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Methods for Choosing the Regularization Parameter
and Estimating the Noise Variance in Image
Restoration and Their Relation

Nikolas P. Galatsanos, Member, IEEE, and Aggelos K. Katsaggelos, Member, IEEE

Abstract—The application of regularization to ill-conditioned
problems necessitates the choice of a regularization parameter
which trades fidelity to the data with smoothness of the solu-
tion. The value of the regularization parameter depends on the
variance of the noise in the data. In this paper the problem of
choosing the regularization parameter and estimating the noise
variance in image restoration is examined. An error analysis
based on an objective mean square error (MSE) criterion is
used to motivate regularization. Two new approaches for
choosing the regularization parameter and estimating the noise
variance are proposed. The proposed and existing methods are
compared and their relation to linear minimum mean square
error (LMMSE) filtering is examined. Experiments are pre-
sented that verify the theoretical results.

I. INTRODUCTION

FOR AN M X M image degraded by a linear space
invariant blur and independent identically distributed
(IID) zero mean additive noise, the imaging equation is

g=Hf+n (1)

where the vectors g, f, and n are M? X 1 lexicographic
orders of the degraded observed image, the original im-
age, and the noise, respectively. The M? x M? degra-
dation matrix H is block Toeplitz and ill conditioned [1].
In the rest of this paper the circulant-to-Toeplitz approx-
imation will be used along with the discrete Fourier trans-
form (DFT) to simplify all computations [1], [8].

One of the approaches to obtain an estimate of f from
(1) is to minimize the criterion

J(f) = llg — HfII? @
which results in the pseudo-inverse estimate
f*= D H 3)

where 7 denotes the transpose of a matrix or a vector. It
is well known [1] that such an estimate is extremely noisy
due to the amplification of the noise by the inverse of the
ill-conditioned operator H.

Regularization is an effective method for obtaining sat-
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isfactory solutions to problems that involve inversion of
ill-conditioned operators [32]. According to the regular-
ization approach the solution of (1) is replaced by the
minimization of

W) = llg = HAP + Ml orI? @
which yields the estimate
fO) = H'H+NQ'H'g = ANz (5)

where Q is the regularization operator [32]. The role of
Q is two-fold [15]: a) to move the small eigenvalues of H
away from zero while leaving the large eigenvalues un-
changed, and b) to incorporate prior knowledge about f
into the restoration process. The smoothness of f is the
prior knowledge on which the selection of Q is usually
based upon. Thus the criterion of (4) contains two terms;
the first, || g — Hf ||, expresses the fidelity to the available
data g and the second, || Of ||, the smoothness of the es-
timate. Therefore, the regularization parameter A\ repre-
sents the trade-off between fidelity to the data and smooth-
ness of the estimate f (\). The determination of the proper
value of A is an important problem and depends on the
variance of the noise o and the properties of H, Q, and
/- In this paper the problem of choosing the regularization
parameter and estimating the noise variance is examined.
A study on the stability of the estimate of the regulariza-
tion parameter has recently appeared in [31]. Some of our
observations and conclusions were also verified theoreti-
cally in [26] in an asymptotic sense, for specific forms of
H, O, and f.

More specifically, the rest of this paper is organized as
follows: in Section II the norm of the difference of the
regularized solution f (A) from the original image fis ana-
lyzed as a function of the regularization parameter. The
use of regularization is rigorously justified by showing that
F O\ yields a smaller error than f*. In Section III existing
methods for selecting N are reviewed and the foundation
is laid for the material to follow. In Section IV two new
methods for choosing the regularization parameter are
presented. In Section V the problem of estimating the
noise variance is examined and two new methods are pro-
posed. The proposed and existing methods for choosing
the regularization parameter are compared in Section VI.
It is shown that for a special choice of the regularization
operator Q, all methods, except one, yield the same value
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for N equal to the noise variance o2 [6], [7]. For this
choice of Q the resulting regularized estimate f () is the
linear minimum mean square error (LMMSE) solution
known as the Wiener filter [1]. In Section VII experiments
are presented where the previous theoretical results are
verified. Finally, Section VIII contains a discussion of the
results, conclusions, and plans for future research.

II. ERROR ANALYSIS

It is commonly assumed in image restoration that Ffon
is a much more preferable solution than f * [1]. However,
no rigorous justification of this assumption, based on some
objective criterion, has appeared in the image restoration
literature. In this section an analysis is presented where
the norm of the error between the original image f and the
regularized estimate f (\) is presented as a function of A.
This analysis justifies the use of regularization and rig-
orously shows that f(\) is a better estimate than f *.

Throughout this paper it is assumed that fin (1) is de-
terministic, the noise variance n is IID with variance o2,
and H and Q are block-circulant matrices. From (3) and
(5) we have

fOy = H'H + NFQ)'H'g
= (H'H + N\Q'Q)'HHf " = PNVf*.  (6)
Following similar steps as in [11] the mean square error
(MSE) is given by
Eflem| = Ellf =7V I
= EI(f — POVFY(f = POVF ]
=EWf" = PPN = ]
+ EIPNS—YPNfF-O1 (D

whefe E[-] denotes the expectation operator. Since
Elf ()\)]A= P(\)f, the first term of (7) is equal to the var-
iance of f (\) while the second term is equal to the bias of
the estimate f (A).

By using the circulant approximation for H and Q we
can write in the DFT domain:

; I L1
Var[f(N] = ¢ _—
=1 (P + N gl
and
RPN gl

Bias [f00) = 2, (hil® + g |?? ®
where h; and g; are the eigenvalues of H and Q, respec-
tively, and F; is the ith component of the DFT of f.
Clearly, tlle pseudo-inverse solution f*, which corre-
sponds to f(A) with A = 0, yields an error which is due
only to the variance term and is equal to

M2 1
2y _ 2
Elle@l’] = o* 2 .

We now turn to the analysis of the variance and bias
terms in (8). Taking their derivatives with respect to A we
obtain

avar[fN] . 5 e |Wal

B G T ST P
. 2 M2 2 4 2

d Bias [ f(M)] -2 3 INFAREAMIA > 0. (10)

BN =t (I ” + Mg’

From (8) and (9) we conclude that the variance is a strictly
positive, monotonically decreasing function of A, for A
> 0 and that Var [ f(e)] = 0. Similarly, from (8) and
(10) we conclude that the bias is a positive, monotonically
increasing function of A, for A > 0 and that Bias [ f(0)]
= 0 and Bias [f()] = || fII>. Thus the total error as a
function of A is a sum of a monotonically decreasing and
a monotonically increasing function of A, and therefore,
it has either one minimum or one maximum for0 = A <
oo,
Examining the derivative

EWem I _ , 5 |1l lalPOIFL g — o)
a = (hl* + N>’

it is clear that

IE [eN 11 o’
—UAM <0, for0< A< —5—5—
6)\ (lFi|2|qi|2)max
and
IE[e™ A o’
—_— >0, for ————F5— < A < oo,
6)\ (lFilzlqilz)min

Therefore, the error function has a unique minimum for
0 < N\ < oo, which lies in the interval

I: o? o? }
(|Fi|2 | Qi|2)max’ (|Fi|2|qi|2)min .

The value of \ for which the minimum error is achieved
is denoted by Aysg-

From the above it is clear that E [|| e(\) |*] is a decreas-
ing function for 0 < N < Aysg. Thus for any A in this
interval, E [l e\ 121 < E [l e(0) |*1, and therefore, £ (\)
is a better estimate than f © in a MSE sense.

In Fig. 1 an example is shown using image data. The
Var [ f(\)], Bias [f(\)], and E [|| e(\) [I] terms are plot-
ted using a log 10 scale. For this example, we have

M2
Elle®* = ¢* ,,Z > 171 = Ellle(e) 121.

=1 |k
Thus the regularized solution f(\) yields a smaller MSE
than f* for any A > 0. This case is common in many
practical applications where H is ill conditioned.

