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Prioritized DCT for Compression and Progressive
Transmission of Images

Yunming Huang, Member, IEEE, Howard M. Dreizen, Member, IEEE, and
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Abstract—In this paper a new approach based on the block
discrete cosine transform (DCT) for compression and progres-
sive transmission of images is presented. The novelty of this
approach is that the transform coefficients of all image blocks
are coded and transmitted in absolute magnitude order. The
resulting ordered-by-magnitude transmission is accomplished
without sacrificing coding efficiency by using partition priority
coding (PPC) a new source coding method that allows the trans-
mission of an ordered data source without coding overhead due
to prioritization. Using this approach, coding and transmission
are adaptive to the characteristics of each individual image,
and therefore, very efficient. Another advantage of this ap-
proach is its high progression effectiveness. Since the largest
transform coefficients that capture the most important char-
acteristics of images are coded and transmitted first, this
method is well suited for progressive image transmission (PIT).
Further compression of the image data is achieved by utilizing
multiple distribution entropy coding (MDEC). MDEC is a new
coding technique based on arithmetic coding. Experiments are
presented where the new DCT approach was tested. It is shown
that it compares favorably with previously reported DCT and
subband image codecs and is also very effective for PIT.

I. INTRODUCTION

RANSFORM coding denotes a procedure in which

the image is subjected prior to transmission to an in-
vertible transform with aim to convert the statistically de-
pendent image elements to independent coefficients. Thus
through this transform the data are compressed by redun-
dancy reduction. However, in many cases, in order to
achieve further compression, the transformed data are also
subjected to irrelevancy reduction [1]. Data that are con-
sidered irrelevant and do not convey a lot of information
about the image are discarded. Thus the redundancy re-
duction is reversible, whereas the irrelevancy reduction is
not.

Transform coding using the 2-D block discrete cosine
transform (DCT) is a proven method for image compres-
sion and widely used by both the academic and industrial
image processing communities [2]-[15]. For this ap-
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proach the image is divided into blocks and the 2-D DCT
transform is applied separately to each block. Irrelevancy
reduction is then applied to the resulting transform coef-
ficients of each block such that the most relevant infor-
mation is retained for transmission or storage while the
rest is eliminated. A considerable amount of research has
been devoted to adapting the irrelevancy reduction to the
nonstationary nature of real-world images. Because of this
nonstationarity, the pattern of most relevant information
varies from block-to-block and from image-to-image.

A number of solutions have been suggested to the ir-
relevancy reduction problem. Chen and Smith in [3] pro-
posed the partitioning of the blocks into classes based on
the activity of the ac components. For each class a bit
allocation map is assigned, which captures the character-
istics of the class; more bits are assigned to larger coef-
ficients and for classes that have higher ac activity. An-
other method suggested by Ngan [12] and Chen [4],
adopted for many applications [12], uses different types
of scans of the normalized DCT coefficients; priority of
the coefficient in each block is decided by its order in the
scan of the block (see, for example, [12, fig. 4] for the
zig-zag scan). A philosophically similar solution to this
problem was suggested in [7] and [10]; the transform coef-
ficients in each block are arranged in vectors and a clus-
tering algorithm is used to encode them using vector
quantization methods.

All the above irrelevancy reduction methods yield, in
general, satisfactory results. However, they all suffer from
the same problem, their adaptivity is limited by the num-
ber of classes, bit allocation maps, or vectors allowed.
Although more bits are assigned to groups of ‘‘busy”’
blocks and fewer bits to the groups of ‘‘quiet’” blocks,
they cannot exactly match each individual block’s char-
acteristics. These methods are optimally adapted to a class
of images in a statistical sense, but not to each individual
image that is coded. Inevitably, some of the low fre-
quency coefficients are assigned extra bits, or some high
frequency coefficients are assigned fewer bits than re-
quired. This leads to redundancy or loss of information,
respectively. Another problem with these methods is the
loss of high frequency coefficients. The coefficients of the
DCT block (i.e., as organized with dc in the upper left
corner) in the lower right corner are typically discarded
to meet the bit quota. This results in low quality recon-
structed images, especially in the case of images with
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large high frequency content; for example, images with
text overlay. To avoid some of these problems variable
length Huffman coding and uniform quantization of the
DCT coefficients have been proposed in [2], [4].

Progressive image transmission (PIT) is another appli-
cation where the block DCT has been used extensively,
see [14, p. 312] and references within. PIT involves an
approximate reconstruction of the image whose fidelity is
built up gradually until either the viewer decides to abort
the transmission or perfect reconstruction is achieved [5].
The applications of PIT are in transmitting images over
low bandwidth channels such as telephone lines. Exam-
ples of such applications are teleconferencing, electronic
shopping in mail order companies, security systems, and
access to remote image databases.

