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Regularized Constrained Total
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Abstract— In this paper, the problem of restoring an image
distorted by a linear space-invariant (LSI) point-spread function
(PSF) that is not exactly known is formulated as the solution of
a perturbed set of linear equations. The regularized constrained
total least-squares (RCTLS) method is used to solve this set of
equations. Using the diagonalization properties of the discrete
Fourier transform (DFT) for circulant matrices, the RCTLS
estimate is computed in the DFT domain. This significantly
reduces the computational cost of this approach and makes
its implementation possible even for large images. An error
analysis of the RCTLS estimate, based on the mean-squared-
error (MSE) criterion, is performed to verify its superiority over
the constrained total least-squares (CTLS) estimate. Numerical
experiments for different errors in the PSF are performed to test
the RCTLS estimator. Objective and visual comparisons are pre-
sented with the linear minimum mean-squared-error (LMMSE)
and the regularized least-squares (RLS) estimator. Qur exper-
iments show that the RCTLS estimator reduces significantly
ringing artifacts around edges as compared to the two other
approaches.

[. INTRODUCTION

HE restoration of degraded images is an important prob-
lem because it allows the recovery of lost information
from the observed degraded image data [2]. Two kinds of
degradations are usually encountered: spatial degradations
(e.g., the loss of resolution) caused by blurring and point
degradations (e.g., additive random noise), which affect only
the gray levels of the individual picture points. Common types
of spatial blurring are due to atmospheric turbulence, lens
aberrations, and motion. Common types of point degradations
are photochemical, photoelectronic, and electronic random
noise. Spatial degradations, due to their lowpass nature, are
ill-conditioned, therefore difficul{ to invert in the presence
of noise [2], [4]. The purpose of image restoration is to
produce the best estimate of the source image, given the
recorded data and some a priori knowledge. Regularization
is a general and very effective approach in ill-posed recovery
problems {4]. According to this approach, to obtain the “best”
solution, recorded data and a priori knowledge are used
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in a complementary way. The smoothness properties of the
image are captured by the regularization operator while the
regularization parameter trades off fidelity to the available data
to smoothness of the solution [20], [6].

Traditionally, the point-spread function (PSF) of a spatially
degrading system is assumed to be known [2]. Realistically
speaking, however, the analyst is often faced with imprecise
knowledge of the PSF. For example, such instances could
occur in medical imaging, astronomy, and photography. In
these cases, there are various reasons that do not allow the
precise knowledge of the PSF. For example, in astronomy,
atmospheric turbulence yields a time-varying PSF; in photog-
raphy the camera with which a picture was taken may not be
available. In those cases two approaches have been taken. With
the first approach, restoration and simultaneous identification
of the unknown/partially known PSF is attempted, see, for
example [12], [13], [18], [23], or the PSF estimation from
noisy measured data taken from a known point-source is
performed prior to restoration [19]. The latter is the common
practice in the astronomical community and it may be the
source of errors in the PSF. With the second approach, a
random variation is used to model the uncertainties in the
PSF and this random model is incorporated in the restoration
algorithm. In other words, with the second approach, more
precise estimation of the PSF is not attempted, see for example
31, [51, (9], [21], [22].

In [21], [22], and [9], the PSF was assumed to contain a
known deterministic mean and an additive random component
with known statistics. A linear minimum mean-squared-error
filters (LMMSE) were developed that explicitly incorporated
the random component of the PSF. In [3], a similar problem
was solved using the theory of projections onto convex sets
[24].

Fan, in [5], addressed for the first time the problem of
restoring 1-D signals from noisy measurements of both the
PSF and the observed data as a regularized constrained total
least-squares (RCTLS) problem. The data formation equation
for this problem is the noise perturbed set of linear equations,
Hf = g, where the matrix H models the blurring system and
g and f are the observed and source data, respectively. It
is well known that total least-squares (TLS) is a technique
for solving this set of noise contaminated equations [7], [10].
The constrained total least-squares (CTLS) technique handles
effectively the case when the noise elements in both H and
g are linearly related and have equal variances [1]. In [5], it
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was assumed that both H and g are subject to the same errors
that are modeled as additive noise. Accordingly, the proposed
restoration scheme in [5] is based on a modified version of
the CTLS approach as presented in [1]. The modification
proposed in [5] was the addition of a regularization term
to the function used for the CTLS formulation in [1]. The
minimization of this function resulted in the RCTLS estimator.
In addition, a perturbation analysis was performed and the bias
and the variance of the RCTLS and the CTLS estimators were
compared. However, the mean-squared-error (MSE) of the two
estimators was not compared.

