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Multichannel Restoration of Single Channel Images
Using a Wavelet-Based Subband Decomposition
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Abstract— In this paper, we present a nmew matrix vector
formulation of a wavelet-based subband decomposition. This
formulation allows for the decomposition of both the convo-
lution operator and the signal in the subband domain. With
this approach, any single channel linear space-invariant filter-
ing problem can be cast into a multichannel framework. We
apply this decompesition to the linear space-invariant image
restoration problem and propose a family of multichannel linear
minimum mean square error (LMMSE) restoration filters. These
filters explicitly incorporate both within and between subband
(channel) relations of the decomposed image. Since only within
channel stationarity is assumed in the image model, this approach
presents a new method for modeling the nonstationarity of im-
ages. Experimental results are presented which test the proposed
multichannel LMMSE filters. These experiments show that if
accurate estimates of the subband statistics are available, the
proposed multichannel filters provide major improvements over
the traditional single channel filters.

I. INTRODUCTION

ESTORATION is an image processing operation that is

frequently applied to degraded image data in order to
facilitate other image processing tasks. Examples of such tasks
include image recognition and image understanding, which can
be performed either automatically by computer, or directly
by human observers. Image restoration is a mature research
field which has evolved tremendously over the last 20 years.
An overview of the recent developments in this field and an
extensive list of references can be found in [1].

Based on the model that is used to introduce prior knowl-
edge about the original image, restoration algorithms may
be classified into two categories: algorithms that use space-
invariant (stationary) models, and algorithms that use space-
variant (nonstationary) models. The use of stationary image
models is justified by the simplification that they provide
to the unmanageable computational load of many restoration
algorithms. In spite of this, space-invariant models are an
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oversimplification of the nature of real images. Therefore,
whenever they are used, the restored images suffer from the
smoothing of sharp edges, “ringing” artifacts in the vicinity of
edges, and noise enhancement in smooth areas of the image.

Many types of space-variant image restoration algorithms
have been previously proposed. Some examples include al-
gorithms that incorporate the properties of the human visual
system (HVS), and recursive restoration algorithms based on
the Kalman filter (see, for example, [2]-[6]). In [7] a local
decision process was proposed to switch between different
AR models, capturing the orientation of the edges present at
different spatial locations. In [8], an AR model was used which
was driven by white noise with a space-variant variance to
model the residual image. Maximum a posteriori probability
(MAP) methods have also been proposed for nonstationary
image restoration. These methods utilize space-variant density
functions as prior knowledge to capture the nonstationarity of
the original image. In [1], [9]-[11], doubly-stochastic Markov
random fields were used as prior densities, and stochastic
relaxation was used to minimize the nonconvex objective
function associated with the restoration problem.

In this paper, we present a new matrix formulation of
the wavelet-based subband decomposition. This formulation
allows for the computation of the decomposition of both the
signal and the convolution operator in the subband domain.
This permits the conversion of any linear single-channel space-
invariant filtering problem to a multichannel one. Subband
decomposition is a widely used method for compression of
images [12]. The main advantage of this approach is that
it allows for the adaptation of the compression algorithm to
the properties of each subband separately. Recently, however,
there have been a number of studies in the area of image
restoration also using subband or wavelet-based approaches
[13]-[15]. The motivation for these studies was to capitalize
on subband decompositions in a similar fashion to image
compression case. In other words, the goal of these techniques
was to adapt the restoration algorithm to the properties of
the signal, the noise, and the visibility of each subband.
However, for most of these investigations, the solutions have
either followed independent subband assumptions, or have
under-utilized the correlations that exist between subbands
in such decompositions. In the proposed approach, since
the convolution operator can be decomposed in the subband
domain, cross-subband (channel) relations in the observed data
can be explicitly taken into account. Therefore, we propose a
multichannel linear minimum mean square error (LMMSE)
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restoration filter to simultaneously restore the multiple chan-
nels of the decomposed image, much like the approach to
color image restoration followed in [16], [17]. Furthermore, a
multichannel image model is used that explicitly incorporates
both within and between-channel relations of the decomposed
original image. Since the only stationarity assumed in this
model is that within the channels, this approach provides
a framework for a family of nonstationary restoration algo-
rithms. For this approach, because the number of channels in
the decomposition may vary, one has the flexibility to specify a
restoration algorithm in which stationarity and computational
complexity can be traded-off.
The linear space-invariant model used here is given by

g=Hf+n 0))

where H is a circular convolution operator, a circulant matrix,
and g, f and n are the observed, original, and noise signals,
respectively [18]. A subband decomposition can be used to
transform (1) into a domain where g, f, and n are decomposed
into channels based on their local frequency content, and
the convolution operator H is decomposed into a set of
convolution operators that are applied within and between each
of these channels separately. This idea will be the starting point
for the analysis which follows.