For these applications it is important that the image de-
velops detail rapidly over the entire image so the viewer
can recognize the image as early as possible in the trans-
mission. Therefore, information that describes important
features of the image must be transmitted first. As men-
tioned previously, because of the nonstationarity of real-
world images, the pattern of most significant information
varies from image-to-image. Therefore, coding and trans-
mitting information about the transform coefficients based
on relevance is also a very important problem for PIT ap-
plications.

In this paper, a new block DCT approach called prior-
ity DCT coding (PDCT) is introduced. For this approach
the transform coefficients are simply rounded to C bit pre-
cision. Then, the coefficients of the entire image are
sorted, the largest ones combined with their position in-
dicators are encoded and transmitted first, followed by the
smaller ones, till either the desired bit rate or image qual-
ity is achieved. Determining the relevance of transform
coefficients based on their magnitude has many advan-
tages. It is mathematically justified because the larger
coefficients of an orthonormal transform carry more of the
signal energy. Furthermore, for a given bit rate, this se-
lection of coefficients adapts to the characteristics of each
image that is compressed and is also very suitable for PIT
because larger coefficients, with a proportionally larger
impact on the reconstructed image, are sent first. How-
ever, transmitting an ordered data source typically yields
a higher coding cost because the position information must
also be sent. In this paper we introduce partition priority
coding (PPC) a new method for transmitting a data source
in priority order without any additional coding cost due
to the prioritization of the data.

After taking the block DCT of the image, the selected
by PPC coefficients for transmission are arithmetically
coded [16], [18]. In this paper a new technique called
multiple distribution entropy coding (MDEC) is intro-
duced. It involves partitioning the transmitted data into
subsources and then using the multiple probability distri-
butions of the subsources to entropy encode them. It is
shown that this partitioning yields further compression of
the image data.

The rest of this paper is organized as follows: in Sec-

tion II PPC is introduced and its theoretical properties are
examined. It is shown that the entropy of the original
source is equal to the average entropy of the ordered
source plus the average entropy of the position informa-
tion necessary to reconstruct the source. Section III con-
tains the implementation details of the PDCT coder. In
Section IV the MDEC technique is explained and its prop-
erties are examined. Section V contains experimental re-
sults. Finally, Section VI contains a discussion, conclu-
sions, and plans for future research.

II. ParTtiTION PRIORITY CoODING (PPC)

The advantages of irrelevancy reduction based on mag-
nitude are well known [4]. However, prioritizing a source
by magnitude typically leads to a decrease of the coding
efficiency of the transmission since the coding order is
unknown to the receiver, and therefore, must be trans-
mitted. It has generally been assumed that informing the
receiver of the coding order imposed on a particular se-
quence of samples (or coefficients) requires significant
coding overhead, against which the application’s benefit
from the prioritized coding must be weighed [S]. In the
rest of this section, a prioritized coding method called
partition priority coding (PPC), is presented. The advan-
tage of this method is that its average coding cost of trans-
mitting the data (ordered source + position index) is iden-
tical to that of the data in index order.

Transmission of a sequence of samples is commonly
performed in the natural order defined by the underlying
time or spatial index. Only the sample values need be
coded as the index of each received sample is known a
priori. Prioritized transmission of the samples, according
to value, would be a more desirable method to transmit a
source. In this way, the most ‘‘relevant’’ samples with
larger values are coded and sent first followed by less
“‘relevant’’ ones. In order to reduce the position order
coding, overhead partitioning of the data is performed
first. In what follows PPC, a new data transmission
method is presented. The interesting result is that the total
coding cost of PPC is identical to non-PPC coding with-
out prioritization.

LetR={S,, - ,S, -, Sy} be a partition on the
range of the data X;, where | < X; < R. That is, §, are
disjoint, nonempty, and U S, = R. Each §, represents a
coding pass of PPC; for each §,, position codes ¢,(/;) in-
dicating which X; are within pass S,, together with 8, (X;),
the value of all samples X; € S,, are transmitted. For ex-
ample consider the source X;

X; = 10 40 30 20 50 40 20 45 10 55
using the partition
{S, = {48, - - - , 55}, S, = {32, ---,47},
{16, - - -, 31}, 8§, = {0, -- -, 15}}

R
S3=

this source would be coded as (left to right, top to bot-
tom):
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where ‘‘—’’ represents no symbol coded. In practice, the
¢,(I;) and 0,(X;) of pass S, can be interleaved (for S,
above, coding 0, 0, 0, 0, 1, 50, 0, - - -) without affecting
the coding cost. Sample X; coded in pass S, will obviously
never be coded again, thus ¢,(I;) = ““—,”” foru > t. The
position of the last pass ¢y, (/;) can be inferred; all X; not
coded in previous passes are coded in the last pass.

