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A General Framework for Frequency Domain
Multi-Channel Signal Processing

A.K. Katsaggelos, K. T. Lay, and N. P. Galatsanos

Abstract—In this paper, we provide a general framework for perform-
ing linear shift-invariant within channel and shift varying across channels
processing of stationary multi-ch 1 (MC) signals. Empk is given
on the restoration of degraded signals. We show that, by utilizing the
special structure of semi-block circulant and block diagonal matrices,
MC signal processing can be easily carried out in the frequency domain.
The generalization of many frequency domain single-channel (SC) signal
processing techniques to the MC case is presented. We show that in MC
signal processing each frequency component of a signal and system is
respectively represented by a small vector and a matrix (of size equal to
the number of channels), while in SC signal processing each frequency
component in both cases is a scalar.

I. INTRODUCTION

A multi-channel (MC) signal refers to a set of signals that exhibit
cross-channel similarity or correlation. When an MC signal is pro-
cessed by a system, signals in different channels affect each other
in producing the output due to cross-channel correlations. Among
the MC signals of special interest are MC images, such as color
images, sequences of images, and the channels resulting from the
wavelet-based decomposition of a single-channel image [2], [3].

One of the important problems in signal processing is the restora-
tion of degraded signals. Various filters have been successfully
designed for the restoration of single-channel (SC) signals [1],
[11]. The direct application of SC techniques to MC processing,
however, has not been very successful, due primarily to the large
and complicated matrices involved in computations. Nevertheless,
the restoration of MC images has been a quite active research topic
in the past decade. Hunt and Kubler [9] applied the Karhunen—Loeve
transformation to decompose the MC Wiener filter into SC Wiener
filters. Galatsanos and Chin [5] removed the constraints in Hunt and
Kubler’s work and proposed a recursive algorithm for the efficient
inversion of large matrices required for MC restoration. In Galat-
sanos et al. [6] regularized least-squared MC restoration filters were
developed and a nonrecursive matrix inversion algorithm was also
proposed. Kalman MC image restoration filters were developed by
Tekalp and Paviovic [15) and Galatsanos and Chin (7). Katsaggelos
[10] derived adaptive restoration algorithms based on a set theoretical
regularization technique, for the case when all channels are identical.
Such a case results, for example, when the frames of a sequence are
compensated for the motion.

In this paper, we provide a general framework for performing
linear filtering of MC signals [13]. The underlying assumption is that
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the linear system relating the i-th input channel to the j-th output
channel is shift-invariant, characterized by the impulse response h;;.
However, the linear system is not shift-invariant across channels, i.c.,
hi; # hiyk.j+r. A similar assumption is used for the covariance
matrix of the MC signal. In other words, the auto- and cross-
covariance for all channels are stationary, although R;; # Ritk.j+k>
where R;; is the covariance matrix of channels i and j. We also
extend many frequency domain SC signal processing techniques to
the MC case. We show that discrete frequency domain processing is
identical in both cases, if each scalar frequency component of a SC
signal and system is respectively replaced by a vector and a matrix
for the MC case.

II. SPECIAL MATRIX STRUCTURES IN MULTI-CHANNEL
SIGNAL PROCESSING

Let us consider a P-channel MC signal 2, where each channel has
N samples.l We choose to represent such a signal x in a vector form
as follows:

r= [1‘1(0)1’2(0)~~-IP(O)Il(l)J'Q(I)"~IP(1)
oozt (N = Dao(N = 1) zp(N = D)7 1)

where T denotes the transpose of a matrix or a vector. This repre-
sentation in novel and leads to the natural extension of SC frequency
domain signal processing techniques to MC signals, as shown in the
rest of the paper. It results in semi-block circulant (SBC) matrices
when vector-matrix representation of the linear systems is used.

A SBC matrix is a square matrix of the form

An A Ain
A= Ain An A naa @)
Az A An

that is, it is circulant at the block level but each A;; is an arbitrary
P x P matrix, 1 < j < N. For convenience, let us refer to the order
of A as (P, N). For brevity, the notation A € SBC(P, N) is used
to denote that A is a SBC matrix of order (I, V).

