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Removal of Compression Artifacts Using Projections
onto Convex Sets and Line Process Modeling

Yongyi Yang, Member, IEEE,and Nikolas P. GalatsanoSgnior Member, IEEE

Abstract—In this paper, we present a new image recovery spatially adaptive recovery algorithm, which takes into account
algorithm to remove, in addition to blocking, ringing artifacts  the local visibility of blocking artifacts, was introduced.

from compressed images and video. This new algorithm is based ; PR : ;
on the theory of projections onto convex sets (POCS). A new Apart from blocking, ringing is another annoying artifact

family of directional smoothness constraint sets is defined based that appears frequently in transform-based compressed images.
on line processes modeling of the image edge structure. TheHowever, it seems that this artifact has not received as much
definition of these smoothness sets also takes into account the factattention in the literature. Ringing artifacts typically appear

that the visibility of compression artifacts in an image is spatially 59 sharp oscillations or “ghost shadows” along the edges

varying. To overcome the numerical difficulty in computing the . . . Cos
projections onto these sets, a divide-and-conquer (DAC) strategy in compressed images (see top of Figs. 3 and 4). Ringing

is introduced. According to this strategy, new smoothness sets are artifacts are especially objectionable in compressed video
derived such that their projections are easier to compute. The when they occur around an object that is moving relative

effectiveness of the proposed algorithm is demonstrated through to a flat background. In the video compression community,
numerical experiments using Motion Picture Expert Group based these artifacts are also known m®squitoor coronaartifacts
(MPEG-based) coders-decoders (codecs). depending on their appearance [7]. !
_ Index Terms—Compression artifacts, postprocessing, projec- | this paper, we present a new image recovery algorithm
tions onto convex sets. to remove, in addition to blocking, ringing artifacts from
compressed images and video. This new algorithm is based
I. INTRODUCTION on the theory of projections onto convex sets (POCS). A

T THE PRESENT time, transform-based compression €W family of directional smoothness constraint sets is defined

among the most popular, and is widely used for botpased o.nllllne processes modeling of the image edge structure.
still images and video. In order to achieve high compressidit€ definition of these smoothness sets takes into account the
ratio, part of the informtion about the transform coefficients Rct that the visibility of compression artifacts in an image
the original image is discarded in the encoder. Quantizatidf, SPatially varying. To overcome the numerical difficulty
in various forms, is the most widely used approach for thi§ computing the projections onto these sets, a divide-and-
purpose [5]. Thus, in the decoder the original image or vidé@nquer (DAC) strategy is introduced. Based on this strategy
cannot be exactly reconstructed. Nevertheless, in a traditioR8W smoothness sets are derived such that their projections
decoder, including Joint Photographers Expert Group (JPE@} easier to compute.
and Motion Pictures Expert Group (MPEG) [6], [12], the From an image recovery point of view, this work pro-
decoded images are obtained by simply taking the inverggles a new paradigm for the use of line processes. The
transform of the received quantized transform coefficients. &gncept of line processes was first introduced in the study
a result, in low bit rate applications, the compressed imagek compound stochastic processes modeling of image fields
and video exhibit annoying compression artifacts. [3], [4], [13], [15]. In this study, line processes along the

“Blocking” artifacts—a direct result of independent blockorizontal, vertical, and two diagonal directions are introduced

processing in codecs such as JPEG and MPEG—have ger-model the edge structure in an image. Then, the line
haps received the most attention in the literature. Indegatpcess along each direction is incorporated into a smoothness
various attempts have been made in the past to develamstraint set so that local image activity is captured. In
postprocessing algorithms to improve the quality of blockaddition to the guaranteed convergence property of the POCS
transform compressed images. In [9], [14], [16], and [18&lgorithm, this approach also offers implementation flexibility
different filtering algorithms are used to remove blockingnd computational simplicity.
artifacts in the decoded image. In [11], [17], [19], [20], and To our best knowledge, line processes were used for the first
[22], image recovery approaches are proposed for decodiitge in [15] for recovering compressed images. The proposed
high-quality images from compressed image data. In [23]adgorithm in [15] is based on the theory of mean field annealing
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The rest of this paper is organized as follows. In Section $kets that are based @npriori knowledge about the original
a brief review of the POCS theory and previous related woilnage that is available at the decoder without extra coding
is given. In Section Il the new smoothness constraint satest.
are defined. In Section IV the DAC strategy is introduced, Following the work in [22] and [23], a digital/ x N
and the projections onto the resulting new smoothness sietage is treated as a vector in the Euclidean spR¢E”™
are derived. In Section V the estimation of the line processkyg lexicographic ordering either by rows or columns, where
and the visibility weights is presented. In Section VI, thas distance measure thig norm is used. Then, the block
POCS algorithm for recovering MPEG compressed imagesdiscrete-cosine transform (BDCT) [6], [12] is viewed as a
outlined. In Section VII, numerical experiments are presentéidear transform onkR* " and is denoted by3 using matrix
to demonstrate the merit of the proposed algorithm. Finally, iotation. In a BDCT-based image codec, the quantized BDCT
Section VIII conclusions and suggestions for future researchefficients of an image are available at the decoder. The
are given. knowledge of these quantized BDCT coefficients [17], [22]

leads to the following constraint set:

