prior information used by the restoration filter.
A plethora of algorithms has been proposed in the past to esti-
mate this parameter (see, for example, [5]). The estimation of
the parameters of the restoration filter in the partially known
PSF problem is a much more difficult for the following reasons:
1) In the classical restoration problem, there is only one param-
eter to be estimated and the restoration filter in most cases can
be found in closed form; therefore, a subjective trial-and-error
search of a one-dimensional (1-D) space can be easily imple-
mented to obtain a good value for the regularization parameter.
2) In contrast, for the partially known PSF restoration problem,
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there are three parameters to be estimated: the variance of the
PSF noise, the variance of the observation noise, and the param-
eter that captures the image smoothness. Thus, it is impossible
to implement a trial-and-error subjective search in a three-di-
mensional (3-D) space.

In [16] and [17], an iterative algorithm for simultaneous pa-
rameter estimation and image restoration based on the EM al-
gorithm [11] was proposed. It was derived under the assump-
tion that the observed data on the image-dependent noise term
is Gaussian, and two models for the image prior were used. Due
to this assumption, the restoration step of this algorithm is linear
and is identical to the LMMSE filter for this problem.

In this paper, we apply evidence analysis (EA) within the
hierarchical Bayesian framework to the partially known blur
restoration problem [1], [18], [19], [21]. Hierarchical Bayesian
analysis is performed in general by combining the prior infor-
mation and the observed data into what is called theposterior
distribution, from which all the inferences are made.

The rest of this paper is organized as follows. In Section II,
the imaging and image models are discussed. In Section III, the
basic philosophy behind EA is briefly presented and its appli-
cation to the restoration problem from partially known blur is
discussed. In Sections IV and V, two EA based algorithm are
derived using two models for the conditional distribution of the
data. The relationship between the restoration steps of the pro-
posed two EA algorithms is discussed in Section VI. In Sec-
tion VII, we present numerical experiments which compare the
proposed approaches. Finally, in Section VIII we present our
conclusions and suggestions for future research.

II. COMPONENTS OF THEHIERARCHICAL MODEL

Let us now examine the components of the hierarchical model
used for the partially known blur restoration problem, that is,
the image model, the observation model, and the model for the
unknown hyperparameters.

A. Image Priors

A commonly used model for the image prior is based on
the stationary Gaussian zero-mean probability density function
(PDF), i.e.,

(1)

where is the circulant covariance matrix of, and
denotes the determinant of a matrix (see, for example,

[10]). In many practical situations, in (1) may not be avail-
able and must be estimated from the blurred and noisy data.
However, may not be identifiable from a single degraded
image due to a large number of unknown parameters in.
To avoid this problem, the simultaneously autoregressive (SAR)
image models have been proposed, see for example, [18]–[20].
These models can be described by the following conditional
PDF:

(2)

where is positive unknown parameter that controls the
smoothness of the image and captures the image

autoregressive model. It is easy to see that the PDFs in (1) and
(2) are equivalent when . For simplicity, but
without loss of generality, we shall use a circulant Laplacian
high-pass operator for throughout the rest of this paper [12].

B. Observation Model

In [7] and [24], the space-invariant PSF was represented as the
sum of a deterministic component and a stochastic component
of zero-mean, i.e.,

(3)

where and are the deterministic (known)
and the random (unknown error) components of the PSF, re-
spectively. This is a very general model that attempts to incor-
porate the random (unknown error) component of the PSF in
the restoration algorithm. The unknown component of the PSF
is modeled as stationary zero-mean white noise with
covariance matrix , where denotes the vari-
ance of the PSF noise andis the identity matrix. The observa-
tion vector is also contaminated by zero-mean additive white
noise with covariance matrix , where
denotes the variance of the observation noise. Furthermore, the
noises in the observed data and the PSF are assumed indepen-
dent of each other and independent from the source image. In
this case, the image-degradation can be described by the model
[7], [15], [24], [25]

(4)

in which

(5)

and are lexicographically ordered representa-
tions of the observed degraded image, the source image, and the
additive noise in the observed image, respectively. The matrix

is the known (assumed, estimated or measured) component
of the PSF matrix is the unknown component
of the PSF matrix, generated by defined in (3). Throughout
the rest of this paper a circulant approximation of Toeplitz ma-
trices [12] will be used to allow calculations to be performed
using the discrete Fourier transform (DFT); thus,and
together with are circulant matrices [12].