Selection of the passes controls the degree of priority
coding as within each pass the eligible samples are coded
without priority. If M = 1, PPC reduces to nonpriority
coding. For M = R, PPC provides complete priority cod-
ing, all X; = r are transmitted before any X; < r.

Theorem: H(X;) = HyX;) + H/(I,), where H(X,) is
the entropy of the original unordered data, and Hy(X;),
ﬁv(l,-), the average entropy of the ordered data and the
position indicators for all the PPC passes respectively.

For a proof of this theorem see Appendix A. This theo-
rem shows that the average entropy of position indicators
and samples values using the PPC method is identical to
that of ordinary coding sample values in index order. The
most interesting case of PPC is M = R in which each S,
contains a single value of R; Hy(X;) = 0, and therefore,
ﬁ¢(],~) = H(X;). Thus coding position indicators for each
value in R provides complete priority coding with entropy
identical to H(X;).

A similar priority coding method, based on Huffman
and runlength coding, was successfully used for
nonhomogeneous PIT in [S]. However, in contrast with
PPC prioritization in [5], it generates coding overhead.

III. DESCRIPTION OF THE IMPLEMENTATION OF THE
PDCT Cobkc

For simplicity of discussion, the images are assumed to
have n - L X m - L pixels, where L is the length of the
square blocks and n, m are the number of blocks in hori-
zontal and vertical directions, respectively. An image can
then be represented by the 4-tuple Y(k, [, i, j):

Yk, L i, j) = (Y kK 1=0,1,--+, L~ 1},
i=0,1,---,n—1,
i=0,1,- ,m~—1

where k, [ are the indexes of the pixels within the block
and i, j are the indexes of the block as shown in Fig. 1(a).
The blocks, Y; ; then undergo an orthogonal and unitary
block DCT transform A(4' = A™', ¢ is the transpose):

Qi,j = AYi,jA' (N
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Fig. 1. (a) The image blocks in the DCT domain. (b) The resulting data
sources for Z = 1.

where ¥, ;and @, ;are L X L blocks of pixel data and DCT
coefficients, respectively, and A4 is the L X L DCT coef-
ficient matrix [14]. The resulting coefficients, Q{ ", are
rounded to C bit precision before arithmetic coding and
transmission. The quantized coefficients are denoted by
X

After the DCT transform, the original image Y(k, [, i,
j) is converted into the transformed image X(u, v, i, j)
with coefficient elements, X{"". At the receiver, the X}/
coefficients are used to reconstruct an approximation of
the coded image, Y. By using the notation in (1) the re-
constructed image is given by

Yi,j = A’X[JA, i
@

The DCT coefficients X7/ (—27' = X" < +2°71)
are coded using PPC. For each pass S, = [S[™", S7] of
a given partition R = {S,, - -, S,, - -, Sy}, where
S™n js the low bound of the pass and S™ is the high
bound of the pass, the entire DCT transformed image
X(i, j, u, v) is sequentially scanned from the upper left
corner to the lower right corner. As described in Section
III, coefficients with values in the range of the present
pass and their position indicators are coded. The values

of the position indicators ¢, ({}") in pass S, are computed
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by
1,  SM™ =z |X4Y = smn
d’t(llr‘]v) = 0, |X7/)[ <SS,

s otherwise

forall i, j, u, v.

3)

The coefficients of this pass are given by
0,(X1") = X1, when ¢, (I{7") = 1. (C))
The indicators and the coefficients of the pass are coded

alternatively, if ¢,(/{"}") = 1, then 6,(X}}") follows.

IV. MuLTIPLE DISTRIBUTION ENTROPY CODING
(MDEC)

In this section a new technique for efficient lossless data
compression using arithmetic coding is presented. Arith-
metic coding is an entorpy source coding method which
recently has become very popular. In principle, when a
message is coded using this method, the number of bits
in the coded string is the same as the entropy of that mes-
sage with respect to the model (probability distribution of
data) used for coding [18]. This method is superior to
Huffman coding because it dispenses with the restriction
that each symbol must translate to an integer number of
bits, thus coding more efficiently.

The transform coefficients X' withi = 1,2, - - - n —
landj = 1,2, - - - m — 1 and fixed u, v are considered
as one data source for entropy coding purposes. Thus for
each image L X L data sources are available as shown in
Fig. 1(b).