Il. REVIEW OF PREVIOUS WORK

Since the pioneering work of Youla [26], the POCS method
has been applied successfully to solve a number of image

processing problems. The main result from the POCS thec\’/\%erngli“ and F< are the end-points of the quantization

that we shall use for the rest of the paper is briefly summarize . . . . .
as follows: Givernm closed convex setg: i — 1.2, ... m. M erval that is associated with the received quantized level of
' ‘ 0 777 the nth BDCT coefficient(Bf),.

. . A
in a Hilbert space, andy = N/, ¢; nonempty, let; denote g constraint sefy is closed and convex, and the projec-
the projection operator ont6y, i.e., tion of an image vectof onto Cy is given by

Cr 2 {f: B < (Bf), < F™,
Vn=1,2---,M- N} 3)

1f = Bifll = min |If -4 (1) Prf=B"'F (4)

and F;f is called the projection off onto C;. Then, the \yhere thenth component off is determined by
iteration

Fmin . if (Bf), < Fmin

fk—l—l IPum—l--.Plfkv k :0,1727-.. (2) Fn = ‘Frllnax7 if (Bf)n>F;LnaX (5)
will converge to a point ofCy for an arbitrary initial point (Bf)i, otherwise
fo_[26]- forn=1,2,---,M - N. Note that due to the unitary nature of

The key for applying the POCS method for image recovefya g transform, its inverseB—" is simply its transpose.
problems is to express every piece of available knowledgeIn addition to the data constraint sef;, smoothness

about the unknown image, which is to be recovered, by @nsyraint sets were also introduced in [22], [23] to en-

plosed convex coqstrgmt Se? in the Image space. The”’,fBFte cross-block-boundary smoothness in the decoded images.
image vector that lies in the intersection of all the constraityiia an s x N image f in its column vector form as
sets will satisfy all the available knowledge and henceforth

can be taken as a solution to the recovery problem. Clearly, F={fi.fs  fn} (6)
such a solution can be found by invoking the POCS iterative

algorithm in (2). Thus, the definition of a POCS-based imageheref, denotes théth column of the image. Lep be a linear
recovery algorithm requires two steps in general: 1) the defimiperator such thaf) f gives the difference between adjacent
tion of the closed convex constraint sets that are used; andc8)Jumns at the coding block boundaries fif For example,
the derivation of the projections onto these constraint sets. Tioe the case ofV = 352 and 8 x 8 blocks

main advantage of this approach is that it provides flexibility in

incorporatingprior knowledge about the unknown image into J;fS B J;f9
the recovery algorithm. Indeed, any type of prior knowledge 16— J17
can be included in a POCS-based recovery algorithm as long Qf = . (7

as it can be represented by a closed convex constraint set in
the image space.
In earlier studies, Rosenholtz and Zakhor [17] and Yang Fau = fass
et al [22], [23] used the POCS method to decode highfhen the norm ofQf
quality images from compressed image data. According to
[17], [22], and [23], image decoding was treated as an image 43 1/2
recovery problem. Two types of constraint sets were used in |Qf|| = [Z || fs.i — fg.i+1||2] (8)
the recovery algorithms: 1) the constraint sets that are based on i=1

the transmitted compressed image data; and 2) the constr%’ng measure of the total intensity variations between the

1A setC is convexif for z1, s € Cozs 2 az1 + (1 — a)zs is alsoin  IMage .pixels. at the .adjacent block boundary columns. Thus,
Cforall0<a<l1. by forcing this quantity to be small, we can suppress blocking
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artifacts along the vertical boundaries. This leads to thield [4], [13], [21]. In this paper, line processes are used to

following constraint set [22]: describe the edge structure in an image. The edges in an image
N typically appear in regions where sharp intensity transitions
Cs = {J:|IQfI| < E} occur and they exhibit different orientations. As a result, line

where E is a scalar upper bound that defines the size of tHpLocesses along different directions are used to describe the
set. In practice, the quantit is estimated from the received€Xistence of edge elements between two neighboring pixels

compressed image data. The 6&tis closed and convex. Its f';llong diﬁerer_lt directions. Due to th_e use of a regtangular