From (3)–(5), it is clear that the form of the conditional dis-
tribution of is not simple. In what follows we propose two
models for .

1) Fixed- Covariance Model:For this model, we use
a Gaussian assumption for both the PSF noise and
the additive noise [see (3)–(5)]. Then, to determine

since vector is not a random quantity but
rather a fixed one, following [14] it is straightforward to see
from (4) that is given by

(6)
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The conditional covariance in (6) is given by

(7)

where we have used the commutative property of the convo-
lution operation, denotes the circulant matrix generated by
the image is the unknown PSF noise vector from (3) and

denotes the expectation operator. Equation (7) can be fur-
ther simplified as follows:

(8)

2) Averaged- Covariance Model:For this model, we
assume that theobservations are Gaussian and instead of
using in the expression for the covariance we use its mean
value from the prior. In other words, the expectation in (7) is
taken over also. Thus, for this model we assume a Gaussian

with mean and covariance given by

(9)

Note that by using this approximation we have incorporated
the uncertainty of the image prior model,, in the conditional
distribution. Thus, we made the function
quadratic with respect to. This yields a linear estimator for

as will be shown in what follows.
Because of the attractiveness of the Bayesian formulation, it

is convenient to use priors on the hyperparameters even when
very little prior information is available about certain parame-
ters [1]. According to [1], in situations where no prior informa-
tion is available a noninformative prior is used. This applies to
the hyperparameters that were previously intro-
duced. In this paper we use improper, non informative priors

over .

III. H IERARCHICAL BAYESIAN ANALYSIS

Let us examine how the hierarchical Bayesian analysis is
performed on our partially known blur restoration problem.
After defining , the Bayesian analysis can be
carried out in two different ways. In the evidence analysis
(EA) framework, is integrated over to give
the evidence which is then maximized over
the hyper-parameters; the restoration is then performed using
the estimated hyper-parameters. In the MAP framework

is integrated over and to obtain the true
likelihood which is then maximized with respect to. In this
work we shall use EA instead of MAP analysis. We have found
that the EA formulation provides better results since it allows
to estimate the hyper-parameters for restoration–reconstruction
problems. In [13] and [19], a detailed discussion is provided of
the merits of EA over MAP for these problems.

According to the EA approach, the simultaneous estimation
of , and is done as follows.

Parameter estimation step:

(10)

Restoration step:

(11)

The estimates , and from the parameter estimation step
depend on the current estimate of the image. Likewise, the esti-
mate from the restoration step will depend on current estimates
of the parameters. Therefore, the above two-step procedure is
repeated until convergence occurs.

In order to find , as required by the parameter
estimation step, we take into account that from the distributions
defined in Section II we have

(12)

Then, to obtain as required in (10) we marginalize
the PDF in (12) with respect to[1], [18], and [19], i.e.,

(13)

Since we assumed “flat” noninformative hyper-priors,
can be discarded in (12) and so we have

(14)

The use of Gamma hyper-priors for this problem is described in
[6] and [17].

Now, as required in (11) for the restoration step, the image
posteriorPDF can be obtained applying Bayes
rule to the joint PDF, i.e.,

(15)

where and are given in (2) and
(6), respectively, evaluated at , and .

Using the two different choices for the conditional covariance
given in given in (8) and (9), we will now proceed with the
evidence analysis.