In Section II, multichannel linear filtering and the matrix
structures associated with this problem are reviewed. The
wavelet-based 1-D subband multichannel decomposition of a
signal and convolution operator is presented in Section III.
The 1-D decomposition is used to explain the basic idea of
this approach in a straightforward manner. In Section IV, this
idea is extended to the 2-D case by applying the previously
presented decomposition in both the horizontal and vertical
directions separately. Using this decomposition, in Section V
we present multichannel LMMSE restoration of single-channel
images in the subband domain. Finally, in Sections VI and VII,
we present experimental results and conclusions, respectively.

II. MULTICHANNEL LINEAR FILTERING MATRIX STRUCTURES

Multichannel linear filtering, as used in this paper, refers to
a multiple-input multiple-output linear system [19]. For this
system, different linear space-invariant operators are applied
to each input to produce each output. Assume a system with
P inputs and outputs. Let f;, g;, fori =1,2,...Pbe N x 1
vectors, which are inputs and outputs of a multichannel system,
respectively. If the multichannel input vector f is given by

F=1[f1(0) -~ fi(N ~1); £2(0) - - - fo( N — 1);
s fe@) - RN -D)T @)

where 7T indicates the transpose, and g the output is also given
by a similar equation, then the input-output relation of this
system may be given by

g=Af 3

where
An Arp A p
- Axy Az A p
A= . “4)
Apy App App

and A;; is an N x N circulant matrix, for 1 < 4,57 < P.
This PN x NP matrix will be referred to as block-semi
circulant (BSC) of order (P, N) [20] and has been previously
encountered in multichannel image restoration problems.

A dual and equivalent representation of this multichannel
linear system can be obtained if the input and the output are
arranged in an interlaced fashion. If fr, the multichannel input,
is given by

fI = [fl(o)va(O)’ "-fP(O);f1(1)1f2(1)7“-fP(l);
G fiN = 1), fo(N=1),... fe(N=D]T (5

and g7 is defined in a similar manner, then the linear multi-
channel system may be described by

gr=Afr (6)
with
AO,O AO,I AO,N——l
Ao,N—l Ao,o Ao n—2
A= . @)
Ap1 Aop Aoo

where Ao j, for 0 < j < N — 1, is an arbitrary P x P
matrix. This N P x PN matrix will be referred to as semi-block
circulant (SBC) of order (P, N) [20], [21].

It has been shown that SBC and BSC matrices are closed
under addition, multiplication, and inversion, and furthermore,
that fast computation of these operations may be executed
in the discrete Fourier transform (DFT) domain. In the DFT
domain, BSC (P, N) matrices are transformed into PN x NP
block matrices that contain P? diagonal matrices of size
N x N. Equivalently, SBC (P, N') matrices in the DFT domain
are transformed into NP x PN block matrices that contain
N? P x P matrices. These P x P matrices are all zero
matrices except for the N matrices along the diagonal. Both
of these matrix structures may thus be represented as sparse,
and computations with them are fast and efficient [20], [22].

ITI. MULTICHANNEL DECOMPOSITION OF 1-D
SIGNALS AND CONVOLUTION OPERATORS

The decomposition of a 1-D signal into two channels may
be accomplished by the filter bank, which is illustrated in Fig.
1 [23]. Here each filtered signal is decimated by two, such that
the total number of samples in the input and output signals is
preserved.