From the error analysis presented above we conclude
that the regularized solution F(\) with X > 0 introduces
a bias in the estimate of f. However, this is a price well
worth paying because in this way the total MSE can be
reduced.
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Fig. 1. Demonstration of the properties of E [|| e(\) ||?]. The Lena 128 by
128 image with 7 by 7 blur, Q, the 2-D Laplacian and SNR = 20 dB was
used. Logl0O (M) is shown at the x-axis. Logl0O of Var [ f(\)], the Bias
[f(M)] and E [lle(\) 1’] (dotted line) are shown on the y-axis.

III. ExiSTING METHODS FOR CHOOSING THE
REGULARIZATION PARAMETER

A. Methods That Require Knowledge of the Noise
Variance ¢*

Hunt [12] was the first to address the problem of se-
lecting the value of the regularization parameter in res-
toration problems. He used a deterministic constrained
least squares (CLS’s) framework. According to it, the pa-
rameter A was selected such that the following equation
holds:

lg — HFVI? = |ld — HA)g |I?

= |nl?=é =M%’

aan

Let us denote by AcLg such a parameter. Apart from the
fact that the above choice of A requires the prior knowl-
edge of the noise variance, it has been observed and re-
ported by a number of researchers (see, for example, [4]),
that this choice of X yields an oversmooth solution f ().
Using the CLS approach is equivalent to assuming that
the error (g — Hf (\)) is IID with variance ¢2. In other
words, the ith component of the error (g — Hf (\)) is
Gaussian and || g — Hf (\) || is Chi-square distributed with
variance ¢~ and M ? degrees of freedom [33], [34]. In this
context, but with a different application in mind, Wahba
{36] and later Hall and Titterington [10] proposed in anal-
ogy to regression the notion of the equivalent degrees of
Jreedom (EDF). The EDF takes into account the linear
dependency between g and f (\), therefore, || g — Hf () |2
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is Chi-square distributed with variance o and trace (I —
HA(N)) degrees of freedom. Thus in this case the con-
straint equation to be used for computing \ is given by

le — HFOVI? = |ld — HAQ)g |I?
= o2 trace [ — HA(N)].

12)

Very recently the EDF idea was experimentally tested for
the image restoration problem [30].

Katsaggelos et al. [15], [16] used a set theoretic (ST)
formulation for the image restoration problem. The el-
lipsoid

lofl* < E? (13)

is used along with the ellipsoid defined by (11) by replac-
ing the = sign by the < sign in front of ||n||* to specify
a solution f(\). The centers of ellipsoids bounding the
intersection of these two ellipsoids are given by

. H'H ogol”' H
f=[pu——62 thm | P8 (14)
where p; + p, = 1 and py, p, = 0. For p; = p,, (14) has
been derived in {14] using Miller’s regularization ap-
proach, and it becomes identical in form with (5). In this
case the regularization parameter is equal to

Ast = (¢/E).

It was shown, in [15], [16], using geometric arguments
that

(15)

AcLs = At (16)

Clearly the ST method requires the prior knowledge of
both € and E, since although only their ratio is used in
(15), a posterior check of the intersection of the two el-
lipsoids is required. Good estimates of f have been re-
ported even when a loose bound is used in (13), such as
E? = || Qg |*. An iterative algorithm for the simultaneous
restoration of the image and the determination of the regu-
larization parameter by establishing tight bounds in (11)
and (13) is presented in [13].
The minimization of the weighted error norm

E[lHeM X1 = E[IlHf — HF VI

has also been used as a criterion for choosing the regular-
ization parameter [9], [25], [10]. The justification for this
criterion is that data points which correspond to large ei-
genvalues of H are more reliable, and thus they are
weighted heavier. This weighted error is often called pre-
dicted mean square error (PMSE) [25], [31]. It is easy to
show that

EllHem 1’1 = d — HAQ\)g II?
+ 2 - ¢trace [HAN)] — M 2.
(17

Thus if o2 is known, (17) can be minimized directly to
obtain the value of the regularization parameter. This
value of A is henceforth denoted by Apyse. By using a
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similar analysis as in Section II it can be shown that the
PMSE function has also a unique minimum for 0 < \ <
o,

B. Methods That Do Not Require Knowledge of the
Noise Variance o*

In many practical situations the noise variance o? is not
known; therefore, the methods of subsection III-A cannot
be used. Cross validation (CV) is a method that allows
the selection of the regularization parameter when o2 is
not known. CV has been studied by statisticians in the
context of ill-posed problems for a long time (see, for
example, [9], [27], [35], [38]). However, this mathemat-
ical tool has attracted the attention of the image recovery
community only very recently [5], [23], [24], [26], [31].
It was shown experimentally that CV yields sharper esti-
mates of the original image than the CLS method. The
same observation was made by Craven and Wahba [3] in
a very similar regularization problem, that of fitting noisy
data with splines.

The ordinary cross validation (OCV) and the general-
ized cross-validation (GCV) functions [9], [38] can be de-
rived from the leave one out principle (see [22] for a de-
tailed step-by-step derivation). In [9] it has been shown
that GCV has certain advantages over OCV. However,
for image restoration where circulant matrices are used,
the GCV and the OCV functions are the same [9]. The
GCV function can be written as

ld — HAQs |I?

CV\ = . 18
) [trace (I — HA(\)))? (18
If the DFT domain is used, (18) becomes
2
S _Nlal'lGP?
= 2 22
CV()\)= ! 1(|hl| +)\|qr|) (19)

< S Mal )
i=1 ”h"z + )\|¢1i|2

The CV function is related to the PMSE function in (17).
It was shown by Golub et al. [9] for 1-D signals and Solo
[26] for 2-D signals that Apyg is asymptotically equal (as
M? = ) to \¢y, the value of A that minimizes CV ().

IV. PrOPOSED METHODS FOR CHOOSING THE
REGULARIZATION PARAMETER

A. Methods That Require Knowledge of the Noise
Variance ¢*

Direct minimization of the norm of the MSE in (7) with
respect to A requires knowledge of f, which is not avail-
able (see Bias [ f (M\)] in (8)). This is very common in es-
timation problems where the MSE is used as the optimi-
zation criterion. A consequence of this difficulty (along
with the asymptotic equivalence of Apygp and Acy) is the
popularity of the PMSE criterion for choosing the regu-
larization parameter.

Another approach for evaluating X by directly minimiz-
ing the MSE function is presented. The MSE function can

be written as
Eflemq = I £12 + EFONIA = 2ELFF VI

However, as was also observed in [25] and [26], since the
term || f]|> does not depend on A, the minimization of
E [l e\ ||?] is equivalent to the minimization of

EQIFNVIA = 2ELfFF ). (20)

Using the circulant assumption and the DFT domain it is
easy to show that
-M 2

|bi*| GI”

= >\|q,-|2)2} @h

EMlf™IP1I=E

and

RSk ]
L= (B + Mgl

K |Gi |2 -’
Li=1 (|hi|2 + M‘Ii'z)
The expectation on the right-hand side of (21) and (22) -
can be omitted, since | G;|* is known. Thus the value of
\ which minimizes (20), denoted by Aysg, can be com-
puted directly from the data provided that o? is known.
Equations (20) and (22) also appeared in [25] and [26].
The asymptotic properties of the value of A that mini-
mizes (20) were studied in [26] for specific forms of H,
Q, and f. It was claimed there that this approach is likely
to offer the best choice of .

Substituting (21) and (22) into (20) and setting the de-
rivative of (20) equal to zero yields

S Nlal'lGP %
=1 (h” + Mg D
or equivalently
@'t — HAQ)P g |I?
= o2 trace [0 — HAV))Y. (23)

Equation (23) serves as the final equation for estimating
Amse- Its counterparts are (11) and (12) for respectively
determining ¢ s and Agpg. It is shown in Appendix-A
that Apymse satisfies

[ (HAN)'2d — HA))g 1P
= ¢? - trace [HA\) (I — HA(OV))].

E[ffO) = E

=E

:| . (22)

)‘|‘Ii|2 -0
=k + N g

24

Because of the asymptotic equality of Apysg and Acy
shown in [9], [26], Acy also satisfies (24). In Section VII,
experiments are presented that verify the above results.