projection operator is derived in [22]. image sampling stru_cture, the following .four directions are
In [23], the fact that the local visibility of the coding artifactsconsidered: The horizontal (orJ) the vertical (or 96), the

in compressed images is spatially varying was further tak@gSitive diagonal (or+45°), and the negative diagonal (or

into account. For example, blocking artifacts are more visibe?> ). This concept is illustrated in Fig. 1(a), where the

and more annoying in a smooth region than in a texture regigﬂag,e plxgl locations are denoted by tt\“e symbais while

of an image. To exploit this fact, a visibility matriw” was the line sites denoted by the symbols™ The 0 process

introduced into the between-block-boundary variation t&h is used to characterize the existence of a horizontal edge

to characterize the local visibility of the coding artifacts. Thi§!ément between two neighboring pixels along the vertical
gives rise to a new smoothness constraint set direction, while the 90 process is used for the existence of

a vertical edge element between two neighboring pixels along
Co 2 {fIWQf|| £ E}. (10) the horizontal direction. In a similar fashion, thel5° process
o ) S ) and the—45° process are defined for the edges alongtHé&°
The visibility matrix W is diagonal, and its elements areynq the_45° directions, respectively. To clarify this idea, Fig.
determined by the local statistical properties of the image. ) furnishes a pictorial example in which the realizations of
practicelV” is estimated using the compressed image data at{@ four line processes are shown. In this example the symbols
extra coding cost [23]. The s€t, is closed and convex, and«_ » « > “/” and “\” are used, respectively, to indicate the

its projection operator is derived in [23]. In a similar faShionexi:stence of ©, 90, +45°, and —45° line processes between
we can extend this to define a constraint set for the blog\%o adjacent imag7e pixe’ls.

boundary rows to enforce cross-block-boundary smoothness.USing| these line processes, we can define smoothness con-

The incorporation of these smoothness sets into the POgiRyint sets to capture the smoothness properties of an image
recovery algorithm leads to a spatially adaptive processifigine four directions. Let, (4, j) denote the 90line process
algorithm where image pixels are treated differently according ine site(4, ), i.e

) ) b |

to the local visibility properties of the coding artifacts. The ) )
resulting decoded images from this approach are demonstrated . [ 1 if these exists an edge between
to be better than that obtained from traditional decoders, both v(é:3) = { the pixels(z,j) and(i,5 +1)  (11)
visually and objectively using a distance metric [23]. 0, otherwise

Unfortunately, none of the smoothness constraint sets deri = 1,2,..-,M andj = 1,2, ---, N—1. Then, the quantity
scribed above address explicitly the ringing artifacts. In this M ON_1
study, we propose a new class of smoothness constraint sets A L
to address this issue specifically. Due to its popularity, the Valf) = Z Z(l = L(0,9)

. . . =1 j=1
BDCT-based codec is considered in rest of the development. S nrpse . 2
However, the proposed approach can be applied to other A, )G 9) = fET+ DI (12)
transform based image codecs as well. gives the weighted variation of the entire image along the

horizontal direction. For the purpose of artifacts removal, the
Ill. SMOOTHNESSCONSTRAINT SETS ON RINGING ARTIFACTS  factorswy, (i, j) in (13) are used to quantify the local image

Since ringing artifacts mainly occur around edges in gctivity along the horizontal direction. Thus, by forcing the
compressed image, it is natural for a processing algorithm qgantity V.(f) small we can enforce smoothness along the
process the image pixels around the image edges and |eaggzonf[al direction in an image. This leads to the following
the pixels on the edges unprocessed. Such an approach is $&fjstraint set:
desirable, smce.lt will preserve the _eX|st!ng.edge ;tructure in c, A {f:Vi(f) < E2). (13)

a compressed image while removing ringing artifacts. The

main difficulty, however, is that the edge locations are ndtote from (12) that the variations at the 90ine sites are
immediately available at the decoder. In other words, tlexcluded from the terni;,(f). As a result, the projection onto
locations of the ringing artifacts in a compressed image atee setC;, will result in spatially adaptivesmoothing of the

not knowna priori, unlike the blocking artifacts which areimage pixels along the horizontal direction, and in particular
known to occur at block boundaries. This gives rise to thimage pixels at the 90line sites are excluded from being
need for a systematic approach to describe the edge locatism®othed. This certainly helps to remove coding artifacts
in an image. such as ringing in a compressed image, as will become clear