We can refer to a matrix representation of this linear system
in terms of the ordering of the output channel vectors. It will
be easiest to first consider the matrix structure which is used to
multiply the original data, without any reordering. This input-
output relation may be given in terms of an SBC (2, %) matrix
as

Wf=fr (8)
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YL *2 fu
f_—_
WH *2 fH

Fig. 1. The two-channel 1-D decomposition.

where f is an N x 1 vector containing the samples of the
input signal, and W is an N x N system matrix. If wr () and
wg (¢) represent the coefficients of the impulse responses of
the linear space-invariant low and highpass filters used in this
filter bank, then for circulant convolutions, W is given by (9) at
the bottom of this page, which is SBC(2, —1;-). The output signal
f1 contains the samples of the low and the highpass decimated
signals, in an interlaced fashion, as in (5). Assuming that N

where I is the N x N identity matrix,

o =1[£(0), f(2),...f(N —2);
fQ), f3),... f(N-1)]" (13)
and
70, £, (5 ~1)s
T
fa(0), fu(l),...fu (% - 1)]
=[f7 " (14)

where fi, and fy are —2’\1 x 1 vectors containing the ordered
samples of the decimated low and highpass output signals,
respectively. Equation (14) has the same ordering as (2), where
the spatial index changes before the channel index.

Based on the previous definitions, (8) yields

r B . . o
is even, fr is given by (DWDT) (D f)=D f=W/fo=f (15)
with W given by
f1=[fL(0)7fH(O)7 fL(l)a fH(]') W— WEL WOL 16
T T |[WEy WOy (16)
“fL(% ) fH(_ — 1):| (10y where for ¢ = L, H
As explained previously, computations involving the W matrix wi(N —2) w;(0) wi(N - 4)
may be performed very efficiently in the DFT domain [21]. WE; = : : :
Now let us examine the dual case, again placing our reference : : :
on the ordering of the output vector. Defining a “deinterlacing” w;(2) wi(N -2)  w;(0)
N x N matrix D by (17a)
m 0 0 O 0 07 0 and
0 010 00 1 wi(1) wi(3) wi(N = 1)
0000 0 0 wi(N = 1) w;(1) w;(N —3)
0000 0 0 ’ w;(3) w;(N — 1) w;(1)
D=10 0 0 0 1 o[N/2-1 (D (17b)
0100 0 0| N/2 .
0001 00 . The matrices W7, for i = L,H and j = O,E, are ¥ x &
e - circulant matrices. However, since WE # W, the matrix
S . . W does not have a circulant structure, in fact it is BSC (2, ).
0000 0 0f N-2 In order to use W as the transformation for the multichannel
0 0 00 0 1) N-1 decomposition of single channel problems, this operator must
it is easy to see that be easy to define, and W-! must be easy to compute. If wr
~ B and wy, in Fig. 1, are selected to be quadrature mirror filters
DDT=D'D=I,Df=fp,andD fi=f (12) (QMF)’s which are based on the orthonormal wavelet bases
wL(O) wL(l) wL(Z) ’LUL(3) wL(N - 2) wL(N - 1)
wy (0) wg(l)  wy(2) wy(3) wyg(N —-2) wg(N-1)
wr,(N—-2) wr(N-1) wr(0) wr(l) wyg(N —4) wy(N -3)
wyg(N —-2) wg(N-1) wy(0) wy(l) wy(N —4) wH( - 3)
W= . ) ) . . )
wr(2) wr(3) wr(0) w(1)
L wr(2) wi(3) wg(0) wr(1)
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with compact support [24], one set of coefficients may be
used to define both filters [23]. Furthermore, W= will simply
equal W7, and thus it, along with W, may be implemented
with FIR filters. In addition, wavelet filters provide a means to
compute a regular multiresolution analysis over many levels
of decomposition. Thus, the choice of these filters is very
convenient, but is not essentlal for the development of this
paper. Since W is a BSC (2, ) matrix, any nonsingular W
can be used. However, the use of the perfect reconstruction
wavelet bases makes the analysis more straightforward, and
so for the rest of this paper we will assume that W is an
orthonormal matrix.

The circulant convolution operator, H, in (1), may be
decomposed with either the SBC or BSC representation of the
filtering matrix, that is, (9) or (16). Ignoring the noise term
for the moment, the convolution operation can be transformed
into the W domain by

g=Hf =Wg=WHWTWf = G =WHWTf;.

(18)
In this case, it is straightforward to observe that the term
WHWT is an SBC (2, %) matrix since it is the product of
three SBC (2, ) matrlces This is a result of the fact that
the circulant matnx H is also an SBC matrix of order (2, & )
Thus, the computation of this term in the discrete frequency
domain is straightforward, as discussed in Section II.