B. Methods That Do Not Require Knowledge of the
Noise Variance a* [7]

Based on a Monte Carlo simulation study by Thompson
et al. [30], it was observed that the GCV function may
not have a unique minimum. It has also been observed
that in some cases Apysg results in severe undersmoothing
of the estimate f (\) [25] (for a detailed discussion see
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Section VI). Thus in this subsection an alternative ap-
proach to choosmg the regularization parameter without
knowledge of ¢ is presented. A stochastic formulation of
the problem is used [4], [20], [37] and Gaussian poste-
riors and priors are assumed.

The posterior is given by

, 1 \M?/2
pglf, 0% = <27r02>

-1
* exp [<r‘z> (g — Hf)(g - Hf)]-
(25)

In deﬁmng the prior density of the data we assume that
Qf is a white Gaussian signal with variance ¢2. This
is a reasonable assumption if Q is chosen appropriately.
Since most real life images have high local correlation, a
local differential operator Q (like the 2-D Laplacian [12])
will yield an almost IID signal. The parameter \ can be
v1ewed as a parameter that scales the variance of Qf to
. In this context the regularization parameter is called
the hyperparameter of the prior [4], [20]. Then it is
straightforward to show that the prior of fis given by

1 M2/2
p(fIN, o%) = (27(02) det [\Q'Q]'/

" exp Ki}z> (Qf)'(Qf)] (26)

where det [4] denotes the determinant of A.

Using the previous assumptions, the hyperparameter
can be estimated by maximizing a marginal likelihood
function which is obtamed by integrating out f from the
joint posterior p(g, f | A, ¢%) [4]. This marginal likelihood
function is given by

Lg|\, 0% = L p@|f, 0% - p(fIN o®) df. (27

It is shown in Appendix B that a X maximizing the like-
lihood function in (27), henceforth denoted by Ay, can
be obtained by minimizing

g'I — HAN)g

ML\ =
N = et 7 = HAON) 7 @8)
Such a A also satisfies
Id - HAN)Y g |)> = M 262 29

as shown in Appendix B. Notice that the minimization of
(28) as in the case of the CV method does not require
knowledge of ¢°. An equation of similar form to (28) was
derived by Wahba [37] for the problem of fitting noisy
data with splines.

V. NoISE VARIANCE ESTIMATION

Estimating the noise variance from the data g generated
by the imaging model of (1) is a well-researched problem.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 1, NO. 3, JULY 1992

The classical approach to this problem [1] is to use a
smooth region of the image and estimate the noise vari-
ance from that region. In [21] the noise variance is esti-
mated by first generating a sequence of variance esti-
mates, by using various tesselations of the noisy image
and then obtaining an estimate of it. Recursive noise es-
timators based on a maximum likelihood principle have
been proposed in [2], [28], [29]. Iterative noise variance
estimators based on the expectation-maximization algo-
rithm have been proposed in [18], [19].

Wahba [36] proposed a single step noise variance esti-
mator based on the assumption that Acy ~ Agpg, for the
problem of computing confidence intervals for cross val-
idated smoothing splines. More specifically Acy is used
with (12), yielding the estimate

52 = " (I — HA\cv))g H2
EDE ™ trace [I — HAO\x)]

Theoretically, this estimator has not yet been justified
[38]. In spite of this fact, experimental evidence pre-
sented by a number of researchers supports the choice of
this estimator [5], {22], [31], [36].

Based on the relations shown in Sections III and IV,
two new single-step noise variance estimators are pro-
posed. The first estimator is based on the properties of the
CV function. More specifically, Acy and Apygg are
asymptotically equivalent as shown in [9], [26], and
therefore, (24) is also satisfied with Acy. Thus it can be
used to estimate the noise variance, according to

_ A P HANY = Dell
trace [HAAcy) (I — HA(Acy)))

(30)

8&v 31
This estimator has very similar form to the estimator of
(30), the only difference being the multiplication with the
matrix HA(Acy) in both the numerator and denominator.
The second estimator is based on the properties of the
marginal likelihood function. As mentioned in the pre-
vious section, Ay satisfies (29). Therefore, the following
estimate of the noise variance is proposed
o = (#) la - HAOW)' 1% (32)
The assumption that Qf is an IID Gaussian signal is im-
plied in the derivation of this estimator. Thus this esti-
mator will perform poorly for a Q that does not whiten f
““well enough.’’ In contrast, a similar assumption is not
necessary for the estimator of (31). Thus it is expected
that 62y is more stable to the changes in the selection of
Q. In Section VII, experiments are presented where these

estimators are tested and the previous statement is veri-
fied.

VI. COMPARISON OF THE VALUES OF THE
REGULARIZATION PARAMETER OBTAINED
BY DIFFERENT METHODS

In this section we compare the values of the regular-
ization parameters obtained by the methods in Sections III
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and IV. In some cases a rigorous mathematical compari-
son could not be obtained and thus we resort to intuitive
arguments backed by experiments. Since N dictates the
level of smoothness of f(\), A, > \, implies that f A\
is smoother than f(\,). This does not reveal anything
about the MSE of the estimate, which in any case is a
debatable criterion for deciding image quality.

A. General Case (Any Q)

In order to compare the CLS and EDF methods, the
propertties of || (I — HA(\))g|l as a function of \ need to
be examined. It is easy to see using the DFT domain that

2
ol — HAOI? _ , 5 Mail* 1P 1 G
)N = ()2 + Mgl
Thus || (I — HA(N)g |l is an increasing function of A.
Therefore, since M 2 > trace [(I — HA(N)] we obtain that

Acus > Nepr- (33)

We next compare the N’s obtained by the ML and CLS
methods. Equations (28) and (11), respectively, take the
following forms in the DFT domain:

> 0.

M2
)\ML|qi|2|Gi|2 2.2
:M g 34
=1 (R + Ml @D ©Y
and
M 2 2
171 Gi
3 [ )‘CZLS|Q| | |22} =M (35)
i=1 (lh,l +)‘CLS|qr’|)

Now consider the left-hand sides of (34) and (35) as func-
tions of A. It is easy to verify that they are both increasing
functions of A. Furthermore, for the same value of A the
left-hand side of (35) is always smaller than the left-hand
side of (34). Thus since the left-hand sides of (34) and
(35) are equal, for A = Ay and N = Acpg, respectively,
it holds that

AcLs > A (36)

The comparison of Aysg and Appge can be based on the
properties of the signal whose norm is minimized. In ob-
taining Apymsg, according to (17), the blurred error signal
| He(\) || is used. If H is low pass, then greater impor-
tance is given at the low frequency error. Therefore, Apyse
will emphasize less high frequency fidelity than A\ygg, re-
sulting in

AMse > Npwmse- 37

These observations agree with the observations of Rice
[25]. In contrast, if H is high pass the opposite will apply.
In most applications, however, blurs are low pass, thus
(37) holds. Since Acy is asymptotically equal to Apysg it
is expected that, in general, Aysg > Acy.

The comparison of Acy and Agpp has been examined in
[10], [31]. For high signal-to-noise ratios (SNR'’s)
Thompson et al. [31] showed using a quadratic approxi-

mation that
)\EDF -~ )\CV' (38)

It is easy to show by using (12), (23), (24), and (29)
that when H = Q = I and o’ is known:
(39

NeDF = ApMSE = Ase = AL =

SNR'’
However, to our knowledge in the more general case no
conclusions have been reached about the relation of Acy
and Ay . The comparison of Acy and Ay does not always
yield a clear-cut result. Our experiments indicate that their
relation depends on the choice of Q (see next section for
a more detailed discussion).

B. Special Case of |q;|* = | F;| ™

A case of special interest is when the regularization op-
erator is selected to satisfy | g;|> = | F;| 7. In other words,
if fis assumed to be stochastic this choice of Q implies
that Q'Q = (Rf)_ , where Rf is the periodogram-based
estimate of the autocorrelation function of f[17].

In this case it is shown in Appendix C that

Avse = Nemse = Acv = AepF = ML = Nst =0 %
(40)

Thus for this choice of Q, Acv is exactly equal t0 Npmse
and not asymptotically equal as in the general case shown
in [9] and also in [26]. It is shown in Appendix D that in
this case

Aes > o (C3))

The significance of this result is that if Qf is an IID
signal all methods for choosing a regularization parame-
ter, except the CLS method, yield the same value for the
regularization parameter. Furthermore, for this case if Rf
is replaced by Ry = E [ ff'], the restored image fon is
equal to

f=HH+ *R) N 'H'g 42)

which is the LMMSE or the Wiener filter solution [1] to
(1).