In this paper, the problem of restoring an image degraded
by additive noise and a linear space-invariant (L.SI) system
that is not known exactly is examined. The image formation
equation for this problem is similar to the one used in [5].
However, we assume that H and g are subject to different
errors that are modeled as additive noises with different
statistical properties. Accordingly, the proposed restoration
scheme is based on a modified version of the RCTLS approach
as presented in [5]. Since the main focus of this work is the
restoration of images, the computational cost of the proposed
filter is a major consideration. The RCTLS estimate in [5]
is hard to compute for large 1-D signals, let alone images.
Therefore, in this paper the circulant approximation for the
PSF and the diagonalization properties of the discrete Fourier
transform (DFT) are used. The benefits of this approximation
are threefold: first, in the DFT domain, the computations
required by the RCTLS filter are decoupled into a set of much
simpler ones, and thus the implementation of the RCTLS filter
is very efficient even for very large images. Second, unlike [5],
where only the identity operator can be used for regularization
operator, a general operator is used in our formulation. Based
on the correspondence between constrained least-squares and
maximum a posteriori (MAP) estimation (see for example [6]),
the use of the identity operator implies that the underlying
signal is white. For most signals of interest this is an unrealistic
approximation that yields suboptimal resuits. Finally, using
the DFT domain, a more conclusive study of the RCTLS
and CTLS estimators than in [5] is performed. The MSE’s
of the two estimators are compared and we show that the
MSE of the RCTLS estimator is smaller than its CTLS
counterpart. Furthermore, the bounds for the regularization
parameters that minimize the MSE of the RCTLS estimate
are found. In addition, we show that the MSE analysis of
the regularized least-squares (RLS) estimator in [6] can be
obtained as a special case of the MSE analysis of the RCTLS
estimator. )

The rest of the paper is organized as follows. In Section
11, the image restoration problem with an incorrectly known
PSF is formulated as a CTLS problem. In Section III, we
present the RCTLS approach and propose the unconstrained
minimization of the RCTLS functional in the DFT domain.
The error analysis is performed in Section IV, where we
examine the MSE behavior of the RCTLS estimator for small
noise levels. In Section V, experimental comparisons with the
LMMSE and the RLS estimators for different types of PSF
errors are provided. Finally, in Section VI we present our
conclusions and suggestions for future research.
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[I. CONSTRAINED TOTAL LEAST
SQUARES IMAGE RESTORATION

We assume that the N x 1 PSF can be represented by

h=h+ Ah (1)
where h and Ah € RV are the known and the error
(unknown) components of the PSF, respectively. The unknown
component of the PSF is modeled as independent identically
distributed (IID) noise, with zero-mean and variance of. The
justification for this assumption is twofold: first, it is the most
generic model that one can use when no prior knowledge about
the nature of the true PSF is available. Second, it simplifies
the subsequent analysis of the proposed estimator.

The observation vector g is also subject to errors. We
assume that g is contaminated by IID zero-mean additive noise
with variance o2. Furthermore, the noises in the observed
data and the PSF are assumed uncorrelated. Thus, the imaging
equation in matrix-vector form is

g=Hf+Ag )

with

H=H+ AH 3)
where g.f, Ag € R represent the observed degraded image,
the source image and the additive noise in the observed
image, respectively. H is the known (assumed, estimated, or
measured) component of the N x N PSF matrix H, while
AH is the error component of the PSF matrix, made up by
Ah from (1). For the rest of this paper circulant convolution
of the PSF and the source image will “e assumed, thus, H
is an N x N circulant matrix [2] (for notational simplicity
and without loss of generality circulant matrices instead of
block-circulant matrices are used in the subsequent analysis).
Linear convolution can always be performed using circular
convolution after appropriate zero-padding of the convolved
signals [2]. Since in most problems the support of the PSF is
usually much smaller than the size of the image, this results in
a very small change in the dimensions of the resulting matrices
and vectors.

Equations (2) and (3) may be seen as a set of linear
equations

g~ Hf @)
where both H and g are subject to errors and the = sign
denotes that this set of linear equations cannot be solved
exactly. Unless g belongs to the range of H (R(H)), the
set of (4) has no exact solution and therefore, it can only be
solved approximately.

TLS is a technique for solving linear equations as the ones
in (4). The classical TLS formulation [7], [10] amounts to
perturbing H and g by the necessary minimum quantities so
as to make the set of (4) consistent. Mathematically, this can
be expressed as

I[H; g] - H: gl 7 (5)

_min
[H ;Q]GT\’N‘(N*'”
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subject to
& € R(H) ©)
where
IH: gl - [H: gl = I[AH; Ag]l|r M

denotes the Frobenius norm of the matrix consisting of the
columns of the matrix AH and the vector Ag. In other words,
the norm of the residual of the PSF matrix and the observed
data is minimized in a Frobenius sense. The Frobenius norm
of an arbitrary m x n matrix A is defined as

Zm: 2": a}; = \/tr(AtA)

i=1 j=1

Allp = ®)

where tr(-) denotes the trace of a matrix. Once a minimizer
[ﬁ; g] is found, any f satisfying Hf = g is called a
TLS solution and [AH; Ag] are the corresponding TLS
corrections (residual) [7], [10].