In the same way, we can transform convolution into the W
domain using the BSC formulation. In this case, (1) yields

g=Hf = (WD)g = (WD)H(DTWT)WD)f. (19)
For an N x N circulant H, representing the convolution of an
N x 1 signal with the kernel

.. h(=2),h(—-1), h(0),h(1),h(2)... (20)
centered at 0, it can be shown that
H H
Hp=(DHDT)=| O <1>] 21
D ( ) |:H(_1) H(O) ( )

% circulant matrix representing the

x 1 vector with the kernel

h’(] - 4)7"’(] _2)1h(j)ah(j+2)?h(j+4)"'

where H;) is an
convolution of an &

2wlz

(22)

centered at j. Thus, by applying D to the convolution operator,
it is decomposed into the convolution operators Hj), each
of half length, and simply defined by the even and odd
coefficients of the original operator.

Based on the previous decomposition of H, (19) yields

(Wgp) = (WHpW™)(W fp)
= §=WHpW")f=Hf 23)
where f and § are the W domain original and convolved
signals, respectively, and H is the transformed convolution
operator. Since W and Hp are BSC (2, 2) matrices, H is
also a BSC (2, ¥ 5 ) matrix. Therefore, the decomposition of H
is also easy to compute in the DFT domain.

T

WL _*2 —fu
WL_+2 ]

WH—+2 fr

f

wy —+2_fw
wH_+2 ||
COLUMNS "u V2 S

ROWS

Fig. 2. Four-channel 2-D decomposition.

IV. THE 2-D SEPARABLE CASE

A simple 2-D decomposition can be derived, based on the
previous two-channel 1-D decomposition, if wy and wy are
applied in the horizontal and vertical directions of a 2-D signal
separately. For an N x N input signal, f(z,y), one level of
this decomposition will yield four & x & channels, as shown
in Fig. 2.

In order to represent the operations shown here using matrix
vector notation, it is easier to use the BSC representation.
Thus, we consider ordering the output data from this filter
bank in terms of spatial indexing first, followed by the channel
indexing, as in (2). In analogy to the 1-D case, (15) can be
used to describe this decomposition as well. If lexicographic
ordering by columns is used to stack the 2-D N x N signal
into a N2 x 1 vector f, then, by following steps similar to the
1-D case, after some matrix algebra it can be shown that the
vector f is given by

= [(fLL)T,(fHL)T,(fLH)T,(fHH)T]T 24)

where f;;, with ¢,j = L,H, are the four % X % 2-D
channels lexicographically ordered by columns. The indices
i and j correspond to filtering along the z and y directions,
respectively, i.e., fyr is the channel obtained by highpass
filtering in the z direction and lowpass filtering in the y

direction. The vector fp in the 2-D case is given by

fo = [(fer)", (for)T, (fE0)", (foo)T]T (25)

where f;;, for i,j = E, O, are the four ¥ TXy 2 D subimages
lexicographically ordered by columns obtamed by sampling in
the z and y directions, and retaining the even or odd samples.
For example, fro is the % X % subimage which is obtained
by selecting the pixels with even indices in the z direction and
odd indices in the y direction from the original image f.
Since filtering is applied separately in the x and y directions,
the matrix w for the 2-D case is given by W =W, W
where W, and W represent the filtering in the z and y
directions, respectively. Furthermore, W,, and W, are N2 x N2
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matrices defined as

WEL oy WO (0] [0]
o (WP Wom s (0] (0]
¢ (0] (0] WEL o WO o
[0] (0] WPw o WO o
(26)
where “[0]” is an NT2 X NT2 matrix of zeros, and the NTz X NTQ

matrices Wé}z), for j = E,O and i = L, H, are defined by

Wi =W e[l (27

Here, ® is the Kronecker product, {W7}; are the § x &

circulant matrices given in (17), and [I] is the & x & identity
matrix. In addition

WEaq, [0] W9,  [0]
oo | Lol WEg oy [0] 0 WOy
Y WE(H, y) [ 0 ] I/VO(H, y) [ 0 ]
(0] WFw 4,  [0] WOy
(28)

2 2 i ;
where the 2= x & matrices, W/,

(i,y)> A€ defined by

W(],-,y) =[IlewW]. 29)

Since the matrices W(Jz.,k), fori=L,H,j=E,Oandk =
x,y are defined as Kronecker products of two & x & circulant
matrices, they are NTz X N;- block circulant matrices. However,
the N2 x N2 block matrices W, and W, are not circulant.
Matrices of this form, which are an extension of the 1-D case,
are called block-block semi-circulant (BBSC) of order (4, -I\ii)
These matrices have exactly the same properties as BSC
matrices when the 2-D DFT is used for their transformation
[16], [20].