For this choice of Q it is further shown in Appendix E
that u = (I — A(\))'/? g is IID with variance ¢°. Thus
the noise estimators of (31)-(33) are ‘‘identical,’” in the
sense that they all express the relation

| Bx||? = o2 trace (B'B) 43)

for x IID with variance o2 and any matrix B.

VII. EXPERIMENTAL RESULTS

Experiments were performed to verify our theoretical
results. In a first experiment the 128 by 128 ‘‘Lena’’ im-
age was blurred by a 7 by 7 convolutional mask, and IID
zero mean noise was added yielding SNR’s of 10, 20, 30,
and 40 dB. The weights of the convolutional mask used
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TABLE I
(a) RESULTS OBTAINED WITH THE ‘‘LENA”’ 128 BY 128 IMAGE, A 7 BY 7 Mask AND SNR = 10 dB. THE VALUES Amsel AND Apyse| WERE COMPUTED
USING THE ORIGINAL f DIRECTLY, THE VALUES Aysg 2 AND Appsga USING (23) AND (24), RESPECTIVELY, AND THE VALUES OF § &pg, 62y, AND &%, USING

(30), (31) and (32), RESPECTIVELY. (b) RESULTS OBTAINED WITH THE ‘‘LENA’’ 128 BY 128 IMAGE, A 7 BY 7 MAsk AND SNR = 20 dB. THE VALUES

Amse s AND Appmse ; WERE COMPUTED USING THE ORIGINAL S DIRECTLY, THE VALUES Aysg2 AND Apyse2 USING (23) AND (24), RESPECTIVELY, AND THE
VALUES OF §3pf, G4y, AND &2 USING (30), (31) AND (32), RESPECTIVELY. (c) RESULTS OBTAINED WITH THE ‘‘LENA’’ 128 BY 128 IMAGE, A 7 BY 7 MASK
AND SNR = 30 dB. THE VALUES Aysg | AND Apysg; WERE COMPUTED USING THE ORIGINAL f DIRECTLY, THE VALUES Aysg2 AND Apysge2 USING (23) AND
(24), RESPECTIVELY, AND THE VALUES OF & 25, 32y, AND 62 USING (30), (31) and (32), RESPECTIVELY. (d) RESULTS OBTAINED WITH THE ‘‘LENA" 128

BY 128 IMAGE, A 7 BY 7 MASK AND SNR = 40 dB. THE VALUES Aysg | AND Apmsg; WERE COMPUTED USING THE ORIGINAL f DIRECTLY, THE VALUES

AmsEe2 AND Apyses USING (23) AND (24), RESPECTIVELY, AND THE VALUES OF GépF, &év, AND &2, USING (30), (31) AND (32), RESPECTIVELY

SNR = 10 dB SNR = 20 dB

Q=1 Q=0 0'0=®)" Q=1 0= 0w 0'0=®R)"!
AcLs 1.60E — 01 9.01E - 01 292.4 Aeus 3.00E - 02 4.76E — 02 28.55
Ast 1.00E — 01 8.59E — 02 68.37 Ast 1.00E - 02 8.59E ~ 03 6.837
Neor 5.67E — 02 1.26E — 01 67.63 NepE 1.56E — 02 1.06E — 02 6.491
AMsE 1 9.83E — 02 1.30E — 01 59.75 AMSE 1 2.65E — 02 1.07E — 02 6.072
AmsE2 1.05E — 01 1.25E — 01 88.01 AMsE2 2.66E — 02 8.23E — 03 5.043
APMSE | 3.62E ~ 02 1.70E — 01 71.95 ApMsE L 1.12E — 02 1.09E — 02 6.452
NemsE2 3.68E — 02 1.60E — 01 71.46 ApMSE2 1.14E — 02 1.14E — 02 6.648
Aev 3.54E — 02 1.57E - 01 71.35 Aev 1.07E - 02 1.04E — 02 6.601
A 1.12E - 02 2.87E — 01 67.64 AmL 2.09E — 03 1.84E — 02 6.823
a’ 68.37 68.37 68.37 a’ 6.837 6.837 6.837
63or 65.95 68.56 68.49 F3or 6.556 6.845 6.839
Gy 65.85 69.02 68.21 5Ly 6.561 6.847 6.855
63 62.81 69.14 68.98 &30 5.954 7.014 6.864

(a) (b)
SNR = 30 dB SNR = 40 dB

g=1 0= 0O Q0= (Rf)-] Q=1 0= 0L 00 = (Rf)il
Acts 8.36E — 03 3.99E — 03 2.855 AcLs 1.90E — 03 4.38E — 04 0.3228
Ast 1.00E — 03 8.59E — 04 0.6837 Ast 1.00E — 04 8.59E — 05 0.0683
Nepr 3.42E - 03 8.74E — 04 0.6920 NepF 6.07E — 04 8.10E — 05 0.0665
AMSE 1 5.08E — 03 1.02E — 03 0.6814 AMSE 1 8.02E — 04 9.09E - 05 0.0692
AusE2 5.15E — 03 8.37E — 04 0.5252 AusE2 8.19E — 04 8.13E — 05 0.0694
ApMSE 1 2.71E - 03 9.24E — 04 0.6753 NeMsE 1 5.37E — 04 8.82E — 05 0.0693
Apmse2 2.73E - 03 9.38E — 04 0.7093 NpMsE2 5.29E — 04 8.98E — 05 0.0680
Aev 2.54E — 03 9.25E — 04 0.6963 Aev 4.86E — 04 9.24E — 05 0.0749
Ami 3.17E — 04 1.26E — 03 0.6687 Ami 4.17E ~ 05 1.03E — 04 0.0690
a’ 0.6837 0.6837 0.6837 'S 0.0683 0.0683 0.0683
620k 0.6529 0.6867 0.6879 - 0.0648 0.0695 0.0691
&%y 0.6531 0.6896 0.6851 52y 0.0649 0.0696 0.0689
620 0.5315 0.7055 0.6912 &3 0.0476 0.0699 0.0695

©) (d)

satisfy = Oyp was chosen, where Q,p; is the 2-D Laplacian

. . -3 _l
B DY = B —i = h(—i iy — h(—i i operator [12]. qully, the case with g'Q = (Re)™" was
(0, j) = hG, —j) = h(—i, j) = h(—i, j) examined, where R, represents the periodogram estimate
and of the autocorrelation of f. The values of the regulariza-
N S A tion parameter and the noise variance were found in all
h, ) = h(j, ), fori,j = =3, 3. the above cases using all methods described in Sections
The values in the upper-left quadrant of the mask (i.e., III and IV, and they are tabulated in Table I(a)-(d). Plots

the lowest right element is 4(0, 0)) are of the MSE and PMSE as a function of A are also shown
in Figs. 2 and 3 for the SNR = 20-dB case.
1.94E — 02 1.98E — 02 2.01E — 02 2.03E — 02 From Table I(a)-(d), it is clear that the CLS method

1.98E — 02 2.04E — 02 2.07E — 02 2.08E — 02 always yields the largest value for A and thus an over
regularized estimate. However, for Q = I the difference

2.01E - 02 2.07E - 02 2.10E — 02 2.11E — 02 between Acps and )‘,I\V[SEI 2 is much smaller than for Q =
2.03E ~ 02 2.08E — 02 2.11E — 02 2.12E — 02. Qemr and 0'Q = (Ry)™". Also, as expected, Aysg is in

general larger than Apygse. These values were computed
Three cases were examined using three different Q’s as using two methods. First, the original image f was used
regularization operators. In the first case Q = I, was cho- resulting in the Aysg; and Apysg; values. Second, (23)
sen where [ is the identity matrix. In the second case @ and (24) were used with the knowledge of the noise var-
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Fig. 2. PMSE (dotted line) and MSE (solid line) as function of A for the
128 by 128 *‘Lena’’ image, with 7 by 7 blur, and SNR = 20 dB.
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Fig. 3. Expanded plot of the area around the minima of Fig. 2(a)-(c).

iance o2, resulting in the \ygp, and Apmse2 values. By
comparing the values obtained by both methods it was
found that (23) and (25) yielded equally accurate esti-
mates of Aysg and Apysg, respectively. Also, as expected
Acy was very close to Apysg, thus verifying their asymp-
totic relation shown in [9], [26].