The new technique is called multiple distribution en-
tropy coding (MDEC) and it involves partitioning each of
the L X L data source into subsources. The partitioning
for MDEC is different from the partitioning for PPC.
Therefore, in order to avoid confusion, the word *‘split-
ting”’ will be used to indicate the partitioning of a source
into subsources for MDEC purposes. Thus MDEC in-
volves splitting the L X L sources with the DCT coeffi-
cients into subsources. The multiple probability distribu-
tions of the subsources are then utilized to arithmetically
code the data. If multiple distributions are used, the avail-
able a priori knowledge about the original source is higher
than that before the partition. Thus the average entropy
of the data is now smaller, (see Appendix B for a proof),
and this results in a lower coding cost. From the proof in
Appendix B it is clear that no coding benefit is produced
if the subsources have identical distributions.

The idea of splitting a source into subsources in coding
applications is not new. In [3], Chen and Smith used ac
energy classification as the criterion to split the DCT coef-
ficients into subsources and then designed quantizers for
each subsource. Similarly, Wornell and Staelin used a
maximum-likelihood approach for this splitting [20].
From the findings in [3] and [17], it is clear that if ac
energy classification is used, the DCT coefficients of dif-
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Fig. 2. The probability distributions functions (PDF’s) of the (0, 1) DCT
coefficient. P%' is the PDF of the entire source. P%', P%!, P!, and
PY', are the PDF’s of the Z = 4 subsources. Index splitting and the image
**Karen’" are used. The measured average entropy of the DCT coefficients
using Z = 1 for each frequency is 1.060 b. The measured average entropy
of the DCT coefficients using MDEC with Z = 4 subsources for each fre-
quency is 0.970 b.

ferent classes have different variances and thus different
distributions. Therefore, based on the proof in Appendix
B, theoretically, at least, MDEC will always yield a cod-
ing gain.

In practice, splitting based on ac energy for arithmetic
coding purposes has the disadvantage that it requires the
transmission of the classification map to the receiver. Let
the DCT coefficients in each class be represented as
[X{/), forz = 1,2, - - - Z, with Z the number of sub-
sources. In order to decode the transmitted data the re-
ceiver must know the subsource from which each piece of
data came. Thus the classification map of all the blocks
must be transmitted as overhead. This overhead is

Boh =n-m logz Zb. (5)

Although in theory more subsources implies larger coding
gains, for the ac energy splitting, in practice, this coding
gain must be weighed against the increase in overhead
required to transmit the block classification map.

In order to overcome the overhead problem of ac en-
ergy splitting an alternative method was used. This
method is called index splitting and is based on the loca-
tion of the block in the image. For example if Z = 4 sub-
sources are used, the image is split into equal quadrants
and the blocks of each quadrant form the subsource. Thus
for this method the classification map is implicit and does
not need to be transmitted. In Fig. 2 we show the proba-
bility distribution P?“ of the (0, 1) DCT coefficient be-
fore splitting along with the probability distributions
PY%' PO PY%' and PY%' of the 4 subsources resulting
from index splitting into Z = 4 subsources for the
‘‘Karen’’ image. Notice that all 4 distributions are differ-
ent, thus it is expectd that this method will also yield cod-
ing gains. As an example the measured average entropy
of the DCT coefficients of the image ‘‘Karen’’ (see Fig.
7(a)) was computed. Using Z = 1 (i.e., no MDEC) the
entropy was 1.060 b. Using MDEC with Z = 4 sub-
sources, it was 0.970 b.

The previously described PDCT codec combines the
advantages of both PPC and MDEC and can be used both



HUANG et al.: DCT FOR COMPRESSION AND TRANSMISSION OF IMAGES

Classification| Multiple
Map Distributions
H Arithmetic

Coding
Lok PPCEncoder ___| ____

Pass
Partition

Inverse

Multiple
Distributions

Reconstructed
Image

'
¢
¢
'
v
'
'
‘
'
'
'
'
'
'
'
'
'

'
'
'
|
'
'
'
'
'
'
'
I
.
.
'

Fig. 3. Block diagram of the PDCT codec.

for image conpression and for PIT. A block diagram for
this codec is shown in Fig. 3.

V. EXPERIMENTS

Experiments were used to test the PDCT image coder.
The original images were 8 b/pixel gray scale images,
and 16 by 16 or 8 by 8 block DCT was used. Each DCT
coefficient was rounded to 8-b precision, that is, the ac
coeflicients are integers in the range [— 128, 127]. The dc
coeflicients are integers in the range [0, 255]. The deci-
sion to round-off using 8 b is arbitrary and is based on
hardware considerations. Using 8-b precision does not
yield errorless reconstruction. For this, about 12-b pre-
cision would be needed. The coefficients are then coded
using PPC and MDEC with arithmetic coding [16] and
[18]. For a single pass with the range {|128], 0}, PPC
degenerates to nonprogressive transmission coding and the
output bit rate cannot be controlled, thus multiple passes
were used.