The dual representation of the 2-D W is a block semi-
block circulant (BSBC) matrix W. In this case, the 2-D signal
decomposition may be described by

WTf = f; (30)

where
fi= [f(O, 0)zr, £(0,0)ur, £(0,0)LH, f(0,0)nm;

f(17 0)LL7 f(lyo)HLy f(]~1 0)LH7 f(]-a O)HHa

N N
"'af(__lv__]») af(ﬁ_lvﬂ_‘l) ’
2 2 LL 2 2 HL

825

T
N N

1 Jl=-1,—-1 (€2))]

)LH f(2 2 )HH]

Here, T is an N2 x N? matrix of ones and zeroes that groups
every block of four neighbors of the original image into a
vector. The matrix T' does not appear in (8), for the 1-D case,
and is a result of the lexicographic ordering that is used in
the 2-D formulation. It is easy to show that TTT = In2y n2.
For a detailed treatment of the 2-D BSBC formulation, see
[25]-127].

In two dimensions, the decomposition of the block circulant
convolution operator H is easier to follow using the BBSC
notation. Let us assume that H is an N2 x N? block circulant
matrix representing the circular 2-D convolution of an N x N
signal with the following mask, which is centered at (0, 0), see
(32) at the bottom of this page. If steps similar to those taken
in the 1-D case are followed, then after some tedious matrix
algebra, it can be shown that (23) holds true for the 2-D case
also. Then, § is an N2 x 1 vector of the same form as f in
(24). Furthermore, Hp is given by

N N
f(;‘ly-é'—

Heo,0p Hi10p Heony He1,
H, H, H
Hy = (1, 0) (0, 0) (1, 1) (0, 1) 33
P77 | He, -1y Her, -y He,o Hia o ¢
Hg, 1y Hp, -1) a, 0 Ho, o
where H; ;) are 543 X NTQ block circulant matrices that

represent the circular 2-D convolution of an § x & 2-D signal
with the mask

R(i—2, j+4) h(i, j+4) h(i+2, j+4)

R(i—2, §+2) h(i, j+2) h(i+2, j+2)
h(i -2, j) h(i, 7) h(i+2, j) (34)
h(i—2,§—2) h(, j—2) h(i+2, j—2)

R(i—2, j—4) h(s, j—4) h(i+2, j—4)

centered at (¢, j).

From (33) it is clear that Hp is also a BBSC (4, NT2) matrix.
Furthermore, since (23) holds for the 2-D case also, His
a BBSC (4, NTZ) matrix. Therefore, the beneficial frequency
domain properties of H are preserved in the 2-D case. In
the case of the BSBC formulation, the computation involves
terms defined by WTHTTWT, The matrix THTT is BSBC,
and thus this product may be computed with block diagonal
matrices in the DFT domain [25]-[27].

h(—-l, 2)

ho, 2)

W1, 2) h(2.7 2)

h(-2,1)  h(=1,1) h(0,1) h(1, 1) k(2 1)
h(=2, 0) h(=1,0) h(0,0) h(1,0) A2, 0) (32)
h(—2, =1) h(=1, —1) (0, 1) h(1, =1) h(2, —1)

h(-2, —2) h(-1, =2) h(0, —2) h(1, —2) h(2, -2)
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Fig. 3. The original 256 x 256 “Lena” image.

V. MULTICHANNEL LMMSE FILTERING IN THE W DOMAIN

The previously described decomposition can be used to
transform any single-channel linear space-invariant filtering
problem into a multichannel one. We have applied this de-
composition to the LMMSE space-invariant formulation of
the image restoration problem. Using similar steps, the same
decomposition can be applied also to a variety of other
problems, such as the constrained least squares formulation of
the image restoration problem, or image reconstruction from
projections [28].