From Table I(a), (b), Figs. 2(a), (b), and 3(a), (b) it is
easy to observe that for the ‘‘Lena’” image with Q = Q,p;

the values for \ obtained by the EDF, MSE, PMSE, CV,
and ML methods are much closer to each other than with
Q = I. This can be explained by the fact that the ‘“Lena”’
image is highly correlated with low-pass characteristics,
as is the case with most portrait or natural scenes images.
Thus unlike f, Q,p. f is almost an IID signal, that is
QoL QapL ~ K(Iéf)_l, where X is a constant. Therefore,
because of (40) the differences in the values of \ obtained
by the EDF, MSE, PMSE, CV, and ML methods are
small.

From the plots in Figs. 2(a)-(c), and 3(a)-(c) it is easy
to notice that the curves of MSE and PMSE for O = Q,p;.
and 0'Q = (R;)™"' ““look alike.”” The MSE and PMSE
curves have a minimum for almost the same values of A
and the curves around the minimum are flat. Thus in these
cases the minimum error is very stable to changes in A.
In contrast, the curves for Q = I show that values of A\ysg
and Apygg are further apart and that the minimum error is
more sensitive to changes in A.

The ML method for @ = I yields a value for A which
is significantly smaller than both the MSE- and PMSE-
based methods. This can be explained by the fact that the
ML method uses the assumption that Qf (\yy) is IID.
Then when Q = I, this yields that f (\yy,) is IID. For this
to be true, the random noise must dominate f (AmL) which
requires an under regularized estimate. On the other hand,
for Q = Q,p. the ML method yields values of A larger
than the MSE-, PMSE-, and CV-based methods. In other
words, for high noise variance, Q,p; f(\) is a better ap-
proximation of an IID Gaussian, if f (N\) is a ‘‘relatively
smooth’” image which implies that A > Aysg ~ Apmse ~
Acv. However, as the noise power decreases this differ-
ence becomes smaller.

For QQ = (Iéf)", all experimental results shown in
Table I(a)-(d) and in Figs. 2(c) and 3(c) agree with the
theoretical results of Section VI-B. All methods (except
CLS) yield values of A that are almost equal to the noise
variance.

Figs. 4 and 5 contain representative restored images
corresponding to the experiments described by Table I(b)
and (c), respectively. More specifically, for Q = I the
restored images with AcLs, Acy, and Ay are shown, while
for Q = Q,py the restored images with Acpg and Aysgs
are shown. In both cases the restoration obtained with the
use of the largest and smallest N’s were chosen to be
shown. For @ = I, however, the range between A¢ps and
AML Was too large, so restorations with Acy are also
shown.

From these images it is clear that Aci g oversmooths the
restored images for all choices of Q, while Ay for Q =
I yields severe noise amplification. The effect of the type
of the regularization operator can also be seen in the pat-
tern of the noise in the restored images. 0 = I yields a
grain-like noise pattern while Q = 2DL yields a block-
like noise pattern. The size of the block of this noise pat-
tern depends on the size of the region of support of Q.

The noise variance estimators were also tested using
(30)-(32). For Q = Q,p; all methods produced extremely
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(d)

(€4]

Fig. 4. (a) Original Lena 128 by 128 image; (b) Distorted image; SNR = 20 dB and 7 by 7 blur. Restored images by (5): (¢)
Q=1 Nes- () @ =1, Nev- (€) @ =1, M. () @ = Oaprs Acts:

accurate estimates of ¢°. In contrast, for Q = [ the ML
method yielded estimates significantly smaller than the
actual values. This can be explained by the fact that in
this case the assumption that f(\) is IID Gaussian is
embedded in this estimator. However, the original image
is smooth; therefore, the estimator, in an effort to satisfy
the IID assumption, attributes more variation from the ob-
served data to f and less to the noise process.

In a second experiment a different image was used to
test the validity of the above observations. A 128 by 128
version of the ‘‘Wedding’’ image from Kodak was uti-

lized. The observed image data were obtained as in the
first experiment (7 by 7 convolutional mask, IID zero
mean noise of SNR’s 10, 20, 30, and 40 dB). The three
regularization operators used in the first experiment (I,
Qypr and (R)™'/?) were also used and all methods for
choosing A\ and estimating the noise variance were tested.
For this image, exactly the same observations as in the
first experiment can be made, and the same conclusions
were reached.

A third experiment was also performed. The clear ob-
jective of this experiment was to test the various methods
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(f)

Fig. 5. (a) Distorted image; SNR = 30 dB and 7 by 7 blur. Restored images by (5): (b) Q@ = I, Acrs- (€) @ = 1, Aev. (€) @ =
I M. (d) Q@ = Qaprs Acus- (€) Q = Qapr, Amsez-

for an image with different characteristics than the ones
of natural scenes. This time a 128 by 128 synthetic grat-
ing image with vertical alternating black and white stripes
of 8 pixels width was used. This image was chosen so as
not to exhibit the correlation structure that natural image
scenes have. In other words, an image which when op-
erated on by the 2-D Laplacian operator does not produce
an almost IID signal. The observed image data were gen-
erated as in experiments one and two. The resulting val-
ues of X and &> were obtained by all methods as in the
first and second experiments and are tabulated in Table
II(a)-(d). MSE and PMSE plots similar to the ones in the
first experiment are provided in Figs. 6 and 7 for SNR =
20 dB.

From Table II(a)-(d) and Figs. 6 and 7 it is observed
that the CLS still yields the largest value of A. Also, as
in the previous two experiments A\ygg is greater than Aygg.
However, unlike the previous experiments, this time the
discrepancy between Aysg and Apyse/cv is also significant
for @ = QOyp,. This is expected, since as also explained
earlier, unlike the ‘‘Lena’” and the ‘‘Wedding’’ images
the grating image when operated by the 2-D Laplacian
does not yield an almost IID signal. Therefore, for this
image the case with Q = Q,p; does not resemble the case

with 0'Q = (R;)™" and thus does not yield approximately
equal values of N\ for the EDF, MSE, PMSE, CV, and
ML methods.

The ML method produced similar results as in the pre-
vious two experiments (severe under regularization for Q
= I and over regularization which gradually decreases
with the noise power for @ = Q,p;). Thus the ML method
seems to be more stable to the change in the image content
than the MSE, PMSE, and CV methods.

The noise estimators in this experiment performed sim-
ilarly to the ones in the previous experiments. Therefore,
a MSE solution can still be obtained even when the noise
variance is unknown.

VIII. DiscussioN AND CONCLUSIONS

The assumptions used for the analysis in this paper were
that the degradation and the regularization operators are
circulant. Also, throughout this paper, with the exception
of Section IV-B, it was assumed that only the noise n is
a random signal. The latter assumption, unlike the former
one, is not critical to the derivation of our results. That
is, the original image f can also be assumed to be random,
provided that it is independent of the noise n and its au-
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TABLE 11
(a) RESULTS OBTAINED WITH THE ‘‘GRATING'’ 128 BY 128 IMAGE, A 7 BY 7 MAsk AND SNR = 10 dB. THE VALUES Aysg 1 AND Apmsg) WERE COMPUTED
USING THE ORIGINAL f DIRECTLY, THE VALUES Aysg2 AND Appsg2 USING (23) AND (24), RESPECTIVELY, AND THE VALUES OF & gpr, 8%y, AND 52, USING
(30), (31) AND (32), RESPECTIVELY. (b) RESULTS OBTAINED WITH THE ‘‘GRATING’’ 128 BY 128 IMAGE, A 7 BY 7 MASK AND SNR = 20 dB. THE VALUES
Amse 1 AND Apmse 1 WERE COMPUTED USING THE ORIGINAL f DIRECTLY, THE VALUES Aumsg2 AND Apusg2 USING (23) AND (24), RESPECTIVELY, AND THE
VALUES OF 62py, 32y, AND 8% USING (30), (31) AND (32), RESPECTIVELY. (c) RESULTS OBTAINED WITH THE ‘‘GRATING’" 128 BY 128 IMAGE, A7 BY 7
Mask AND SNR = 30 dB. THE VALUES Ayse 1 AND Apyse1 WERE COMPUTED USING THE ORIGINAL f DIRECTLY, THE VALUES Aysg 2 AND Apmse2 USING (23)
AND (24), RESPECTIVELY, AND THE VALUES OF 6 &pg, &2y AND &% UsING (30), (31) AND (32), RESPECTIVELY. (d) RESULTS OBTAINED WITH THE