In several instances the components of AH may be alge-
braically related. This is the case when the blurring operator
is circulant. Then, the error component of the PSF matrix
AH is also circulant. In this case, it is expedient both for
computational and modeling purposes to represent [AH ; Ag]
in terms of a single vector that contains all the independent
noise components [1]. Therefore, we define the unknown
normalized noise vector u € R?M, consisting of Ah and
Ag, as follows

0

Oh

 AR(N-1) Ag(0)

Ag(N-1)1*
on ’ } )

oy Tg
[&)]
Here, the region of support for the noise part of the PSF is
assumed to be N. However, if the region of support is M
(M < N), the remaining N — M components would enter the
noise vector u with zeros and the subsequent analysis would
stay the same.
Since the noise perturbations in H come from a “common”

noise source, AH and Ag can be expressed as

AH = [S()u Slll s SN_lll], (10)

Ag = SNu )
where the S;’s (0 < ¢ < N) are N x 2N noise dependency
matrices and are determined by the “structure” of the appli-
cation. It is straightforward to see that when AH is circulant
and u is defined by (9), the matrices S; are given by

oh 0 0 -~ 0 P00 00

0 oo 0 o0 ¢ 0 0 0 0
So=109 o 0 00 00
0 . 0 ‘0 0 00

0 -~ - 0 on 100 0 0
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0 0 0 oh - 0 0 00
o, 0 0 0 : 00 00
Si=10 o 0 0 00 00
0 0 200 0 0
6 - 0 o, 0 1 00 0 0
on O 0 00 0 0
0 0 o, © 00 - 00
Sv-1=10 0 o0 0 00 0
0 op : 0 O 0
o, 0 0 0 : 00 00
and
0 0 00 o, 0 0 0
0 0 0 0 0 o 0 0 0
Sv=1g o 00 0 0 . 0
Do S | B |
00 -~ 00: 0 0 -~ 0 g,
(1

Substituting (10) into the functional of (5), we obtain

I[AH; Ag]|)F = [[Sou Syw -+ Sy-qu Snul||%
= i llSiull2
’ (12)
where || - ||, denotes the Euclidean norm. From previous

definitions, it is easy to see that
N-1
IS;ullz = > ARY(j), Vi=0,1,--- ,N-1. (13)
=0

We can therefore write

N N-1
D_lSiullz =) (NAR()) + Agh(j)) = u'Wu (14)
=0 7=0

where W is a 2N x 2N diagonal matrix given by

W =diag [Non?, -~ ,Nop?,0,2, - ,0,2.  (15)
A similar CTLS functional as in (14) was derived in [1]
assuming the same statistical properties of the noise in H and
g. In [1], it was also shown that using a Gaussian setting
the CTLS estimate is equivalent to a ML estimate. In our
formulation, it is easy to see that the functional in (14) does not
take into consideration the variance of the noise in H and g.
Therefore, for our CTLS formulation instead of minimizing the
functional u*W u, we minimize utu = |juf|;>. By defining
a proper norm to weight all noise components equally, we
minimize u*u = ||ul|>” and preserve the equivalency between
our CTLS estimator and a ML one. This guarantees that our
CTLS estimator has a number of desirable properties as the
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one in {1} (minimum variance among unbiased estimators and
asymptotic efficiency [14], among others).
Equations (2) and (3) can be reformulated as follows:

Hf-g+AHf+ Ag=0

Hf —g+ (XN f(5)Si +Sn)u=0 (16)
Hf -g+Lu=0
where
N—-1
L=} f(i)S)+Sn (7

1=0

is the N x 2N matrix with circulant structure, given below

[ f(0)  onf(N-1) o o fQ) -
anf(1) an f(0) anf(2)
onf(2) onf(1) 7, f(3) ooInxN
Lonf(N=1) onf(N-2) or f(0)

118)
Accordingly, the CTLS image restoration problem can be
rephrased as

min {jull?} (19)

subject to

Hf -g+Lu=0. (20)
IIl. REGULARIZED CONSTRAINED TOTAL
LEAST SQUARES IMAGE RESTORATION

The determination of the source function f in (2), given
the recorded data g and knowledge of the PSF is an inverse
problem. The solution of the image restoration problem cor-
responds mathematically to the existence and uniqueness of
an inverse transformation of (2). If the inverse transformation
does not exist, then there is no mathematical basis for recov-
ering f from g, but there may be a practical basis for asserting
that something very close to f can be recovered. Problems for
which there is no inverse transformation are said to be singular.
On the other hand, an inverse transformation may exist but
not be unique. Finally, even if the inverse transformation
exists and is unique, it is ill-conditioned, meaning that trivial
perturbations in g can produce nontrivial perturbations in f
{201, [2]. Therefore, one must select the proper solution from
an infinite family of candidate solutions. The proper solution is
usually derived from various combinations of available prior
information about the estimated signal and appropriate criteria
of performance in the solution.