The multiple probability distributions of the coeffi-
cients and the position indicators were estimated by av-
eraging the corresponding distributions obtained from an
image database. For the first (Model 1), 5 images were
used with entropies close in value to the entropy of the
coded image. For the second (Model 2), 32 arbitrary im-
ages were used.

The pass parameters for PPC were chosen to be

{32, 16, 8, 4,3, 2, 1}.

for M = 7 passes. This choice of parameters provides a
fairly even distribution of information in each pass. The
dc coefficients were coded first followed by the classifi-
cation map and the ac coefficients pass by pass. Using this
approach, even in the very early stages of the transmis-
sion (for example, 0.05 b/pixel, or 160:1 compression
ratio) a rough and meaningful image approximation can
be reconstructed.

To evaluate system performance, the peak mean square
error (PMSE) and the peak signal-to-noise ratio (PSNR)
are used. PMSE is defined as the MSE normalized by the
full range of the signal, i.e.:

MSE

PMSE =
2552

©
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TABLE 1
COMPRESSION PERFORMANCE IN PROGRESSIVE TRANSMISSION OF ‘‘LENA"’
(PICTURE Si1ZE: 512 BY 480, BLoCK SIZE: 16 BY 16, PROBABILITY
DISTRIBUTION MODEL: MODEL 2, MDEC SPLITTING:
BASED ON AC ENERGY)

Bit Rate (bit/pixel)

Stage Pass PSNR(dB) Z=1 Z=4 Z=8 Z=16 Z=32
0 DC 19.932 0.031 0.039 0.043 0.047 0.051
1 =32 22.487 0.044 0.050 0.052 0.055 0.058
2 =16 25.286 0.083 0.082 0.082 0.082 0.080
3 =8 28.320 0.171 0.160 0.157 0.150 0.137
4 =4 31.389 0.341 0.318 0.311 0.296 0.269
5 =3 32.623 0.444 0.416 0408 0.391 0.358
6 =2 34.190 0.626 0.587 0.582  0.565 0.528
7 =1 36.751 1.133  1.076 1.069 1.061 1.015
TABLE I1

PSNR PERFORMANCE IN PROGRESSIVE TRANSMISSION OF ‘‘LLENA"" (PICTURE
Size: 512 BY 480, BLOCK SiZE: 16 BY 16, PROBABILITY DISTRIBUTION
MoDEL: MobgL 2, MDEC SpPLITTING: BASED ON AC ENERGY)

PSNR (dB)
Bit Rate
Stage  (bit/pixel) Z =1 Z=4 Z=28 Z=16 Z=32
0 0.05 22.78 22.476 21.914  20.752 19.932
1 0.10 25.659  26.017 26.014 26.067  26.253
2 0.15 26.650 27.265 27.303 27.516  28.075
3 0.20 28.661 29.149 29.218 29.359  29.703
4 0.25 29.401  30.118 30.177  30.392 30.925
5 0.30 30.355 31.100 31.221  31.482 31.841
6 0.40 32.029 32.482 32.553  32.775 33.047
7 0.50 33.012  33.458 33.519  33.687 33.985
8 0.75 34.655 35.082 35.173  35.173 35.369
9 final* 36.751  36.751  36.751 36.758 36.751

*: final bit rates are shown in Table I (Stage = 7).

where

MSE = [yo! — ver 7

n-L-m-+Li=0j=0u=0v=0

@)

IA/}"‘j" are the reconstructed image pixel values. The PSNR
is defined as

PSNR = 101 55° 8

€ \PMSE /- ®
A criterion based on the SNR might have been preferable.
However, for purposes of direct comparison with pre-
vious coders, PSNR was considered.

In a first experiment, ‘‘Lena’” with a size of (512 by
480) pixels and 8 b /pixel was used. The image was di-
vided into 16 by 16 blocks and the blocks split into Z
classes based on ac energy [3]. Experimental results for
different number of Z classes are shown in Tables I and
II. In Table I the coding performance of each pass is
shown. The PSNR improvement is about 1-3 dB for each
pass. When all the image data are transmitted, the final
bit rate is 1.015 b/pixel (Model 2) and the PSNR
36.751 dB. Table II shows PSNR results at different bit
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Fig. 4. Progressively reconstructed images ‘‘Lena’” (512 by 480). (a) Original image. (b) 0.10 b/pixel. (c) 0.20 b/pixel. (d)
0.30 b/pixel. () 0.40 b/pixel. (f) 0.50 b/pixel. (g) 0.75 b/pixel. (h) 1.00 b/pixel.

rates. From this table, it is clear that for very low bit rates
(0.05 b /pixel) no coding advantage is gained by splitting
the data into subsources based on ac energy because of
the additional overhead required for the transmission of
the classification map.