“‘GRATING”’ 128 BY 128 IMAGE, A 7 BY 7 MAsK AND SNR = 40 dB. THE VALUES Aysg | AND Apyse WERE COMPUTED USING THE ORIGINAL f DIRECTLY,
THE VALUES Aysg2 AND Appmse2 USING (23) AND (24), RESPECTIVELY, AND THE VALUES OF 5ipE, 65y, AND 63 USING (30), (31) AND (32), RESPECTIVELY

SNR = 10 dB SNR = 20 dB

g=1 0= QL 0=1 Q = O
AeLs 1.47E — 01 6.06E — 01 AeLs 2.60E — 02 2.09E — 02
AsT 1.00E — 01 9.89E - 02 Ast 1.00E - 02 9.89E — 03
NepF 4.90E — 02 4.54E — 02 NeoF 1.34E - 02 5.80E — 02
AMSE 1 8.33E — 02 6.73E — 02 AMsE 1 2.30E — 02 1.06E — 02
AMsE 2 8.38E — 02 5.34E - 02 AMsE2 2.26E — 02 8.99E — 03
NpMSE 1 3.15E - 02 3.93E - 02 ApMsE 1 9.64E — 03 5.97E — 03
NemsE2 3.18E — 02 3.61E — 02 Npmse2 9.72E — 03 5.79E — 03
Aev 3.01E - 02 3.54E — 02 Aev 9.09E — 03 5.79E — 03
A 1.09E — 02 1.83E — 01 AL 2.02E — 03 6.94E — 03
o? 1621.1 1621.1 g’ 162.1 162.1
G2pr 1560.8 1613.9 L. 153.3 161.9
G2y 1559.1 1611.4 a2y 154.4 162.9
o3 1479.6 1664.1 a3 140.1 162.4

(a) (b)
SNR = 30 dB SNR = 40 dB

o=1I Q= QL o=1I Q= Qip
AcLs 7.52E - 02 2.38E - 03 Nevs 2.01E — 03 3.10E — 04
Ast 1.00E - 03 9.89E — 04 AsT 1.00E - 04 9.89E — 05
NenE 3.32E — 03 5.56E — 04 NEDE 7.30E — 04 5.84E — 05
AMSE | 5.55E — 03 1.01E - 03 AMsE | 1.10E - 03 8.09E — 05
AMsE2 5.28E — 03 8.82E — 04 AmMsE2 1.03E - 04 7.31E - 05
NpmsE | 2.50E — 03 5.06E — 04 NeMsE 1 5.72E - 04 5.24E — 05
NeMsE2 2.51E — 03 5.34E — 04 ApMsE2 5.69E — 04 5.17E — 05
Aev 2.28E - 03 5.30E — 04 Aev 4.87E — 04 4.78E — 05
e 3.06E — 04 6.17E — 04 AuL 4.17E - 05 5.92E — 05
o’ 16.21 16.21 ¢’ 1.621 1.621
Gipr 15.18 16.16 Gipr 1.461 1.571
Gty 15.21 16.13 Gay 1.465 1.570
L 12.45 16.32 M 1.095 1.619

(c)

tocorrelation function Ry is circulant. Then, all equations
in this paper hold true if expectations are taken with re-
spect to both fand n and F; is replaced with r;, where r;
is the ith eigenvalue of R;. In this case the regularization
operator in Section VI-B becomes Q0'Q = (Rf)_l. Thus
the periodogram estimate of f is not necessary to make the
connection between the regularized and the LMMSE es-
timates.

From the analysis in Section VI and the experiments in
Section VII the following conclusions have been drawn.

1) The CLS method, which has been widely used by
the image restoration community always yields over-
smoothed estimates.

2) The value of A\ that minimizes the MSE criterion is
larger than the one that minimizes the PMSE criterion.

3) For images that are highly correlated and exhibit
low-pass characteristics the commonly used 2-D La-
placian represents a good choice of the regularization op-

CY

erator. In this case Acy yields a MSE very close to its
minimum value not only with Q = Q,p but with @ =
(Rf)"/ 2 as well. However, for images that do not exhibit
this behavior the 2-D Laplacian along with Acy yields an
under-regularized estimate, with corresponding MSE
larger than its minimum value. In this case it is preferable
to use directly Aysg after the noise variance is estimated
by the EDF or the CV estimators, instead of Acy.

4) The ML method is very sensitive to the choice of
the regularization operator, but is less sensitive (in com-
parison to the MSE and PMSE /CV methods) to the char-
acteristics of the image.

5) The new variance estimator &2y is at least as good
as the &2%pp estimator and its use is theoretically justified.
The proposed &3; variance estimator is very sensitive to
the regularization operator and in general does not yield
as good an estimate as §2y.

Some of the previous conclusions were also verified in
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Fig. 6. PMSE (dotted line) and MSE (solid line) as function of \ for the
128 by 128 “‘grating’’ image, with 7 by 7 blur, and SNR = 20 dB.
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Fig. 7. An expanded plot of the area around the minima of Fig. 6(a) and
(b) is shown.

[26] by examining asymptotic properties of the regular-
ization parameter for certain forms of the eigenstructure
of H, , and the covariance of f. The challenging problem
that was not addressed in this paper is the extension of the

regularization problem to the nonstationary image/space-
varying degradation case. Then noncirculant operators are
involved and the analysis cannot be carried out in the fre-
quency domain.

APPENDIX A

In this Appendix the equivalence of minimizing
E [|| He(N) |?] and satisfying (24) is shown. Equation (24)
with g = Hf + n yields

E ||(HAN)'/*HAN — gl - o?
- trace [HAO\) (I — HA(N))]
= trace [(HA(N)'/*(I — HAQ\)HI f']
H'I — HAN') (HAN)'/%Y
+ (HAOW)'2U — HA\))
- R,(I = HAN") (HAN)'?Y

~ 6 HAN (I — HAN)] = 0. (A-1)
In the Fourier domain, (4-1) yields
2
g[vwmwmum o’N |gi|* [ [?
SLARE + Ml (B + Ml
2 20 12
_ U);|ql| |hl|22]= (A-Z)
(h|* + Naq D
which yields
M2 412 2 2 2
) , 12V F.12 =
Z|h1| |ql|(z\|qt| | 1|23 0)=0' (A-3)
i=1 (Jh:1* + NMalD
We now show that the value of N minimizing

E [|| He(\) ||1?] satisfies (A-3). For uncorrelated signal and
noise we obtain

E(IHf — HfI® = E (|4 — HAN)Hf — HAQM )

E(ld — HAQWHS II*)

+ E (| HAO 1)

trace [(I = HAN)HL ]

- H'd — HAN)") + HANR,(HAN)'].
(A-4)

In the Fourier (A-4) becomes

M2 32 4 2 2 2 4
2 Mg | m]* | F* + o | A
E(H - Hf|H = 2 :
& AR i=1 (lhi|2+)\|qi|2)2

(A-5)

Taking the derivative with respect to \ and setting it equal
to zero yields

9 _ HA?
an E (I Hf — Hf %)

2
_ 5 g’ g P E? = o?
(> + N g
which is identical to (A-3).

=0

i=1
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APPENDIX B

In this Appendix it is shown that maximizing L(g|\,
d?%) in (27) yields (29) and is equivalent to minimizing
(28). The integrand in (27) is equal to

p@lf, 6% - p(fIN, 67
1\
= <27mz> - det NQ'Q)'

'exp[< >(f DYHH +NO(f - f)]

oo ()
with
f=HH+ N'Q'HYg
AN = (H'H + \Q'Q)"'H'
and

SN = ¢'lI = HAN)g = | — HAN) % |12

Integrating the multidimensional Gaussian fin (B-1) yields

M2/2
27l_02> det [AQ'Q]'/?