One of the most powerful approaches to overcome these
difficulties in ill-posed problems is regularization [20], [4]. Ac-
cording to this approach, to select the proper solution, recorded
data and a priori knowledge are used in a complementary way
{11], [6]. In [6] the least-squares (LS) and the RLS restored
images were compared when H is exactly known. It was
rigorously shown that the RLS estimate is a better estimate
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than the LS estimate, based on the MSE criterion. Motivated
by this, we propose next the RCTLS formulation. In Section
IV, this choice is mathematically justified.

According to the regularization approach the minimization
in (19) is replaced by the minimization of

min {[[u]l3 + A |QF3} 21

subject to

Hf -g+Lu=0 (22)

where Q is the regularization operator and A is a positive pa-
rameter known as the regularization parameter [11]. Equation
(21) has the same physical foundation as the ordinary RLS,
introduced for the first time in [11] and used widely thereafter.
The role of the regularization operator is to incorporate prior
knowledge about f into the restoration process (see for exam-
ple [11], [4], [6]). The smoothness of f is the prior knowledge
on which the selection of Q is usually based.

The addition of the regularization term to (19) can also be
viewed as converting an ML estimation problem to a MAP
one, when a Gaussian setting is assumed [4], [17}. In this
context, QtQ plays the role of the inverse covariance of the
assumed prior distribution (see for example [4], [6]). There-
fore, the problem of finding a good regularization operator and
good regularization parameter can be replaced by estimating
the covariance matrix (or power spectrum in the DFT domain)
of the source signal.

Equation (21) represents a quadratic minimization problem
that is subject to a nonlinear constraint due to the term L u
in (22). A closed form solution may not exist. However, the
RCTLS problem in (21) and (22) can be further simplified by
transforming it into an unconstrained optimization problem.
First, (22) is rewritten as

Lu=—(Hf - g) (23)
then

u=-Lt(Af-g) (24)

where LT is the Moore—Penrose pseudoinverse of L [8]. It is
easy to see from (18) that matrix L has rank NN, therefore Li
is given by

L =Lt @wry)-. 25)

Substituting (24) into (21), the RCTLS formulation in (21)
and (22) is equivalent to minimizing a nonlinear function P(f)
with respect to f, where P(f) is defined as

P(f) = (Bf - g)(L)* (LN (Bf - g) + A (£'Q"Q1).
(26)
The above equation can be further simplified, noting that
@hHrLh) = @ey @7
to obtain
P(f) = (Hf - g)*(LL*) "' (Hf - g) + A (f*'Q*Qf). (28)

Equation (28) represents the transformation of the con-
strained minimization problem, in (21) and (22), into an
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unconstrained one. Hence, the RCTLS solution of (21) and
(22) can be obtained by minimizing P(f) with respect to
f. It may not be possible to find the minimum of (28) in
closed form because of the nonlinearity in the term (L L%)~1.
However, it is possible to obtain a solution numerically by
iterative optimization algorithms. For average size images
the computations required for the minimization of P(f) in
(28) is prohibitively large. For example, if a 256 x 256
gray-scale image is processed, the matrices in (28) would
be of size 65536 x 65536, which is unrealistic to handle
with the present computer technology. Furthermore, P(f) is a
nonconvex function that makes this optimization even harder.

Equation (28) can be further simplified in the DFT domain.
In Appendix A, we show that the minimization of P(f) in
(28) is equivalent to

min {P(F(i))} . fori =01, N-1 (29)
where the P(F(i)) are given by
. H(i)F(5) - G(5))? ‘
rery = OO GO oapirae o

2P + o2

and | - | denotes the modulus of a complex quantity. (i) and
G(4) are the DFT coefficients of the corresponding lower case
spatial-domain quantities. H(i) and Q(4) are the eigenvalues
of the circulant matrices H and Q, which can be easily
obtained using the DFT {2]. The resulting computational
simplification is obvious. Equation (28) is decoupled into N
equations, each to be minimized independently with respect
to one DFT coefficient of f. Each of these equations still
requires solving a vector optimization problem. However, the
dimensionality of the problem has been reduced to two, the real
and the imaginary part of the complex DFT coefficient F(7).
From (30), it is clear that when the variance of the noise in
the PSF ;2 becomes zero, the RCTLS estimate degenerates,
as expected, to the RLS estimate [6]. In that case, the PSF
matrix H coincides with H and the regularization parameter
ArLs 18 equal to ng)\HCTLS-