The LMMSE restoration fiiter is given by

f:Rff HT(H Ry HT+Rnn)_] q (35)
when (1) is used as the imaging equation, the means of the
noise and original image are zero, and the noise is uncorrelated
with the original signal. Here Ry = E{ffT}, represents the
auto-correlation of the original image, and R,, = F {nnT}
represents the auto-correlation of the noise [18]. For realistic
images, the size of H, Ryy, and R,, is extremely large.
For example, 256 x 256 images would result in 65536 x
65 536 matrices. Therefore, a global stationarity assumption
is generally used, thus making Ry and R,, block circulant
[18]. The computation of (35) can then be performed in the
DFT domain [18].

The development in Section IV leads directly to a consider-
ation of this problem in the W domain. In this section, we
will refer to the decomposition in terms of BBSC matrix
structures, but the techniques using BSBC structures are
directly applicable as well [25]-[27]. The transformation of
(35) into the W domain yields

(WD)f = (WD)[RssHT(HR;sH” + R,n)"'g]

= Ry H(HR;H™ + Rn)™'g (36)

where R;; = E{ffT}, and Ryz = E{fn”} are the auto-
correlation matrices of the original signal and the noise in the
W domain. Examining for a moment the problem of 1-D signal
restoration, in which f is decomposed into two channels, we
would have

Rir Rrm ] 37

i 1:RHL Run

where R;; = E'{fiij}, for i,7 = L,H. For i = j, R;j
describes the auto-correlation of the two channels, and for
i # j, it describes the cross-correlation. Because within-
channel stationarity is assumed, each of the —27\1 X % matrices
is circulant. However, since stationarity between channels is
not assumed, the N x N matrix R is not circulant, but
rather a BSC (2, %) matrix. Therefore, the filter in (36) can
be computed in the DFT domain using the methods presented
in [16], [21], and [22]. The 2-D case is equivalent in terms
of matrix structures, only this decomposition results in four
channels, or BBSC(4, NT2) matrices.

The main advantage of this formulation is that it allows
for the removal of the global stationarity assumption that is
traditionally used in LMMSE image restoration [18]. Since
each of the NTZ X NTz R;; matrices that appears in the 2-D case
is block circulant, but Rff- is not, what we have effectively
achieved is a reduction of the assumed stationarity length in
our image model from N to % Thus, R;; can be used to
capture the image properties more accurately, and therefore,
multichannel restoration in the W domain may reduce some
of the “traditional” artifacts of stationary image restoration.
These artifacts include ringing, oversmoothing of edges and
filtered noise effects in flat regions of the image.

The transformation of a single-channel problem into a four-
channel problem seen here is only one potential approach to
using the matrix W. Since the more channels used for the
decomposition the smaller the stationarity length assumed,
we transformed the four-channel problem into a 16—channel
one where the stationarity length was reduced to %. This
was accomplished by taking each of the terms in the four-
channel problem and transforming it into a four-channel term
itself. Tt is relatively straightforward to see that this can be
accomplished simply by multiplying the result of the first filter
bank operation with a matrix implicitly containing four smaller
support W matrices to produce a result having 16 channels.
This matrix may be written simply as a BBSC (16, ];'—62) matrix,
or it could be written in dual form as BSBC with a block
diagonal frequency domain counterpart having subblocks of
support 16 x 16.

VI. EXPERIMENTAL RESULTS

In a sequence of experiments, the proposed multichannel
approach was tested. The original 256 x 256 “Lena” image,
shown in Fig. 3, was blurred by an 11 x 11 uniform blur
and then degraded by additive noise to achieve 20, 30, and
40 dB in blurred signal-to-noise ratio (BSNR). The resulting
degraded images are shown in Figs. 4(a), 5(a), and 6(a),
respectively. The degraded images were first restored using
the classical single-channel LMMSE (Wiener) filter [18], and
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lat
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Fig. 4. (a) The degraded “Lena” image with 11 x 11 blur and 20 dB of additive noise; (b) the restored image obtained by using the traditional one-channel
LMMSE filter (ISNR = 3.39 dB); (c) the restored image obtained by using a four-channel wavelet-based multichannel LMMSE filter, ISNR = 3.89 dB);
(d) The restored image obtained by using a 16-channel wavelet-based multichannel LMMSE filter, (ISNR = 6.55 dB).