Tables I and II contain the results of an evaluation of
the same coder using two different ways. In Table I the
value of the smallest DCT coefficient transmitted is used
to define the data utilized to reconstruct the image. There-
fore, the resulting PSNR is fixed. However, the resulting
bit rate after arithmetic coding will vary depending on the
number of subsources used. In Table II the final bit rate
resulting after arithmetic coding is fixed. Therefore, for
different numbers of subsources the compression ratio will
vary, and thus the PSNR will also change.

Fig. 4(b) to (i) shows a set of reconstructed images,
using Model 2 with Z = 32, at different bit rates. From
these figures it is clear that even at the very early stages
of transmission, 0.10 b/pixel (compression ratio =
80:1), the reconstructed image exhibits the same basic
features as the original to a degree sufficient to recognize
it. During the following stages more details are added to
the image. After reception of about 0.50 b /pixel, the re-
constructed image is of a good quality (SNR = 34.0 dB).
This progressive transmission experiment shows the ef-

fectiveness of the PDCT coder for this application. The
curves in Fig. 5 show the PSNR performance of this
transmission. These curves show that the PSNR slope is
very high during early transmission (bits /pixel < 0.25).
By comparing the two curves in Fig. 5, it is also clear that
statistical errors in probability distribution models did not
seriously degrade coding performance.

For comparison purposes with previously reported co-
decs, a second experiment was performed using the 256
by 256 ‘“Lena’’ image with 8 by 8 blocks. For this ex-
periment both ac energy and index splitting were used to
divide in Z subsources. The PSNR results for different bit
rates with (Z = 1, 4, 8, 16, 32) for the ac energy and
index splitting methods are shown in Tables III and IV,
respectively. From these tables it is clear that at low bit
rates (especially for large Z), the index is superior to ac
energy splitting. However, for higher bit rates, ac energy
splitting yields better results. The results in Table IV are
compared with results reported in [19]. This comparison
(Fig. 6) shows that the PDCT codec outperformed both
previous DCT based codec by 3-4.5 dB and the adaptive
subband codec reported in [19] by 1-3.5 dB.

In a third experiment, the 256 by 256 ‘‘Karen’’ image
with text overlay was used. The block size was chosen to
be 16 by 16. This experiment was designed to show the
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l

Fig. 4. (Continued.)

40 TABLE III
PSNR PERFORMANCE IN PROGRESSIVE TRANSMISSION OF ‘‘LENA’" (PICTURE
SiZE: 256 BY 256, BLOCK SIZE: 8 BY 8, PROBABILITY DISTRIBUTION
MoDEL: MODEL 2, MDEC SpLITTING: BASED ON AC ENERGY)

37 PSNR (dB)
Bit Rate
Stage (bit/pixel) Z=1 Z=4 Z=8 Z=16 Z=32
0 0.20 23.632 23212 23.634 21.071  18.749
20 1 0.30 25922 25.940 25.827 25.839  25.905
2 0.40 27.073 27231 27.235 27306  27.623
3 0.50 28.268 28.584 28.618  28.854  29.763
s 4 0.75 30.838  31.317  31.354  31.481  31.992
5 1.00 33,143 33.950 34.041 34283  34.762
6 1.25 35297 35.966 36.021  36.206  36.582
17 7 1.50 36.773  37.517 37.621 37.761  38.228
8 1.75 38.341 38917 39.962 39.044  39.295
9 2.00 39.284  39.927  40.024  40.127  40.470

28
advantages of our method for integrated text, gray scale
image transmissions. The reconstructed image using the
method in [3] at 1.0 b/pixel is shown in Fig. 7(b). This

2% os o o5 o T 22 image is blurred and the text is not recognizable. The re-
Bit Rate (bit/pixel) constructed images using the PDCT coder, at 0.50 and
1.0 b /pixel are shown in Fig. 7(c) and (d), respectively.