IV. PERTURBATION ANALYSIS OF THE RCTLS ESTIMATOR

Due to the nonlinear character of the RCTLS problem,
the error analysis of the RCTLS estimator appears to be an
intractable problem. Therefore, we resort to a perturbation
analysis [1], [5], [7] to derive an analytic formula for the
MSE of the RCTLS estimate. The necessary condition for a
minimum of (28) is that its gradient is equal to zero. Setting
the gradient of P(f) given in (28) with respect to f, equal to
zero. yields

or(f)

SO
1 oL_, oLt 1/
i(ﬁL +L o J(LLY) ™ (Hf — g)

+22QtQf =0.

o[t — (Af - g)*(LLY)

It

3
Observe that (2) can be rewritten as

g=E+Ag (32)
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where
(33)
and

Ag = AHf + Ag. (34)

Now, suppose that the unperturbed (noise-free) system of
linear equations Hf = g has a consistent solution fy. Perturb
g by Ag to g = g + Ag around the consistent solution fg.
Then, the consistent solution fy is perturbed by Af, where Af
is caused by AH and Ag. The perturbation errorAf is what
we really want to obtain analytically and to analyze statistically
in terms of its bias and covariance. Using Hfy, = g and
neglecting higher order terms in Af, AH, Ag, and their
crossproducts, we obtain from (31) that
OPU) — 0 = HY(LoLo*) ' (HAS - AHfp — Ag)
+AQQ(fo + Af) =0

(35)
where Ly is the same as in (18), and contains the elements of
the consistent solution fy. Let

A =H' (Lo Lo*) L. (36)
Solving (35) for Af, we obtain

Af = (AH+1Q'Q) ' [A(AHf + Ag) - AQ'Qfo).

37
From (16), it is easy to see that
AHfy + Ag = Lou. (38)
Substituting (38) into (37), we finally get
Af =(AH+AQ'Q) ' {ALiu-2Q'Qfy}. (39)

Equation (39) is a closed-form expression of the perturbation
from the consistent solution of the RCTLS estimate. Since it
was derived by neglecting higher order terms in Af, AH,
Ag, and their crossproducts it is valid for small noise levels.

Next, we proceed to find the MSE of the RCTLS estimate.
Let

e = E{|If - fo||*} = E{| Af|*} (40)

be the MSE of the RCTLS estimate, where F is the expectation
operator. Then, (40) can be expressed as

e = tr[C] + tr[b b 41)

where C and b are the covariance matrix of the random vector
Af and its bias, respectively. More specifically,

b= E{f} — fo = E{fo + Af} — fo = E{Af}  (42)

and

C = E{Af Af'} — E{Af}E{Af*}. (43)
Since the noise vector u is assumed to be zero-mean, it is easy
to see from (39) and (42), that the MSE of the CTLS estimate
(A = 0) consists of the variance part given by tr(C) only.
Thus, the CTLS estimate is unbiased.
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Using the diagonalization properties of the DFT for the
circulant matrices H, Q and Lg, we show in Appendix B that
in the DFT domain

N—-1

t'l'[bbt] — Z /\2iQ |41F0 |2

S [ + A lQ]”

where Q(t), Fo(i) and H(i) are given similarly as in (30).
We also show in Appendix B that tr[(bbt] is a strictly
positive monotonically increasing function of A, for A > 0.
Furthermore, it is easy to see from (44) that

(44)

tribb*(A — 0)] =0 (45)
and
N-1
trbbt ()} — 00)] = Y _|R() = fl®>. @6
i=0

Similarly, in Appendix B we show that in the DFT domain,
the variance can be expressed as

= |H(@)|?
_ % TG
H()]? .
[Hf&ﬁﬁﬁ?? +A |Q(’)|2]

=0
We also show in Appendix B that ¢tr[C] is a strictly pos-

itive, monotonically decreasing function of A, for A > 0.
Furthermore, from (47)

47)

tr[C]

5 -

tr{[C(A — o)) =0 (48)
and
= on | Fo(i)? + 0,2
1=0 !

Therefore, the total MSE error as a function of X is a sum
of a monotonically decreasing and a monotonically increasing
function of A. Examining the first and second derivatives of ¢,
with respect to A, we show in Appendix B that the MSE of the
RCTLS estimate is a monotonically decreasing function for

1
0<Ai< ) (50)
(IQ PIF(D ) min
and a monotonically increasing function for
1
— g <A< (&3]
<|Q ()21 Fo( Z)li’)m.“c

whete (*)min and {-)mas denote the minimum and maximum
of the expressions inside the parenthesis with respect to :.
Furthermore, we show that the MSE as a function of A has
a minimum for 0 < A < oo, which lies in the interval
I 1 o |H@)I?
Q) PIFo(1)2™™ " 2Q(1)]? an?| Fo(3)]* + o,
J 1 Yin].
T 2IeMPRMP ™"
It is interesting to note that (44), (47), (50), and (51) are
generalizations of the equations obtained in [6], in the error
analysis of the LS, and the RLS estimators. More specifically,

(52)
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for the case when 0,2 = 0 and after replacing parameter

ArcrLs by 5{}5‘1 in (44), (47), (50), and (51), the bias, the
covariance, and the lower and upper bounds for Agrr s of the
RLS estimator in [6] are obtained, respectively.