the resulting restored images are shown in Figs. 4(b), 5(b),
and 6(b). Next, the degraded images were restored by the
proposed multichannel LMMSE filter given in (36) using a
4- and 16-channel decomposition. This decomposition was
implemented using the Daubechies 16-wavelet basis [24]. The
resulting restored images from the multichannel filters are
shown in Figs. 4(c)—(d), 5(c)~(d), and 6(c)—(d). For both the
single and multichannel approaches the required statistics were
estimated from the original image and the original image
subbands, using the periodogram approach. The choice of the
16-tap wavelet filter is motivated by the high regularity of
this wavelet, which causes most of the important structural

information in the image to be projected into the lowest
frequency subbands. We have, however, performed the same
experiments with other orthogonal wavelet filters, namely the
Daubechies 4-, 8-, and 20-tap filters. In all experiments, the
restored images are indistinguishable. In other words, the
results are largely independent of the choice of QMF, as
long as the perfect reconstruction property is met, which is a
requirement of the theory developed here. This independence
of the wavelet filter stems from the fact that the correlation
information used to produce the results is not degraded by
choosing different filters. We merely remap this correlation
information differently, placing more signal energy in the
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(c)

Fig. 5.

(d)

(a) The degraded “Lena” image with 11 X 11 blur and 30 dB of additive noise; (b) the restored image obtained by using the traditional one—channel

LMMSE filter (ISNR = 5.07 dB); (¢) The restored image obtained by using a four-channel wavelet-based multichannel LMMSE filter (ISNR = 6.01 dB);
(d) The restored image obtained by using a 16-channel wavelet-based multichannel LMMSE filter (ISNR = 10.42 dB).

high frequency subbands when using less regular wavelets.
All useful cross- and auto-correlation information which leads
to the multichannel restoration filter is still maintained with
different filters, but it is simply projected differently into the
subband space.

Both the BSBC and BBSC formulations have been used
to implement these multichannel filters using spatial and
frequency domain approaches in computing the multichannel
linear operators, respectively. For the spatial implementation, a
simple modification which involves removing T from (30) and
reordering the columns of W appropriately, explicitly encour-
ages the use of spatial convolutions and decimations for the
computation of H or any other block circulant matrix, in the W

domain. This is an efficient and fast approach to solving linear
filtering problems in the subband domain. It allows the use
of spatial QMF bank implementations to be used repetitively
on an operator such as H, so that eight applications of this
filter bank will compute the BSBC expression WTHTTWT
[251-[27].

As an objective measure of performance, the improvement
in signal-to-noise ratio (ISNR) was used. This may be defined
in dB as

Ilf — gl

ISNR = 20 log .
If = fll

(38)
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(d)

Fig. 6. (a) The degraded “Lena” image with 11 x 11 blur and 40 dB of additive noise; (b) the restored image obtained by using the traditional one-channel
LMMSE filter (ISNR = 7.10 dB); (c) The restored image obtained by using a four-channel wavelet-based multichannel LMMSE filter (ISNR = 8.88 dB);
(d) the restored image obtained by using a 16-channel wavelet-based multichannel LMMSE filter (ISNR = 16.05 dB).

TABLE 1
ISNR RESULTS OBTAINED FOR THE “LENA” IMAGE, DEGRADED BY AN
11 % 11 2-D UNIFORM BLUR, USING THE CLASSICAL SINGLE CHANNEL,
AND THE 4- AND 16-CHANNEL WAVELET-BASED LMMSE FILTERS

ISNR(dB)
BSNR (dB) [ 1 Channel | 4 Channel | 16 Channel
40 7.10 8.88 16.05
30 5.07 6.01 10.42
20 3.39 3.89 6.55

where f, g, and f are the original, degraded, and restored
images, respectively. The ISNR results of the previous exper-