IV. EVIDENCE ANALYSIS BASED ON THEFIXED- COVARIANCE

MODEL

Substituting (2) and (6) into (12) we obtain

(16)

where

(17)
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A. Parameter Estimation Step

To compute as required by the parameter esti-
mation step, we substitute (16) into (13). This gives

(18)

Now, we are ready to perform the integration in (18). First,
we expand in Taylor series around a known ,
where denotes the iteration index, i.e.,

(19)

Next, we observe that in (19)

(20)

if is chosen to be the minimizer of in (17), and
that the Hessian matrix can be approximated by

(21)

where we have not taken into account the derivatives of
with respect to .

Finally, substituting (19) into (18), and by using the fact that
depends on weakly, compared to the ex-

ponential term under the integral and so it can be substituted by
and that integral of a PDF is equal to 1, (18)

becomes

(22)

It is interesting to note that theposterior functional in (22) is
equivalent to the likelihood functional for this
problem since we assumed uniform priors on , and .

In the above equations we have used the fact that
depends on weakly, compared to the

exponential term under the integral. To justify this we observe
that the eigenvalues of in (8) are given by

(23)

where is the th DFT coefficient of the imageand is
the periodogram estimate of theth power spectrum coefficient
of the image (the th eigenvalue of the image covariance ma-
trix). The power spectrum (or the covariance matrix), however,
is a statistic of ; it depends on the class of imagesbelongs to,
not on . The same reasons justify the approximation used for
the Hessian.

Taking “ ” of both sides of (22) we obtain the following
functional:

(24)

which has to be minimized.
To minimize this functional we can use the following iterative

scheme whose complete derivation can be found in Appendix A

(25)

(26)

(27)

where are calculated at itera-
tion . It is important to note that this iterative scheme can
also be carried out in the Fourier domain (see Appendix B).

The parameter estimation cycle in (25)–(27) is repeated until
convergence in (24) occurs. Although the proof of convergence
of the resulting parameter estimators seems to be analytically
intractable, in all our experiments with this EA algorithm we
observed not only convergence in theposteriorfunctional, but
also in terms of the parameter values.

B. Restoration Step

To perform the restoration step, we take into account that

(28)

As a result substituting (16) and (17) into (28) and taking the
negative log

(29)

where . The functional in (29)
is nonconvex and may have several local minima. In general, a
closed form solution to (29) does not exist and numerical opti-
mization algorithms must be used. A practical computation of
(29) can be obtained by transforming it to the DFT domain. In
Appendix B we show using the diagonalization properties of the
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DFT that minimization of (29) can be performed in the DFT do-
main as follows:

(30)

for each frequency . In (30), and
are the DFT coefficients of the observed and restored images,

and are the eigenvalues of and , and are
the estimates of the hyper-parameters obtained in the parameter
estimation step and denotes the modulus of a complex quan-
tity.

The “log” term in (30) is weakly dependent onand can
be discarded when optimizing with respect to. We verified
this experimentally by comparing the solutions of (30) with and
without the “log” term. We used a number of choices for the
initial points for our optimization algorithm (the source, the de-
graded, and the EM-restored images) to test the point of con-
vergence. In all cases we found that the selection of the initial
points did not alter the solution of (30), regardless of whether
the “log” term was present. Thus, for all practical purposes in
the restoration step we minimize with respect to .

C. Comparison with RCTLS Image Restoration

It was shown in [15] that the RCTLS estimate of the DFT of
, is found by minimizing the following function:

for

(31)

From (31), it is clear that when the variance of the noise
in the PSF becomes zero, the RCTLS estimate degener-
ates, as expected, to the RLS estimate [5]. In that case, the PSF
matrix coincides with and the regularization parameter

becomes equal to . An open problem with
the RCTLS estimator is how to estimate the parameters,
and . However, (31) and (30) are very similar and in fact the
“log” term in (31) is, as already mentioned, discarded when op-
timizing. So, the proposed EA provides, together with an alter-
native interpretation of the RCTLS method, an algorithm to es-
timate the unknown hyper parameters.