We denote the value of A where the minimum error occurs
as Amqe. Then, ¢ is a decreasing function for 0 < A < A,
and an increasing function for Apn,e < A < oo. Thus, for
any A in 0 < XA < Apee, we have egerrs < ecrLs-
Furthermore, H in many applications has some eigenvalues
close to zero. In this case, from (46) and (49) we get that
tr[C(A — 0)] > tr[bb*(A — oo)] which implies that for
0 < XA < oo, we have egerrs < EcTLS:

From the discussion in the previous paragraph it is clear that
the RCTLS estimate is in general a better estimate than the
CTLS one in the MSE sense. Obviously, the bias introduced by
the regularization term in (21) was a price well worth paying,
since it reduced the total MSE. Similar observations were made
in [6], where the MSE of the LS and RLS estimates were
compared, and the results obtained there are the special case
of the ones derived here.

V. NUMERICAL EXPERIMENTS

In this section, numerical experiments are presented to
test the proposed restoration algorithm. The RCTLS approach
is compared to the LMMSE and the RLS approaches. The
LMMSE filter used for this comparison has been reformulated
to include the errors in the PSF as additive signal-dependent
noise [21], [9]. Starting from (2), it is easy to show that in
the DFT domain, for circulant F and autocorrelation matrix
R; = E{ff*}, the modified LMMSE (Wiener) estimate of f
is given by

. B (i)G()

F(i) = — BET;
|H ()2 + 25

-, N-1

i=0,1,-- (53)

where the Sff(7) are the power spectrum coefficients (eigen-
values of Rg) of the source image. To estimate the Syy(i)
we used the periodogram of the source image. Furthermore,
to achieve better results, we regularized the LMMSE estimate
[2] as follows:

b H*(1)G(3)
F(i) = — 5+
[H(@)* + /\LMMSEﬁ_éff(E)—a

(54

where )7 a5 e Was computed using the source image to yield
the minimum MSE for 0 < Appmse < oo. In other words,
in all our experiments we compared the RCTLS estimate with
the best possible LMMSE estimate, based on the knowledge
of the source image.

The RCTLS and the RLS filters necessitate the determina-
tion of the regularization parameter A and the regularization
operator Q. The Laplacian operator was used as the regulariza-
tion operator [6], for both methods. For comparison purposes
for the RLS filter, we used the optimal A in the MSE sense that
was computed using the source image. In all our experiments
the same value of 5,2 was supplied to both LMMSE and
RCTLS filters. For the RCTLS filter, the parameter A was
selected by a trial and error approach, without knowledge
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Fig. 1.

Original “Lena” 256 x 256 image

of the source image, based only on visual inspection of the
results.

As objective measure of performance, the improvement in
signal-to-noise-ratio (ISNR) was used. It is defined by

ﬂf —gll2

ISNR =20 log z
Il —£ll2

(55)
where f, g and f are the original, degraded, and estimated
signals, respectively.

For the blur, in all experiments presented in this paper we
used a Gaussian-shaped PSF, which is given by

;2 -2
. 1“4 7
h(i,j) = ¢ exp {—»~202

},forz’,j:O,l,--r,N—l

(56)
where ¢ is a constant that ensures a lossless response system,

1.e.
> hli,g) =1.
.7 -

In what follows, we present three experiments where dif-
ferent types of approximations of the true PSF were used to
test the proposed method. More experiments can be found in
[15]. The 256 x 256 “Lena” image, shown in Fig. 1, was used
as a source image.

Experiment 1: In this experiment, the Gaussian-shaped PSF
used to blur the source image had variance o2 = 6.25. The
PSF used for restoration by all three filters was the previous
one corrupted with additive white Gaussian noise of variance
o2 = 8- 107, For both PSF’s, the region of support was
29 x 29 pixels. Gaussian noise with 7,2 = 1.0 was used as
Ag. The corresponding ISNR values for this experiment are
given in Table 1. The degraded and restored images with the
LMMSE, RLS, and RCTLS methods are shown in Fig. 2(a),
2(b), 2(c), and 2(d), respectively.