iments are listed in Table I. From the images in Figs. 4-6,
and the ISNR results of Table I, it is clear that the pro-
posed multichannel restoration approach provides significant
improvements both objectively, based on the ISNR metric, and
also subjectively, over the traditional single channel approach
for all BSNR levels. The experimental results in this section
also show that further reduction of the stationarity length from
% (4-channels) to % (16-channels) was very beneficial. In
order to demonstrate the effectiveness of this algorithm at low
SNR, Fig. 7 shows the degraded and restored subbands of the
20 dB BSNR case seen in Fig. 4. In particular, the subbands
for the 4- and 16-channel restoration algorithms are shown
here. For comparison purposes, the same subbands are seen
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Fig. 7. (2) Subbands of the degraded “Lena” image with 11 x 11 blur and 20 dB of additive noise, four channels; (b) subbands of the restored image obtained
by using a 4-channel wavelet-based multichannel LMMSE filter; (c) Subbands of the degraded “Lena” image with 11 x 11 blur and 20 dB of additive noise,
16-channels; (d) Subbands of the restored image obtained by using a 16-channel wavelet-based multichannel LMMSE filter.

for the 40 dB BSNR case in Fig. 8. It is clear, in both cases,
that the structure is restored not only in the low frequency
subbands where the SNR is high, but also in the high frequency
subbands, where the noise dominates. This good restoration is
largely due to the accurate cross subband correlations used
in generating the restored images in the multichannel wavelet
domain.

VII. CONCLUSION AND FUTURE RESEARCH

In this paper, we presented a new matrix vector formula-
tion for the subband decomposition of linear space-invariant

filtering problems. This formulation allows for the efficient
transformation of any linear space-invariant filtering problem
to a multichannel one. Subband decomposition is a well
established method for compressing both speech and image
signals [12], [29]. We showed that another application, image
restoration, can also benefit from this transformation. Here,
a subband decomposition was used to relax the stationarity
assumption which is traditionally imposed in linear space-
invariant image restoration. More specifically, we combined
the LMMSE formulation of the restoration problem with the
proposed decomposition to obtain a family of multichannel



BANHAM et al.: MULTICHANNEL RESTORATION OF SINGLE CHANNEL IMAGES 831

(c)

Fig. 8. (a) Subbands of the degraded “Lena” image with 11 x 11 blur and 40 dB of additive noise, 4-channels; (b) Subbands of the restored image obtained
by using a 4-channel wavelet-based multichannel LMMSE filter; (c) subbands of the degraded “Lena” image with 11 X 11 blur and 40 dB of additive noise,
16-channels; (d) subbands of the restored image obtained by using a 16-channel wavelet-based multichannel LMMSE filter.

LMMSE restoration filters. Our experimental results show that
these filters have the potential to provide major improvements
over traditional single-channel restoration. It is important to
recognize that the reason the improvement is obtained in the
wavelet domain stems from replacing the information in each
auto and cross term in the wavelet domain correlation matrix.
This yields a different filter than that of the single-channel
LMMSE filter. This different filter uses additional information
that is not present in the single channel LMMSE filter,
namely the correlations between different channels which
are of shorter support than the full image. So, it is the

benefits of the semi-block circulant structure, and the effective
use of “more information” than we have in the station-
ary LMMSE case, that result in increased sharpness and
a reduction in restoration artifacts in the restored images
seen here.

While the intent of this paper is to show the optimal case so-
lution in the wavelet domain, and present the necessary theory
to pursue other multichannel wavelet restoration techniques,
we have investigated the application of multichannel spectral
estimation techniques as a preliminary approach to solving
this problem when only the degraded image is available. In
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this case, the estimation of the cross-subband statistics, us-
ing traditional approaches for estimating the auto-correlation,
turns out to be a formidable problem. We have observed
minor improvements over the single-channel LMMSE filter
using the multichannel EM algorithm [20] to estimate the
required wavelet domain spectra. The problem is, however,
very sensitive to the noisy correlation estimates, and thus
alternative estimation techniques will be required to obtain
further improvements in the wavelet domain.

Another avenue which we are investigating involves the use
of deterministic constraints instead of stochastic constraints
imposed in the multichannel wavelet domain [22], [30]. This
approach circumvents the need to estimate the cross-channel
spectra from noisy data, but it also provides us with less
information about the true behavior of the signal. Nonetheless,
we have observed some benefits to applying an iterative
constrained least squares filter in this domain, including the
ability of acquire a smoother image at convergence than that
obtained in the single-channel equivalent technique. Both the
stochastic and deterministic approaches, along with the results
obtained in the optimal case presented here, provide us with
ample incentive to continue investigating multichannel image
restoration within the wavelet formulation described in this
paper.
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