An example where a SBC matrix is encountered is given by the
MC degradation model [6], [7]

N
yim) =3 3" dij(p)zitm = p) + v;(m),

j=1 p65Dz]

1<i<P 3

where Sp,, is the support region of dij(m), and di;(m) #
ditr j+k(m). Expressed in a matrix/vector form, (3) is rewrit-
ten as

y=Dx+v 4)

where the vectors y.x, and n are formed according to (1). Since
the discrete Fourier transform (DFT) will be used in implementing
convolution, we assume that (3) represents circular convolution. A
sequence can be padded with zeros in such a way that the result of

I The presentation is in terms of one-dimensional MC signals for notational
convenience. However, the results apply directly to MC multi-dimensional
signals.
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linear and circular convolution is the same [3] or the observed signal
can be preprocessed around its boundaries so that (3) is consistent
with the circular convolution of {d,;(p)} with {x;(p)}. In this case
D € SBC(P.N), as is easily verified.

In the rest of this section we describe and analyze the basic
properties of an SBC matrix, since this will allow us to move to
the discrete frequency domain. The fundamental property of an SBC
matrix that allows the extension of frequency domain SC signal
processing techniques to MC signals is given by the following
theorem.

Theorem 1: An SBC matrix 4 can be reduced to a block diagonal
(BD) matrix B by the similarity transformation, 4 = QBQ ™!, where
B is given by

B, 0 - 0
B| 0 Ba o 0 )
0 0 Bxx
with B;; a P x P matrix, 1 < i < N, and
€oolp eorlp eo.nv—1Ip
S B I C
) ex—10lp ex_11lp ex—1n-1lp

with Ip a P x P identity matrix and ¢, = exp{j(27pq)/N}.

The above theorem is shown in a straightforward way by de-
composing @ 'AQ = B into ET'A(J)E = B(i.j), i.j =
1.2.---. P, where A(i. ) and B(i. j) are N x N matrices containing
the (i.)) elements of A,x and By, €.k =1.2,---, N, and

€00 €11 €0.N—1
p= L | €o €11 €1.N-1
N
€EN-10. €N-1.1 EN—-1,N—1

It is easy to verify that E-l= EH, where H denotes the Hermitian
of a matrix or a vector, since E¥ is the discrete Fourier transform
matrix. Furthermore, A(i.j) is circulant since A is circulant at the
block level. Therefore, B(i.j) is diagonal and thus B is block
diagonal.

For .convenience, the order of B is referred to as (. N') and the
sub-block By is called the A-th component of B. For brevity, B(k)
is interchangeably used with By and the notation B € BD(P, N)
is used to denote that B is a BD matrix of order (P, N).

Our interest now shifts to the algebraic operations on BD matrices.
Some useful properties about these operations are presented next.

Property 1: Given B € BD(P. N), with B(k) the k-th compo-
nent matrix, 0 < k < N —1. B! exists if and only if B(k)™" exists
for 0 < k < N — 1. In the case that B~ exists, B~! € BD(P. N)
and can be computed component by component by

B7' (k)= B(k)™' N

where B™'(k) and B(k) are respectively the k-th components of
B! and B. This property is verified by showing that the product
of B and the BD matrix with the k-th component given by (7)
is an identity matrix. Since the inverse of a matrix is unique, this
verification completes the proof. This property is also shown in [6]
(Appendix C) and then used in [14].

Property 2: Given B € BD(P. N'), with B(k) the k-th compo-
nent matrix, 0 < & < N — 1, the determinant of B can be computed
by

det(B) = det(B(1)) - det(B(2)) - -+ - det(B(N)).  (8)
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Property 3: Given B € BD(P.N), with B(k) the k-th com-
ponent matrix 0 < & < N — 1, suppose that B has eigenval-
ues {A1, A2, Anp) 2 EigVal(B) and B(k) has eigenvalues
{A(F)- A(k)y. . A(K)p} 2 EigVal(B(k)), 0 < k < N — L.
Then

N-1
EigVal(B) = | ] FigVal(B(k))
k=0

)

where U denotes set union.

Proof: EigVal(B) is obtained by solving det{AB — Ixp) =0
[8] Unp is an NP x NP identity matrix), which is equivalent to
solving det(AB(k) — Ip) = 0,0 < k < N — 1 (by Prop. 2), which

in turn determines EigVal(B(k)).
Property 4: Given B € BD(P.N), with B(k) the k-th compo-
nent matrix, 0 < & < N — 1, suppose that B has singular values
2 SingVal(B) and B(k) has singular values
.o(k)p} 2 SingValB(k)),0 < k < N — L

{o1.02.:-,onP}
{o(k).o(k)y. -
Then
N-1
SingVal(B) = | J SingVal(B(k)).

k=0

1o

Proof: Recall that the singular values of B are the square roots

of the intersection of the nonzero eigenvalues of BB and B B [8].