(57)
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TABLE I
ISNR RESULTS FOR EXPERIMENT 1
ISNR [dB]
on’ o, | LAMSE RLS RCTLS
8.0-10-" 1.0 [ -2.05 -2.12 1.17
TABLE @I
ISNR RESULTS FOR EXPERIMENT 2
ISNR [dB]

o3 o, | LAMSE RLS  RCTLS
23-107° 0.1 ]-0.77 -1.08¢ 2.52
TABLE I
ISNR RESULTS FOR EXPERIMENT 3

ISNR [dB]
ol o, | LAMSE RLS  RCTLS
52-10% 1.0 [-1.10 -0.98 2.45

Experiment 2: In this experiment, we assumed that the
variance o2 of the Gaussian-shaped PSF is incorrectly known.
The PSF used to blur the source image had o2 = 9, while
the PSF used by all three restoration filters had o2 = 16. For
both PSF’s the region of support was 31 x 31 pixels. Additive
white Gaussian noise with variance 0,2 = 0.1 was used as
Ag. Using the notation in (1) the true PSF used to blur the
signal is h and the erroneous one used for restoration is h. The
difference h—h = Akh is the error due to inexact knowledge of
the PSF. The corresponding ISNR values for this experiment
are given in Table II. The degraded and res:ored images with
the LMMSE, RLS, and RCTLS methads are shown in Fig.
3(a), 3(b), 3(c), and 3(d), respectively.

Experiment 3: A Gaussian-shaped PSF extending over 17 x
17 pixels with variance o2 = 4 and additive Gaussian noise
with variance crg = 1.0 was used to degrade the original image.
A 2-D linear approximation of the Gaussian-shaped PSF was
used for restoration by all three filters. The projections of the
equiheight lines of the true and assumed erroneous PSF are
shown in Fig. 4. The ISNR values for this experiment are
given in Table III. Degraded and restored images using the
LMMSE, RLS, and RCTLS filters, are shown in Fig. 5(a)~(d),
respectively.

From our experiments, we observe that the RCTLS method,
even though it did not use the knowledge of the source image
as for the LMMSE filter and to a less extent for the RLS
filter, outperformed both of them both visually and objectively
based on the ISNR metric. In addition, we observed that
the RCTLS filter outperformed more decisively the LMMSE
and the RLS filters around the image edges. Furthermore,
this difference was more pronounced when the error in the
PSF was systematic rather than random. Our explanation for
these observations is based on the fact that random errors in
the PSF tend to average out in smooth areas of the image.
Thus, the errors in the observed data are bigger around
the edges, rather than in the smooth areas of the image.
Furthermore, the errors in the observed data are, in general,
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bigger in cases of systematic rather than random errors in
the PSF.

For the implementation of the RCTLS filter, we minimized
(30) with respect to the real and the imaginary parts of F'(4) for
every discrete frequency 4, using the Davidon-Fletcher-Powell
optimization algorithm in [16]. The gradient required by this
algorithm was found in closed form. As a starting point for this
algorithm we used the degraded signal and for every frequency
the algorithm converged in less than five iterations. For a 256 x

1103

(b)

@
Fig. 2. Experiment 1. (a) Degraded image; (b) LMMSE estimate; (¢) RLS estimate; (d) RCTLS estimate.

256 gray-scale image the computation of the RCTLS estimator
required one-two minutes on a SUN-SPARC10 workstation,
thus, requiring overall two-three times more time than the other
two methods. Because of the nonconvex nature of P(F'()) in
(30), we used a number of initial conditions (the source image,
the degraded and the restored images by the LMMSE and the
RLS filters) to test the point of convergence of our algorithm.
In all cases, we found that this selection did not alter the
convergence point of our algorithm.
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(©)
Experiment 2 (a) Degraded image; (b) LMMSE estimate: (c} RLS estimate; (d) RCTLS estimate.

Fig. 3.

VI. CONCLUSIONS

In this paper, we introduced a regularized constrained total
least-squares (RCTLS) formulation of the image restoration
problem, when the point-spread function (PSF) is not known
accurately. Using the diagonalization properties of the discrete
Fourier transform (DFT), we derived the RCTLS estimate in
the DFT domain, thus, making possible its implementation
for large images. We performed a perturbation analysis of
this estimate and showed its advantages over the CTLS

[EEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4. NO. 8, AUGUST 1995

(d)

one. As a special case of the perturbation analysis in this
paper, we obtained the mean-squared-error (MSE) analysis
of the regularized least-squares (RLS) estimator [6]. In all
our experiments, both in this paper and in [15], the proposed
approach showed the ability to outperform both the RLS and
the LMMSE estimates. In the case of systematic PSF error
the RCTLS approach outperformed dramatically the other
two methods based on both objective MSE-based metrics
and subjective visual criteria. For the RLS filter, since no
provision was made in the restoration algorithm to include
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Fig. 4. Experiment 3. Equivalue lines for the 2-D PSF; exact PSF (solid)
and its linear approximation (dashed).

the inaccuracies in the PSF, the observed superiority of the
RCTLS filter was expected. However, in the comparison with
the regularized modified LMMSE filter, the RCTLS filter
overcame the “handicap” of not having any information about
the source image. This demonstrated beyond any doubt the
advantages of the proposed approach for restoration problems
where the knowledge of the PSF is erroneous.