Lg|\, 0% = <

- det [H'H + NQ'Q]™'/? - exp [‘23(2)‘)].
g

(B-2)
Taking the logarithm of both sides of (B-2) yields
log (L(g|\, %)

2
= < 5 >log Qwo?) + (%) log (det [ANQ'Q))

1 1
- <5> log (det [H'H + \Q'Q]) — <W>

“ SNV (B-3)

Taking the derivative of (B-3) and setting it equal to zero
yields

o= (&
M

1
) 509 = (352 10~ oy g .

(B-4)
Substituting (B-4) back into (B-3) yields
_ _ 8U - HAN)g

ME® = et T = AAoy) 7 ®5)

which verifies the validity of the desired equations.
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ArPENDIX C

Throughout this Appendix we assume that |E;|* =
(|q,| y~!, where g; are the eigenvalues of Q. This is
equivalent to assuming that 0'Q = (R;) ™' with E[ ff'] =
Ry if the periodogram estimate is used as the estimate of
the power spectrum off [17].

Proof of \sy = a*: For th1s choice of the regular-
ization operator, the parameter E? in (13) for the set the-
oretic approach is equal to

M2

L=l = 2 (EDTRP = M

where F is the DFT of f. Thus from (13) and (15)
)‘ST = 0'2.

Proof Of )\MSE = )\PMSE = )\EDF = 0' Equatlon (1)
in the DFT domain becomes

E[G1 = |G|* = |n|*|F|* + o*

[hil* g™ + o

Substituting (C-1) into (23) results in

(C-1)

M@l PO = o)
=1 (h]” + Mg’

=0
which is satisfied for Aysg = 02 if Aysg # 0.

Substituting (C-1) into (24) results in

“ MAa* g’ = o?)
=1 (kP + Mg

=0

which also yields Apysg = 62 if Apysg # O.
Similarly, (12) in the DFT domain is equal to

_ ‘72>‘|"f1i'2
S (P + N g

M2 M2

N|al*|G I’
=R+ Mgl

= 0.

Due to (C-1) it becomes

$ M@l WPO - o) _
=t (kP + Mg

which yields Ngpp = 02.

Proof of Ny = o¢°: Taking the expectation of the
CV function in the DFT domam and substituting | g;|* =
(| F;|H 7! yields

C N g PR+ azkzlql“]

E[CV (A > ] d

[ev o = [ (hT + Nal?
)‘|qu2

M2 -2
2 —jl . C-2
{i=1(|h,-|2+)\|q,-|2) €2
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The derivative of (C-2) with respect to \ after some algebra yields

2{[%2 Ma PGkl + 2l + Mal) = Mlal*dhl® + qu[m} {Mz

i=1 (h> + Ny

2 2
*{%vm#ww+aﬂmw[g
=t (mP+ Nl
2
.{% Mgl }4
S (R A+ Mg
Setting A = o2, the numerator of (C-3) yields
V #mmmv}[“ 0’| 4]’ T
=1 (P + g L= (B + o al?)
- 2
_{g oHMHMZ}

SV ((h? + o gl?

M2 2
5 ml T)o
=L (kP + ol

which completes our proof.
Proof of MzmL = o2: Equation (29) is written in the
DFT domain as

S Mal’(mPPIF]* + 0%

=S (kP Na

For | ¢;|*> = (| F;|*)" it becomes
SIS
=1 (B2 + Mg

which results in Ay = 0.

= M?%2.

C4

APPENDIX D

In this Appendix we show that for | g;|* = (| F;|*) ' the
value of \ obtained by the CLS method satisfies

02 < News (D-1)
for A = Acs. Equation (11) yields
Elg - HFMVI* - M%6? =0 (D-2)

or
trace [(I — HAO)HL f'f1H'I — HAN))

+ (I = HAQ)R,(I — HAN) — 1] =0
or in the DFT domain
“Wﬁmﬂmmmz

(hl* + Nl

a’N | g: |4
(k> + N

i=1

2 2 242
BTSN I
With | F;|* = (l¢;|» ™", (D-2) yields
$ PN gf
= (P + N gD
a’Nq|* — M%*=0. (D-3)

+—..._—
(hl* + Mg

)\lfli|2 T
i=1 (1hi|2 + M‘L‘lz)

lqilzlhi|2 T{M )‘Iqi|2 }}
SV (B A+ MaP) L= dm P+ Nal®

(C-3)

This equation is satisfied for N = A¢ps. If instead N =02

is used, the left-hand side of (D-3) yields
(5 (. slar 2
o : -M } < 0. (D4
i=1 <|hi|2 + 02|‘Ii|2>

Consider now the function |g — Hf (\)||>. It has been
shown in the beginning of Section IV that this is an in-
creasing function of A. Thus (D-4) yields that (D-1) must
hold.

APPENDIX E
In this Appendix we show that for (Q'Q) ™' = ff', A\ =
o2, where f is deterministic, and u = (I — A(\))'/%g is
IID with variance ¢°. Using the matrix inversion lemma
[17] for (I — A(N\)) we obtain

(I — A =
[[ - HH'H + ¢*(f D H 'H] = <1 + ﬂyy.
(E-1)
By definition
Efu) = E[U — AN)'’gg'(d = 4001 (E-2)

Since (] — A(\)) and gg' are symmetric, (E-1) can be writ-
ten as

E[uw'] = I — AN)R, (E-3)
where
Elg'sl = R, = H ff'1H' + o’L (E-4)
Using (E-1)-(E-4) yields
E[ul = o> (E-5)
ACKNOWLEDGEMENT

N. P. Galatsanos would like to acknowledge Dr. H.
Stark for the numerous conversations and the continuous
encouragement during the course of writing this paper.
Both authors would like to acknowledge Dr. T. Olsen of
the Mathematics Department, Illinois Institute of Tech-
nology for pointing out [20] and Dr. V. Solo for providing
them with [26].




336

REFERENCES

[1] H. Andrews and B. Hunt, Digital Image Restoration.
Cliffs, NJ: Prentice Hall, 1977.

[2] D. L. Angwin and H. Kaufman, ‘‘Non-homogeneous image identi-
fication and restoration procedures,”’ in Digital Image Restoration,
A. K. Katsaggelos, ed., Springer Verlag New York: vol. 23, 1991.

[3] P. Craven and G. Wahba, ‘‘Smoothing noisy data with spline func-
tions,”” Numer. Math., vol. 31, pp. 377-403, 1975.

[4] G. Demoment, ‘‘Image reconstruction and restoration: Overview of
common estimation problems,”’ IEEE Trans. Acoust. Speech Signal
Processing, vol. 37, pp. 2024-2036, Dec. 1989.

[5] J. A. Fessler, ‘‘Nonparametric fixed-interval smoothing with vector
splines,”” IEEE Trans. Signal Processing, vol. 39, pp. 852-859, Apr.
1991.

[6] N. P. Galatsanos, and A. K. Katsaggelos ‘‘Cross validation and other
criteria for estimating the regularization parameter and the noise
variance,”’ in Proc. IEEE ICASSP, Toronto, Canada, May 1991, pp.
3021-3024.

[7] —, **The use of cross-validation and maximum-likelihood in regu-
larized image restoration,’” in Proc. Conf. Information Sciences and
Systems, Mar. 20-22, 1991, pp. 459-464.

[8] R. M. Gray, ‘‘On the asymptotic eigenvalue distribution of Toeplitz
matrices,”” IEEE Trans. Inform. Theory, vol. 1T-18, pp. 725-730,
Nov. 1972.

[9] G. H. Golub, M. Heath, and G. Wahba, ‘‘Generalized cross-valida-
tion as a method for choosing a good ridge parameter,”” Technometr.,
vol. 21, no. 2, pp. 215-223, 1979.

[10] P. Hall and D. Titterington, ‘‘Common structure of techniques for
choosing smoothing parameters in regression problems,’’ J. Roy. Stat.
Soc. B, vol. 49, no. 2, pp. 184-198, 1987.