V. EVIDENCE ANALYSIS BASED ON THE AVERAGED-
COVARIANCE MODEL

We follow identical steps as in the previous section with

(32)

Taking “ ” of the corresponding yields a
similar form to (24) log-likelihood function given by

(33)

where

(34)

and

(35)

Clearly, the functional relationship of and remains the
same in the two likelihood functions in (24) and

in (33). However, the functional relationship of
changes in (24) and (33). Therefore, we expect the update equa-
tions for and to be very similar to the ones of the previous
algorithm but not the update for. Furthermore, since
does not depend on is quadratic with respect
to . As a result, the image restoration step gives a linear esti-
mate for for this algorithm.

A. Parameter Estimation Step

To find the estimates of the parameters must be
minimized. Taking the derivatives of with respect to

, setting them equal to zero and taking these equations to
the DFT domain, yields the following iterations for and :

(36)

(37)

(38)

with

(39)
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The above algorithm is identical to the EM-based algorithm
derived for this problem in [16] and [17]. To derive the EM
algorithm a SAR prior image model was used for the image prior
and and were the complete and incomplete
data, respectively. This is no surprise since both the EM and the
proposed algorithm find ML estimates for the parameters.

B. Image Restoration Step

For the image estimation step we can write similarly to (29)

(40)

where . This minimization
yields

(41)

Taking (41) in the DFT domain we get

for (42)

where and are the eigenvalues of and , respec-
tively, and is the DFT of .

C. Relation to LMMSE Image Restoration

The LMMSE filter for this problem [7], [24] is given by

(43)

where and are the covariances of the signaland the
combined PSF and additive noise , respectively.

A few comments are in order regarding the LMMSE esti-
mator in (43). When the PSF and the observation noise are white
with variances and , as assumed in Section II, it was
shown in [16], [17] that the LMMSE filter in the DFT domain
assumes the form

for (44)

Thus, (42) is identical to the DFT expression of the LMMSE es-
timate for this problem in (44) with a SAR image prior

.

VI. COMPARISON OF THERESTORATIONSTEPS OF THETWO

PROPOSEDALGORITHMS

It is a well-known fact that the linear minimum mean square-
error (LMMSE) estimator is identical to the MAP solution under
a linear observation model and a Gaussian assumption for the

source signal and the noise [11]. However, in this problem, the
observation model in (4) is not linear, owing to the signal-depen-
dent noise term . Furthermore, the product is
not Gaussian if both and are Gaussian. Therefore, the
LMMSE and the MAP approaches in our problem do not nec-
essarily yield the same solution. The restoration step of the first
evidence analysis based algorithm is the MAP estimate for this
problem in the “classical” sense sinceis assumed fixed in the
conditional of (6). However, the restoration step of the EA2 al-
gorithm, where the conditional covariance is assumed to
be given by (9), is also a MAP estimate. This conditional in ef-
fect linearizesthe observation model and then the MAP and the
LMMSE estimates become identical.

In an attempt to derive rigorously the mathematical relation-
ship between the restoration steps of the two evidence anal-
ysis based algorithms we perform a perturbation analysis in Ap-
pendix C, under the small noise assumption. There we show that
the image estimate obtained by the restoration step of the second
algorithm is identical to the “linear” approximation of the image
estimate obtained in the restoration step of the first algorithm.
This result is valid for small noise perturbations only. For com-
parisons at moderate and high noise levels we resort to computer
simulations in the experimental section.

VII. N UMERICAL EXPERIMENTS

In this section, we test and compare the two previously de-
rived EA algorithms. For brevity we shall refer to the first one
which is based on the fixed-covariance prior model as EA1
and to the second one which is based on the averaged-covari-
ance model as EA2. These algorithms are tested under white and
correlated PSF-noise perturbations. First, the restoration capa-
bilities of the proposed algorithms are compared using synthetic
images that satisfy exactly the SAR image model. Second, these
algorithms are compared with natural images for simultaneous
parameter estimation and restoration.