In summing up this paper, two comments are in order. First,
using the diagonalization properties of the DFT, it is relatively
straightforward to derive a regularized TLS (RTLS) estimator
based on the minimization of u*W u in (14). However, in
this case, as already mentioned earlier, this estimator does not
have an ML interpretation and thus the desirable properties that
stem from it. We verified this by deriving and experimentally
comparing the RTLS estimator to the RCTLS one. In all our
experiments we found that the RCTLS estimator yields higher
ISNR’s than the RTLS one. Second, the RCTLS estimator can
be generalized to handle color noise models for the errors in
both H and g. If the covariance matrices of these errors are
circulant the DFT domain expression of the RCTLS estimator
will contain their eigenvalues instead of op? and 0'92. This
generalization can be very useful in cases that additional prior
knowledge about the nature of the error in the PSF is available.
For example, a PSF that is band- or space-limited and the
bandwidth or the spatial support are known.

APPENDIX A

Let W be the N x N DFT matrix [11]. Inserting WHW

into (28), where WH is the Hermitian of W, we obtain

P(f) = (Hf - g) " WHW(LL? )" WHW(HS - g)

+MQE T WHW(QF).

Now, examining the elements in (58) separately, and using the

diagonalization properties of the DFT for circulant matrices,
we obtain

W(Hf - g) = WAW Wf - Wg=DzF -G (59

(58)

(fIf — g)"WH = [W(Hf - g)]7 = (D5F - G)? (60)

WQf = WQW# Wf = DoF (61)
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QHIWH = (WQf)¥ = (DgF)# (62)
W(LL?)"'WH =  (WLLTYWH]"1 = (D;)"!  (63)

where Dy and Dg are
DI:[ = dlag [H(O),H(l), e vH(N—l)] (64)

and
Dy, = diag [0,2|F(0))2 + 0%, -+, ol |F(N-1)* + o).
(66)
Having established the above, (58) can be transformed into

N1 ¢ g o :
- |H@F(i) - GG)I? p 12
P = ;{ RFOE o2 MQWFIFE) }
67)

Since each term in (67) is nonnegative, minimizing it is
equivalent to minimizing each component of the sum, with
respect to each frequency, separately. Therefore, the RCTLS
solution in the DFT domain can be obtained via

min (P(F())} , fori =0,1,.+,N-1 (68)
where the P(F'(Z)) are given by
H () F (i) — G(3)]?

P(r) = LD ZGEE 5 o@riFrer. @)

al|F(D)|]? + o
APPENDIX B
According to (42), the bias in the spatial domain is equal to
b = E{Af} = —~A(AH + )Q'Q) Q' Qfp. (70)
Taking the DFT of b, we have
Wb = AWAWFWAW" + xswQf wAwQwH]-1

WQIWHWQWH Wi,
an
where
WAWH = WAW W(LoLo™)"'WH. (72
Using (59) through (66), we obtain in the DFT domain
N-1 N2 .
B3 NOERGL g
= s + Q)]
where B is the DFT of vector b. Similarly, one gets
bEWH = (Wb)# (74)
and
oS NIRE R
trbb"] =) (75)

=0

- 5
[H(3)|? .

[y + MaG)P]

Taking the derivative of (75) with respect to A, we have

otrlbbF] N 22QU)Fo (i) i itees

R =

(76)
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Clearly, tr[bb"] is a strictly positive. monotonically increas-
ing function of A, for A > 0.

Following similar steps as above the following can be
obtained for the variance in the DFT domain. From (43), we
directly obtain

C = E{(AH + A\Q*Q)~[ALguu‘L} At]

_ an
(AH+2Q'Q)"*}.
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@
Fig. 5. Experiment 3. (a) Degraded image; (b) LMMSE estimate; (c) RLS estimate; (d) RCTLS estimate.

Furthermore
C = (AH + AQ'Q) }[ALoR.Lo*A%|(AH + AQ*Q)
(78)
where R, is the covariance matrix given by
R, = E{uu‘}. 79)

From the definition of u in (9) and the assumed properties of
the noise AH and Ag, it is clear that R,, = I, where I is
the 2N x 2N identity matrix. Finally, in the DFT domain the
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14 ET V12 . A ()2 ; ; y K
g M 2RQRGOE (IR (5rrieszs + AQWI) = NQE)PIF) +3

— = X 85
D P ST ———. SO Q)R] >
an2[Fo (D)2 +a,? 1.2 Fp(i)]P oy
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