Then, it is clear that this property follows from Prop. 2 and Prop. 3.

Property 5: Addition and multiplication of BD(P, N) matrices
results in a BD(P, N) matrix.

III. FREQUENCY-DOMAIN FRAMEWORK

With the mathematical background provided in the previous sec-
tion, we now present a general framework for MC signal filter-
ing/restoration in the discrete frequency domain. First we define the
frequency component of an MC signal and show that MC filtering
can be performed component by component. Then the MC Wiener
filter and the singular value decomposition (SVD) of a SBC matrix
in the context of pseudo-inverse filtering are discussed. Towards this
end the following two definitions are required.

Definition: Given a vector sequence {z(n), 0 < n < N -1},
where x(n) is a P-vector (or equivalently, a P x 1 array), the vector
discrete Fourier transform (V-DFT) of {z(n)} is equal to

N-1 _i2 k
Xth=3" .l»(n)exp(ﬂ). 0<k<N-1. (1)

N
n=0

Definition: Given an array sequence {A(n),0 < n < N -1},
where A(n) is a P x P array, the array discrete Fourier transform
(A-DFT) of {4(n)} is equal to

N-1 .
. N ]  =J2ank
Aprr(k) = Z_:O A(n)e}\p(;\—r). 0<k<N-—1.

(12)

A. Multi-Channel Filtering in the Frequency Domain

As explained in the introduction, MC filtering is expressed in the
spatial domain in matrix/vector form by y = G, where G is a SBC
matrix. G' is reducible to the BD matrix ©¢ according to

G=Q0s0" (13)
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where ) is given by (6). Note that O¢(k), 0 < k < N —1 is obtained
by taking the array discrete Fourier transform (A-DFT) of the first
row submatrices of G. Since the first row submatrices of G' (i.e.,
{G1m.0 < m < N = 1}) consist of the system’s impulse response
{gi;(m). 1< i.j < P.0<m <N -1}, {O¢g(k)} consists of the
within-channel and cross-channel frequency responses. For the input
signal « its k-th frequency component is defined as

X(k) = [X1(MX2(k)--- Xp(h)])T. 0<k<N-1 (14
where X is the V-DFT of x. Y (k), the k-th component of the output
signal Y (k) is defined in a similar way. With the MC frequency
component defined above, MC filtering is written component by
component as

Y(k)=Og(h)X(k). 0<Ak<N-1. 1s)
Equation (15) represents the extension of the frequency domain SC
filtering to the MC case. Note that in the MC case the frequency
component of a signal is now a P x 1 matrix and the frequency
component of the transfer function is a P x P matrix, instead of
a scalar.

B. Multi-Channel Wiener Filter

In further demonstrating the applicability of the material in
Section I1. We consider here the frequency domain expression for the
MC Wiener filter. Based on the degradation model of (4), a restored
signal & by the MC Wiener filter is given by [1]

-1
= R,\Q\'DH [DR,\’,\'DH +Rx'y] Y. (16)
Ry and Ry-y- are the covariance matrices of & and v, respectively,
which are SBC matrices because r; and v; in (3) are assumed to be
stationary within each channel. The computation of (16) requires the
inversion of the matrix ® = [DRx DA+ Ry-v], which is difficult
due to the large order of ® (PN x PN, to be exact).

We are now in the position of obtaining a discrete frequency
domain expression for the Wiener filter in (16). Since D, Rx x and
Ry-y- are SBC matrices, ¢ can be written as

3= Q((—)D@‘\,\»(—)g + @)w)Q*l . 17
where ©p, ©xx and Oy are the corresponding BD matrices
according to theorem 1. For casy referencing, let us define

¥ = ((—)DG,\»,\»@B + (;)V\") . (18)
Op consists of the frequency response of the within-channel and the
cross-channel degradation. © \ v is obtained from block-diagonizing
Rx x by taking the A-DFT of its first row submatrices. Since Rx x
consists of the within-channel and the cross-channel correlation,
the A-DFT of its first row submatrices represents the power and
cross spectra of the original signal. Similarly, the elements of ©v-v
represent the power and cross spectra of the additive MC noise v.