The (per pixel) MSE is defined as

(45)

where and are the original and the restored (upon conver-
gence) images, respectively.

To obtain statistically meaningful results we performed
Monte-Carlo simulations in which the MSE was averaged over
five different noise realizations. We experimentally observed
that more than five noise realizations does not change the
nature of the MSE curves.

The MSE is a function of two noise parameters: and .
In order to enhance the clarity and the visibility of the results we
plot instead of 3-D plot of the MSE versus both noise parameters
two representative 2-D MSE plots: (a) For a fixed
dB we plot MSE versus by varying , and label this
plot as Plot-H. (b) For a fixed dB we plot MSE
versus by varying , and label this plot as Plot-G. In
these plots the noise parameters are expressed in terms of the
signal-to-noise ratios (SNR), i.e.,

(46)
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Fig. 1. (a) Experiment I: MSE plot: white PSF noise case, Gaussian random field image, constant-1=. (b) Experiment I: MSE plot: white PSF noise case,
Gaussian random field image, constant-1=�.

where is the energy of the known part of the PSF, and

(47)

where is the energy of the original image.
In all experiments presented in this paper, unless explicitly in-

dicated, the following Gaussian-shaped PSF was used for blur-
ring:

for (48)

where is a constant chosen so that . The
same kernel as in (48) with the additive white-noise compo-
nent of variance was used for restoration. The blurred data
was further degraded with additive white observation noise of
variance . We also performed the experiments where the
“smooth” PSF from (48) was used for restoration, while the
noisy one ((48) plus the additive PSF noise) was used in the
blurring process. Similar results were obtained in both cases.

In all experiments for both the EA1 and the EA2 algorithms
after each iteration of the parameter estimation step the func-
tions in (24) and in (33) are examined, re-
spectively. In all cases we observed that the proposed iterations
reduced the value of both functions at each step. The termination
of the iterative algorithms was determined based on the conver-
gence of the values of these functions.

Experiment I: In this experiment, we assume white-noise
PSF perturbations with exact knowledge of the noise parameters

and (simulated experiment). The parameter, how-
ever, depends on the original image. In order to have control over

we generate the source image based on the Gaussian image
model in (2). More specifically, a white zero-mean Gaussian
random field was passed through the linear filter with impulse
response equal to , where was preselected and
is the circulant Laplacian operator. At the output of this linear

system we obtained the zero-mean Gaussian random field with
covariance equal to .

In this experiment, the MSEs for EA1 and EA2 are com-
pared assuming exact knowledge of all three parameters. The
constant- and the constant- MSE plots are shown in
Figs. 1(a) and (b), respectively. From these curves we observe
that the EA1 algorithm that uses the exact model outperforms
the EA2 algorithm that uses the approximate one. Furthermore,
from the constant curve we observe that as the PSF noise
gets smaller the performance of the two algorithms becomes
similar. This is expected since when the PSF noise becomes
zero both algorithms coincide. From the constant we ob-
serve that as the additive noise gets smaller the difference in
performance between the EA1 and EA2 algorithms gets wider.
This can be explained by the fact that, in this case, the PSF noise
dominates and the EA1 algorithm handles it better.

Experiment II: In this experiment, the “Lena” image was
used. In this case, the source image cannot be accurately mod-
eled as a Gaussian random field with the power-spectrum in-
versely proportional to the transfer function of the Laplacian op-
erator, as is the case with the Gaussian random field in the first
experiment. Since exact knowledge of the parameteris not
possible in this case, the proposed algorithms simultaneously es-
timated the known parameters while restoring the image. More
specifically, two cases are shown. In the first, is held con-
stant and is assumed known whileand are estimated. In
the second, is held constant and is assumed known while

and are estimated. The constant- and constant-
MSE plots are shown in Fig. 2(a) and (b), respectively. From
these curves we observe that the EA1 and EA2 algorithms give
almost identical performance. The slight difference in perfor-
mance can be explained by the fact that in this case the SAR
image model is also not exact and any difference due to the ap-
proximation in for the EA2 algorithm is not significant.