Fig. 5. Progressive image transmission performance for ‘‘Lena’’ (512 by : : :
480) using Model 1 and Model 2. Using the PDCT coder the text is recognizable even at a

bit rate of 0.50 b /pixel.
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TABLE IV
PSNR PERFORMANCE IN PROGRESSIVE TRANSMISSION OF ‘‘LENA’" (PICTURE SIZE: 256 BY 256, BLOCK SIZE:
8 BY 8, PROBABILITY DISTRIBUTION MODEL: MODEL 2, MDEC SPLITTING: BASED ON INDEX)

PSNR (dB)
Bit Rate
Stage (bit /pixel) Z=1 Z=4 Z=38 Z =16 Z=32
0 0.20 23.632 23.806 23.977 24.261 24.594
t 0.30 25.922 26.378 26.568 26.899 27.243
2 0.40 27.073 27.331 27.641 28.175 29.099
3 0.50 28.268 28.621 29.131 29.984 30.621
4 0.75 30.838 31.144 31.384 31.837 32.725
5 1.00 33.143 33.557 33.854 34.508 35.101
6 1.25 35.297 35.508 35.780 36.234 36.757
7 1.50 36.773 37.034 37.283 37.660 38.334
8 1.75 38.341 38.623 38.730 38.956 39.327
9 2.00 39.284 39.487 39.661 39.949 40.479
43 4
40
37
PSNR
(dB) 34
31
d
e
28 H
c
25 | 1 1 1 ]
0 0.5 1 1.5 2 25

Bit Rate (bit/pixel)

Fig. 6. PSNR versus bit rate for ‘‘Lena’’ (256 by 256) using: (a) adaptive SBC, (b) nonadaptive SBC, (c) adaptive DCT, (d)
differential VQ, (e) VQ, and (f) PDCT (plots (a)-(e) are taken from [19]).

VI. DiscussioN, CONCLUSIONS, AND FUTURE
RESEARCH

In this paper a new block DCT based coder was pre-
sented. The novelties of this coder are the PPC and MDEC
ideas. PPC is a new source coding and transmission
method that allows transmission of the transform coeffi-
cients based on magnitude without a prohibitive amount
of overhead due to prioritization. At this point it must be
made clear that the entropy equivalence of the unordered
data and the prioritized data using PPC holds only if the
entire source is transmitted. This can be the case in PIT
applications. However, for image compression applica-
tions this may not always be true. The rate distortion

properties of partial PPC is still an open question that is
currently under investigation. The computational over-
head that PPC adds is equivalent to the computational load
required to order a source by magnitude. This load in-
creases as the number of passes increase.

MDEC is a lossless arithmetic coding technique based
on the principal that the average entropy of a source can
be reduced if it is split into subsources with different dis-
tributions. Two methods for splitting into subsources were
tested: ac energy and index block classification. Experi-
mental evidence in Tables III and IV indicates that at low
bit rates the overhead of the classification map required
by the ac energy method is significant, thus the index
method yields superior results. However, at high bit rates
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Fig. 7. Reconstructed images of ‘‘Karen with Text’’ using (b) adaptive DCT method [3], (c), and (d) prioritized DCT method.
(a) Original image. (b) 1.00 b/pixel (ADCT). (c) 0.50 b/pixel (PDCT). (d) 1.00 b/pixel (PDCT).

the ac energy method is preferable because it yields better
(from an entropy coding point of view) subsources. The
curves in Fig. 6 indicate that the advantage over previous
codecs of the PPC-MDEC combination becomes bigger
at higher bit rates. When PPC is combined with MDEC,
the bigger fraction of the data transmitted, the bigger the
compression ratio due to MDEC. This behavior is ex-
plained by the fact that the transmitted data then matches
the available statistical description better, which was ob-
tained by using the entire data source.

Currently, research is under way where PPC is used for
coding image sequences [6] and [8]. Initial experiments
show that magnitude-based irrelevancy reduction using
PPC is also very effective for this application. The main
advantage of PPC in this application is that it adapts op-
timally to the nonstationary characteristics of the inter-
frame error.

APPENDIX A
In this appendix it is shown that the entropy of an unor-
dered data source is equal to the entropy of the ordered
data source plus the entropy of the position information
required to reconstruct the original data source using PPC.
Let X; be a sequence of N > 1 independent samples X,

X,, * + -, Xy with time or spatial indexing, with a discrete
range of integer values 1 < X; < R, and with known P
{X; = r} or P,. As usual, the entorpy is given by
R
HX) = X — P, log, P,.
r=1

(A-1)

LetR={S,,---,S, -, Sy} be a partition on the
range of X;. That is, the S, are disjoint, nonempty, and
Us =R

The entropy of samples in pass S, is derived from
P{X;=r|X; €S }:

P,

P
Hy(X) = 2 — L log, =~
Py,

A-2
re$ PS, ( )

where

P, = P{X;e S} = Zg P,. (A-3)
red;

The average entropy of the samples for all passes is
M
HyX)) = 2% Ps, - Hy(X)). (A4)