Due to Property 5, ¥ is also a BD matrix. Its k-th component is
equal to

(k) = Op(k)Oxx (MOp(K)T +Ovi (k). (19)
Equation (16) can now be written as
F=00yy08T 0y = 0oy eReTY (20)

where

Y =07y =[Oy Y (V-1 @y
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with Y (k) = [Y1(k)Y2(k)... Yp(k)]" the V-DFT of the observed
signal y. Premultiplying (21) by Q~!, we have

X =0yyolu 'y (22)

where X = Q7 '# is the V-DFT of the restored signal &.
Noting that all operations in (22) can be carried out component by
component, it is written as

X(k) = @,\;\»(k)@D(k)H\II'I(k)Y(k). 0<k<N-1 (23)

where X (k) is a P x 1 vector shown in (14). From (23), we see that
the computational complexity for obtaining X(k),0<k<N-1l,is
N - O(P?), which is usually manageable since in most applications
P <« N.

C. Multi-Channel Singular Value Decomposition

As another application of the material presented in Section II
consider the singular value decomposition (SVD) of an SBC matrix.
This is, for example, a required step in MC pseudo-inverse filtering.
That is, consider again (4), when v is ignored. The minimum norm
least-squares solution &% given by

&t =D%y (24)

where D7, the pseudo-inverse of D, is also an SBC (I, N') matrix.
Then (24) is rewritten as

= Q(~)D+Q71Y or Xt =0,.Y (25)

where X+ and Y are the V-DFT of &% and y, respectively, and
©p+ is a BD (P, N) matrix with elements Op+ (k).

In computing © 5+ the SVD of ©p = Q71 DQ is required. It is
given by

Op = Q1Te, QY

where Lo, is a PN x PN diagonal matrix with entries the
singular values of ©p, and Q; and Q: are BD orthogonal matrices
formed by the singular vectors. According to Property 4 in Section II,
SingVal(Op) = U}L}’ SingVal(©p(k)). That is, the singular values
of ©p are obtained by the SVD of the P x P component matrices
Op(k), 0 < k < N — 1, according to

Op(k) = Qi(k)Te 51y Q2 (k).
where o (&) Is a P x I’ diagonal matrix with elements the singular
values of ©p(k). The P x P matrices Qi(k) and Q2(k) are
orthogonal and are formed by the singular vectors. They are the
diagonal entries of the BD (P, N) matrices Q1 and Q2 in (26).

That is, the decomposition represented by (26) is broken down in
N decompositions, according to (27). © p+ is then defined by

Op+ = ler + Qv

(26)

0<kE<N-—1 (27)

(28)
where all matrices are BD (P. V). The P x P elements O+ (k) of
Opy are given by

Op+ (k) = Qi(k)Ze . Q5 (R).

where the entries of S@D + (k) and equal to zero if the entry of
Sepk) is zero.
Therefore, (25) can be rewritten component by component as

X¥ (k) = Op+ (k)Y (k).

0<k<N-1 29

0<k<N-1. (30)

If ©p (k) is nonsingular, then © 4 (k) = Op—i (k) = [Op (k)] .
Similarly, D* is equal to D¥ = QQ2%e , QTQ™". Again, the
main result of this section is that since only small (P x I”) matrices
are involved in the SVD of a SBC matrix, the computation is simple.
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IV. CONCLUSIONS

In this paper we have presented the mathematical framework that
relates SC to P-channel MC signal processing in the frequency
domain. This framework is based on the key result of the equivalence
between SBC and BD matrices. It was shown that using this frame-
work, each frequency component of the frequency response of an MC
linear system is represented by a I”x P matrix. Thus, in contrast to the
SC case where an .V'-component signal processing in the frequency
domain requires .\ scalar operations, for the MC P-channel case it
requires .\ matrix/vector operations involving (P x P) X (P x 1)
elements. This increases the computational load by O(P?), but this
increase is not prohibitive because > < .V in most cases.

Using this framework, it is straightforward to verify that MC
image processing algorithms that have appeared in the literature
[2], [5]-[7], [12], [15], {16] can be derived directly from their SC
counterparts.
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