Experiment III: In this experiment, the EA1 and EA2
approaches are compared under the correlated PSF perturba-
tions. In these experiments we assume that the restoration is
performed under PSF modeling errors. More specifically, we
assume that the PSFs used for blurring and restoration are
Gaussian shaped, but with different widths. The blurring PSF
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Fig. 2. (a) Experiment II: MSE plot: white PSF noise case, “Lena” image, constant-1=. (b) Experiment II: MSE plot: white PSF noise case, “Lena” image,
constant-1=�.

Fig. 3. (a) Experiment III: MSE plot: Correlated PSF noise case, “Lena” image, exact knowledge of power spectrum of the PSF errors. (b) Experiment III:MSE
plot: Correlated PSF noise case, “Lena” image, algorithms fit white-noise model to PSF errors.

Fig. 4. Experiment III: Sample images corresponding to the MSE plots in Fig. 3(a):SNR = 25 dB. (a) Degraded image, (b) EA2 with SAR prior, and (c) EA1
with SAR Prior.

had standard deviation 3.0 while the restoring PSF had standard
deviation 4.0. Both PSFs had region of support of
pixels. The “Lena” image was used in this experiment.

In the first part of this experiment, we compare the MSEs
of the EA2 and EA1 restoration filters for SAR image priors
assuming exact knowledge of the PSF errors. For this purpose
we used the periodogram estimate of the power spectrum of the

PSF errors in both algorithms. The parameter was assumed
known for comparison purposes, while the parameterwas es-
timated simultaneously while restoring. The constant-MSE
plot for this experiment is given in Fig. 3(a). Corresponding
sample images from this experiment are shown in Fig. 4.

In the second part of this experiment, we assume that no
knowledge is available about the PSF errors, and we let the al-
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Fig. 5. Experiment III: Sample images Corresponding to the MSE plots in Fig. 3(b):SNR = 20 dB; (a) Degraded Image; (b) EA2 with SAR Prior; (c) EA1
with SAR Prior.

gorithms fit a white noise model to the correlated PSF errors. In
other words, we simultaneously estimate both parametersand

and restore the image. The constant-MSE plot for this
experiment is given in Fig. 3(b) and the corresponding images
are shown in Fig. 5.

From this experiment we observe that the EA1 algorithm out-
performs the EA2 algorithm. This can be explained by the fact
that for this experiment where the PSF noise is not white and
a white model is used for restoration the approximation intro-
duced in the EA2 algorithm becomes more significant. Further-
more, we observed that the performance gap increases as the
additive noise decreases. This behavior was also observed in Ex-
periment I and can be explained similarly.

Experiment IV: In order to compare the proposed ap-
proaches with previous ones blind deconvolution based on
the EM algorithm [10] using a SAR prior image model was
used. This algorithm was compared to the EA2 approach
using the same image data as those in Experiment II (the Lena
image degraded by the same PSF and with additive white
noise). In both algorithms was assumed known and the other
parameters, and for the proposed EA2 approach and
and the PSF for blind deconvolution were estimated. For blind
deconvolution the known mean of the PSF was used as the
initial value for the PSF estimates. A Monte-Carlo study for

and dB with and
dB was performed, resulting in 18 different cases total. As

before five different noise realizations were used for each case.
The constant- average MSE plots for and

dB are shown in Figs. 6, 7(a), and (b), respectively. From
these figures it is clear, as expected, that the EA2 approach that
explicitly takes into account the statistics of the PSF model is
superior to blind-deconvolution which does not. The interesting
observation here is that as the additive noise increases the
difference between EM-based blind-deconvolution and EA2
gets more significant. This seems to imply that in EM-based
blind-deconvolution the additive noise interferes more
with the estimation of the PSF than in the EA2 approach.