The entropy of the position indicators is computed us-
ing P{¢.(I;) = 1} which is Py, Since an I; of 1 in pass S,
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is always a ‘‘—"’ in later passes

t M
P{o, () =0} =1 — Zl P, = 2 IPS“ (A-5)
u= u=t+

and
P¥{¢.(I)} = P{o,(L)) = 1} + P{o,(}) = 0}
M
= 3 P (A-6)
Position indicator entropy in pass S,, therefore, is
Plo, ) = 1} Plo. ) =1}
H,(I,) = — 1
)= T page, ) 8 TP 0
P{¢I(Il) = 0} P{¢1(lz) = 0}
— 1 . (AT
Proyy B Prody AT

The average entropy of the indicators for all passes is

M
Hyl) = 5 P*{¢:()} Hy(l,).

(A-8)
Pass entropy is defined as
M
Hy, = 2. — Pg log, P, (A-9)

Lemma 1: Hy(I;) = Hy,, where H,(I;) is the entropy of
the position indicators.
Proof: Expanding (A-8):

— u PSr
Hy(l) = 1§1 —Ps, logy ——
2P
Py Su
M
M 2 P,
—-{ 2 Pg )log, = —|  (A-10)
u=t+1 “ M
2P
i Su

u=

using log (A/B) = log A — log B and combining (Ps,) +
(Zisi+1 Ps,) as DU, Py, (A-10) yields

M M M
= 1:21 [( 2 Psu> log, <Z_J P&)}
M M M
_ =Zx K :ZH Psu> log, < =Z+1 Psuﬂ

M
+ E. — P, log, Ps, (A-11)
Z

canceling terms from the first bracket of (A-11) forr = v

+ 1 with terms of the second bracket for t = v, and taking

into account that the first bracket is zero for t = 1 and the

second bracket for t = M (Z¥_| P;, = 1) yields
ﬁ¢(1i) = Hy;.

Theorem: Hy(X;) + Hy(I,) = H(X;).

(A-12)

Proof: From (A-1), (A-2), and (A-4):

g P
2 2 —P,long'-

t=1re$ S

Hy(X;)

M
[ 2 2 —-P, log, P,}
t=1re$

M
- Z |:—10g2 PS, Z P,j|
t=1 re$

R M
2 — P.log, P, — 21 — P, log, Ps,
=

r=1

H(Xi) - HGS'

(A-13)

Il

Using Lemma 1 and rearranging the terms in (A-13) com-
pletes the proof.

APPENDIX B

In this Appendix it is shown that the entropy of a source
is reduced if it is partitioned into subsources with different
probability distributions. Let X; be a source sequence of
N > 1 independent samples X, X5, * * + , Xy with time
or spatial indexing, with a discrete range of integer values
1 < X; < R, and with known P {X; = r} or P,. As usual,
the source entropy H(X;) = L*_, — P, log, P,.

Multiple distribution entropy coding divides the source
X; to M subsource sequences Xt where |l < k < M. Xt
is a sequence of L, independent samples b ¢TI ¢TI
X%, with time or spatial indexing, and with known P {X*
= r} or P¥ That is, the X are disjoint, nonempty, and
U, {X¥} = {X;}. Because X¥ are subsources of X, it is
clear that

k

M
P, = El Pt 1=r=R (B-1)

z|&=

After dividing the source, the average entropy of the sub-
sources based on their multiple probability distributions
is

I

H(X)) . H(X})

k

R
l;k __ pk k
2 N{Z P* log, P,} (B-2)

Mx 1Mx

r=1
the mean of the entropy of the subsources.

Lemma 2: H(X}) < H(X,) for known P¥.
Proof: Because H(X¥) is a function of P¥, the max-
imum value of H(X f»‘) can be found from

dH(X})
o 0, fork=1,2,---M (B-3)
with the constraint that
M-1
N L
P¥="—"p - X ZEp 1=<r=<R B4
LM k=1 LM
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Equations (B-3) and (B-4) yield

dH(X{) _ d[-P;log, P; — P} log, P)]
aP* dp*
= —p* P log; e — log P* + PM P
k
- log, e + log P = log, P_'(‘ (B-5)

From (B-5) it is clear that the derivative is zero if P*
PMfork = 1,2, - - - M. Then (B-1) yields

P,=P 1=<k=<M (B-6)
Combining (B-2) and (B-6) yields
[H(X)]max = HX,). (B-7)

Lemma 2 verifies that the entropy of a source is reduced
or remains constant if we divide it to M > 1 subsources.
Also, from the proof it is clear that no coding advantage
is gained if the subsources have the same probability dis-
tributions.
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