[11] A. E. Hoerl and R. W. Kennard, ‘‘Ridge regression: Biased estima-
tion for nonorthogonal problems,’’ Technometr., vol. 12, no. 1, pp.
55-67, 1970.

[12] B. R. Hunt, “‘The application of constrained least squares estimation
to image restoration by digital computer,’” JEEE Trans. Comput., vol.
22, pp. 805-812, Sept. 1973.

[13] M. G. Kang and A. K. Katsaggelos, ‘‘Simultaneous iterative image
restoration and evaluation of the regularization parameter,” to be
published.

[14] A. Katsaggelos, J. Biemond, R. M. Mersereau, and R. W. Schafer,
‘A general formulation of constrained iterative image restoration,’’
in Proc. ICASSP-85, Mar. 1985, pp. 700-703.

{15] A. K. Katsaggelos, ‘‘Iterative image restoration algorithms,’’ Opt.
Eng., vol. 28, no. 7, pp. 735-748, July 1989.

[16] A.K. Katsaggelos, J. Biemond, R. M. Mersereau, and R. W. Schafer,
‘‘A regularized iterative image restoration algorithm,”’ IEEE Trans.
Signal Processing, vol. 39, pp. 914-929, Apr. 1991.

[17]1 S. M. Kay, Modern Spectral Estimation: Theory and Applications,
Englewood CIiff, NJ: Prentice Hall, 1988.

[18] R. L. Lagendijk, J. Biemond, and D. E. Bokee, ‘‘Identification and
restoration of noisy blurred images using the expectation-maximiza-
tion algorithm,’” IEEE Trans. Acoust. Speech Signal Processing, vol.
38, pp. 1180-1191, July 1990.

[19] K. T. Lay and A. K. Katsaggelos, ‘‘Image identification and resto-
ration based on the expectation maximization algorithm,”” Opr. Eng.
vol. 29, no. 5, pp. 436-445, May 1990.

[20] G. Kitagawa and W. Gersch, ‘‘A smoothness priors long AR model
method for spectral estimation,”” IEEE Trans. Autom. Contr., vol.
AC-30, pp. 57-65, Jan. 1985.

[21] P. Meer, J. Jolion, and A. Rosenfeld, *‘A fast parallel algorithm for
blind estimation of noise variance,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 12, pp. 216-222, Feb. 1990.

[22] D. Nychka, ‘“‘Confidence intervals for smoothing splines,’’ J. Amer.
Stat. Assoc., vol. 83, pp. 1134-1143, 1988.

[23] S. J. Reeves and R. M. Mersereau, “‘Optimal estimation of the
regularization parameters and stabilizing functional for regularized
image restoration,’’ Opt. Eng., vol. 29, pp. 446-454, May 1990.

[24] S. J. Reeves, **A cross-validation approach to image restoration and
blur identification,”” Ph.D. dissertation, Georgia Inst. Technol., 1990.

[25] J. A. Rice, **Choice of smoothing parameter in deconvolution prob-
lems,”” in Contemporary Mathematics, vol. 59, J. S. Maron, ed.
Providence, RI: American Math Soc., 1986.

[26] V. Solo, *‘Linear image restoration: An analytical study,’’ Tech. Rep.
88-VS-May-1988, Dept. of ECE, The John Hopkins Univ., Balti-
more, MD, May 1988.

[27] M. Stone, ‘‘Cross-validatory choice and assesment of statistical pre-
dictions,”’ J. Roy. Stattist. Soc., Series B, vol. 36, pp. 111-147, 1974.

Englewood

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. I, NO. 3, JULY 1992

[28] A. M. Tekalp, H. Kaufman, and J. W. Woods, ‘‘Identification of
image and blur parameters for the restoration of noncausal blurs,”’
IEEE Trans. Acoust. Speech Signal Processing, vol. 34, pp. 963-
972, Aug. 1986.

[29] A. M. Tekalp and H. Kaufman, ‘‘On statistical identification of a
class of linear phase space-invariant blurs using non-minimum phase
ARMA models,’’ IEEE Trans. Acoust. Speech Signal Processing, vol.
36, pp. 1360-1363, Aug. 1988.

[30] A. M. Thompson, J. W. Kay, and D. M. Titterington, ‘A cautionary
note about the crossvalidatory choice,”” J. Statist. Comput. Simul.,
vol. 33, pp. 199-216, 1989.

[31] A. M. Thompson, J. C. Brown, J. W. Kay, and D. M. Titterington,
‘A study of methods of choosing the smoothing parameter in image
restoration by regularization,”’ IEEE Trans. Pattern Analy. Mach.
Intell., vol. 13, no. 4, pp. 326-339, Apr. 1991.

[32] A. Tikhonov and V. Arsenin, Solution of lli-Posed Problems.
York: Wiley, 1977.

[33] H. J. Trussel, ‘‘Convergence criteria for iterative restoration meth-
ods,’’ IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-31,
pp- 129-136, Feb. 1983.

{34] H. J. Trussel and M. R. Civanlar, ‘‘The feasible solution in signal
restoration,”” IEEE Trans. Acoust. Speech Signal Processing, vol.
32, pp. 201-212, Apr. 1984.

[35] G. Wahba, ‘‘Practical approximate solutions to linear operator equa-
tions when the data are noisy,”’ SIAM, J. Numer. Anal., vol. 14, pp.
651-667, Sept. 1977.

[36] —, ‘‘Bayesian ‘confidence intervals’ for the cross-validated
smoothing splines,”” J. Roy. Stat. Soc. B, vol. 45, pp. 133-150, 1983.

[37] —, “‘A comparison of GCV and GML for choosing the smoothing
parameter in the generalized spline smoothing problem,’’ Annals Sta-
tist., vol. 13, no. 4, pp. 1378-1402, 1985.

{38] —, ‘‘Spline models for observational data,”’ presented at SIAM-
59, Philadelphia, PA, 1990.

New

Nikolas P. Galatsanos (M’89) was born in Ath-
ens, Greece in 1958. He received the Diploma de-
gree in electrical engineering from the National
Technical University of Athens, Athens, Greece,
in 1982, and the M.S. and the Ph.D. degrees in
electrical engineering from the University of Wis-
consin, Madison in 1984 and 1989, respectively.

Since 1989, he has been on the Faculty of the
Department of Electrical and Computer Engineer-
ing at the Illinois Institute of Technology, Chi-
cago, IL, where he is currently an Assistant Pro-
fessor. His current research interests include image processing, and more
specifically recovery, and compression of single and muitichannel/frame
images.

Dr. Galatsanos is a member of the OSA and the Technical Chamber of
Greece.

Aggelos K. Katsaggelos (M'85) was born in Ar-
nea, Greece, on April 17, 1956. He received the
Diploma degree in electrical and mechanical en-
gineering from the Aristotelian University of
Thessaloniki, Thessaloniki, Greece, in 1979, and
the M.S. and Ph.D. degrees in electrical engi-
neering from the Georgia Institute of Technology,
Atlanta, Georgia, in 1981 and 1985, respectively.

From 1980 to 1985 he was a Research Assistant

at the Digital Signal Processing Laboratory of the

: Electrical Engineering School at Georgia Tech. He
is currently an Associate Professor in the Department of Electrical Engi-
neering and Computer Science at Northwestern University, Evanston, IL.
During the 1986-1987 academic year he was an Assistant Professor at
Polytechnic University, Department of Electrical Engineering and Com-
puter Science, Brooklyn, NY. His current research interests include signal
and image processing, processing of image sequences, computational vi-
sion, and parallel implementation of signal processing algorithms.

Dr. Katsaggelos is an Ameritech Fellow and a member of the Associate
Staff, Department of Medicine, at Evanston Hospital. He is also a member
of SPIE, the Steering Committees of the IEEE TRANSACTIONS ON MEDICAL
IMAGING, IEEE TRANSACTIONS ON IMAGE PROCESSING, the IEEE-CAS
Technical Committee on Visual Signal Processing and Communications,
the Technical Chamber of Commerce of Greece and Sigma Xi. He is an
Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING and
also the editor of the Springer-Verlag book Digital Image Restoration.