In all previous experiments, convergence was achieved in
about 50 iterations between the restoration and parameter
estimation steps. To implement the restoration step of the EA1
approach we minimized (30) with respect to the real and the
imaginary parts of for every discrete frequencyusing

Fig. 6. Experiment IV: Comparison of blind-deconvolution based on the EM
with the proposed EA2 approach. The additive noise statistics for both cases are
assumed to be known. Constant- MSE plot forSNR = 40 dB.

the Davidon–Fletcher–Powell optimization algorithm [4].
The gradient required by this algorithm was found in closed
form. Convergence of this algorithm was achieved in about ten
iterations.

An important observation that was made based on all the nu-
merical experiments that we performed was that neither algo-
rithm could estimate the PSF and the additive noise variances

and simultaneously. Since the sum of these noise vari-
ances appears in the data this was to be expected. To overcome
this difficulty prior knowledge in the form of informative priors
has to be utilized for .

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we applied evidence analysis (EA) within the hi-
erarchical Bayesian framework to the parameter estimation and
image restoration problem from partially-known blur. In this ap-
proach the unknown parameters are treated as random variables
(hyper-parameters) with certain probability density functions
(PDF), through which the prior knowledge about the hyper-pa-
rameters is incorporated into the algorithm. Only the uniform
(noninformative) hyper-priors were utilized in this paper. Two
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Fig. 7. Experiment IV: Comparison of blind-deconvolution based on the EM with the proposed EA2 approach. The additive noise statistics for both casesare
assumed to be known. (a) Constant- MSE plot forSNR = 30 dB, (b) constant- MSE plot forSNR = 20 dB.

EA algorithms are derived based on the SAR image model using
two different assumptions for . In the restoration
step of the first EA algorithm we obtain the image estimate
which is the output of the regularized constrained total least
squares (RCTLS) filter proposed in [15]. In the restoration step
of the second proposed EA algorithm for Gaussian image prior
we obtain the image which is the output of the LMMSE filter
for this problem. It is interesting to note that when the PSF
noise becomes zero both algorithms coincide and become iden-
tical to the “iterative” LMMSE filter for the classical restora-
tion problem (PSF completely known) [10], [19]. Therefore,
it is expected as the perturbations from the known part of the
PSF become smaller the differences in performance between the
proposed algorithms and “classical” restoration algorithms di-
minish.

The two algorithms were experimentally studied under both
white and correlated point-spread function (PSF) noise pertur-
bations. Based on the experimental results we conclude that the
EA2 algorithm is quite robust to the approximation that the av-
eraged- model introduces. Indeed, when the PSF noise is white
the EA2 algorithm gives almost identical results with the EA1
algorithm for a range of SNRs. However, when an additional
approximation is introduced to the EA2 algorithm as in Exper-
iment III where colored PSF noise is modeled as white noise,
then the EA1 algorithm outperforms the EA2 algorithm. Fur-
thermore, the EA1 algorithm worked better in Experiment I
where both the PSF noise andwere Gaussian. This is at-
tributed to the fact that the assumptions used in the EA1 algo-
rithm capture better the statistics of the term which was
assumed Gaussian for the EA2 algorithm.

Another point that became obvious in our experiments was
that neither of the two algorithms cansimultaneouslyestimate

when noninformative priors are used. To alleviate
this problem, in some initial work on this problem, informative
Gamma priors were used (see [16] and [17, ch. 5]. It was then
observed that an informative prior for one hyper-parameter
only suffices to obtain good estimates for all three of them
using the proposed algorithms.

As a final remark, we would like to point out that that there
is no rigorous proof of convergence for the EA framework. In
all our numerical experiments however, we did not experience
any convergence difficulties with either one of the proposed al-
gorithms.

APPENDIX A
PARAMETER ESTIMATION STEP FOR THEEA1 ALGORITHM

(FIXED- COVARIANCE MODEL)

Equation (24) represents the logarithm of theposteriorPDF
which should be minimized with respect to , and , ac-
cording to (10). To perform minimization of (24) we make use
of the following matrix algebra formulas:

(A1)

(A2)

where denotes the square matrixwhich depends on the
parameter vector, and denotes the trace of a matrix.

Taking the partial derivative of (24) with respect to, and
setting it equal to zero we obtain

(A3)

Taking the partial derivative of (24) with respect towe obtain

(A4)
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Using the identity

(A5)

(A4) can be rewritten as follows:

(A6)

Similarly, taking the partial derivative of (24) with respect to,
setting it equal to zero, and using (A5) the following equation is
obtained:

(A7)

We note that both sides of (A6) are decreasing functions offor
a fixed and that both sides of (A7) are decreasing functions
of for a fixed . Equations (A3), (A6), and (A7) can then be
iteratively solved as shown in (A8)–(A10) at the bottom of the
page, where are calculated at
iteration .

APPENDIX B
DERIVATION OF ALGORITHMS IN THE DFT DOMAIN

In this Appendix, we describe the use of the DFT to imple-
ment the iterative schemes proposed in this paper. The complete

derivation will be done for the restoration step of the EA1 al-
gorithm which is based on the fixed-conditional covariance
model; the other implementations follow very similar steps.

Let denote the DFT matrix with
. Denoting by and the inverse

and the Hermitian operations, respectively,
[12]. Inserting into (29) and using the diagonilization
properties of the matrix , in other words ,
where and are a circulant matrix and a diagonal matrix
with the eigenvalues of , we obtain

(B1)

Now, examining the terms in (B1) separately, and using the di-
agonalization properties of the DFT for circulant matrices, we
obtain

(B2)

(B3)

(B4)

where and are the DFT transforms of and , the
eigenvalues of the circulant matrix are the DFT values of,
and and are given by

(B5)

(A8)

(A9)

(A10)
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and

(B6)

Having established the above, (B1) can be now transformed into

(B7)

Since each term in (B7) is independent of others, the sum in (B7)
can be minimized by minimizing each frequency component of
the sum separately.

Similar to the derivation of the above restoration step,
(25)–(27) can be efficiently implemented in the DFT domain
as shown in (B8)–(B10) at the bottom of the page.

APPENDIX C
RELATIONSHIP BETWEEN THERESTORATIONSTEPS OF THE

TWO EA-BASED ALGORITHMS

We begin by observing that (4) can be rewritten as

(C1)

where

(C2)

and

(C3)

is the image-dependent noise term. Now, suppose that the un-
perturbed (noise-free) system of linear equations has a
consistent solution . Perturb by to around

the consistent solution . Then, the consistent solution be-
comes perturbed by , where is caused by and .
The sum of the perturbation error and the consistent solu-
tion constitute the LMAP solution.

Neglecting the “log” term in (29), the necessary condition for
a minimum of (17) is that its gradient is equal to zero. Setting the
gradient of with respect to equal to zero yields

with (C4)

Using and neglecting higher-order terms in ,
and , and their products, we find from (C4) that

(C5)

Letting

(C6)

(C7)

and

(C8)

(B8)

(B9)

(B10)
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and solving (C5) for we obtain

(C9)

where is the perturbation around .
Equation (C9) is a closed form expression for the perturbation
from the consistent solution of the estimator obtained from the
restoration step of the first EA algorithm. Since it was derived
by neglecting higher order terms in , and their
products, it is valid for small noise levels. We call this the
linearized EA1 (LEA1) estimate.

Next, we show that the LEA1 estimate is equal to the
estimate , which is obtained in the restoration step of the
second EA algorithm which is also identical to the LMMSE
estimate, i.e.,

(C10)

Noting that in (C10) can be rewritten as

(C11)

where , it is straightforward to
show using (C6)–(C8) that

(C12)

Recalling (43), we have

(C13)

where is given in (44). Therefore, to show the equivalence of
(C12) and (C13) we must show that

(C14)

The verification of (C14) is straightforward using the matrix
inversion lemma [11] and the periodogram covariance estimate

.
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