In the study of compound stochastic processes modeliftgm the discussion in the next section. In a similar fashion,
of image fields, the concept dihe processesvas introduced I;,(z,5),1,(¢,7), and 1,(i,5) are defined as in (11) for the
to describe the transition in the statistical model of an ima@g, +45°, and —45° line processes, respectively. Also, the
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Fig. 1. lllustration of line processes sites and their realization. €&)ridicates the pixel locations and<” the possible line process sites. (b),” “|,” “/,”

and “\” indicate the existence of line processes in tie 80°, +45°, and —45° directions, respectively, for the edge shown.

weighted variations/,(f), V,(f), and V,,(f) along the 90, From (15) it is clear that the solutioyfi = D;l()\)f% is a
+45°, and—45° directions, respectively, are defined as in (12pontrivial nonlinear function oh. As a result, computing the
Consequently, smoothness s€fs, C,,, and C,, are defined, projection onto the sef, for a large/N becomes a difficult
respectively, for the 90 +45°, and—45° directions. task, if not impossible. Similarly, one can verify that the

In order to apply these directional smoothness constraint setsne difficulty exists for computing the projections of other
in a recovery algorithm, we need to compute their associatdiectional smoothness constraint sets. In the next section, we
projections. Unfortunately, this by no means is an easy mattare going to apply a DAC strategy to overcome this difficulty.
To illustrate this point, let’s try to derive the projectéy, for

the setCy,. Consider an image vectgr ¢ Cy,, and letg denote IV. SMOOTHNESS CONSTRAINT
its projection ontaCy,, i.e., g = P}, f. To obtaing, we use the SETS USING DIVIDE-AND-CONQUER
Lagrange multipliers approach. Consider the function As explained in Section lll, it is difficult to include the
M N o o directional smoothness constraint se&ts, C,,C,, and C,
J=3">"Mgi.5) = F@ D +AVil9) — ERl. - (14) directly in a recovery algorithm because of the numerical
=1 j=1 difficulty in computing their projections. In the following we
Taking the partial derivative8.//dg(i, j) and setting them to Will apply a DAC strategy to these sets so that new smoothness
zero yields the following systems of equations: constraint sets are derived and their projections are much easier

to compute. To derive these new constraint sets, the directional
variation term of the entire image in each set, elg.(f) in
wherey, = (g(i,1), (6, 2), - LgGN)T, fh=(f(,1), £(i,2), Cy in (12), is decomposed into a summation of subterms in an
-+, f(é, N))T and D;()\)is a matrix defined by the equation'nterleaved fashion such that each subterm accounts for a part

shown at the bottom of the page, where for convenience #kthe total directional variation. Then smoothness constraints
. o 2o A . 1. 2,. .~ Setsare introduced on these subterms of directional variations.
following notation is usedwsy, (¢, j) = [1 — 1, (¢, §)]w; (¢, 5).

S ) Due to the inherent blocking structure of BDCT compression,
Thus, the projectiory can be found by solving for the fOW special attention is paid to the horizontal/vertical smoothness
vectorSg% from (15). The parametex in the matrixD;(\) is P P

determined through the condition that the resultinghould sets C and Gy, so that _the res_,ultlng new s_rnoothne;s sets
can also remove blocking artifacts in addition to ringing

satisfy artifacts. This is possible because of the flexibility of the POCS
Vi(g) = EZ. (16) approach.
1+ \w? (i, 1) —\ws (4, 1) 0 0 0
—Nwa (i, 1) 14 Awi(4,1) +wa (i, 2)] —\ws (i,2) 0 0
0 — s (4, 2) 1+ Aw3(4,2) + w3 (i,3)] —Awi(i,3) --- 0

0 0 0 0 v 14 Xwr (i, N = 1)
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A. Horizontal/\Vertical Smoothness Constraint Sets Taking the partial derivative8.J/dg(i, j) and setting them to
Consider the horizontal variation term zero yields the following.
M ON_1 1) For eachh = 1,2,.--, N, and for eachy = 8- b with
. b=01,---,Ng
Vh(f):ZZ(l_l'u('L,])) o I
=1 5=1 5 [g(ij + k) - f(ij + k)]
Awn(@G D) - fEF+DIFE (A7) AL =1, Gy 4 B))wi (6,5 + k)
For notational simplicity, assum& a multiple of 8. Then for gl g+ k) —g(t,j+k+1)]=0
eachk = 1,2,---,8, define [9(, 5 +k+1)— f(i,5+ k+1)]
MN, = ML= 1 (é, j + k)wi (i, + k)
A . .
Vie(£) = D) (1= 15,8 b+ k) {wn(i,8 - b+k) 9, g+k) —gli,j+k+1)]=0.
=1 b=0

fG,8 b+ k)= f(6,8-b+k+ 1]} (18) 2) The rest of the pixelg (s, j) do not appear in the term
Vii(g), so we have
where N, = N/8 — 2 for k = 8, and N/8 — 1 otherwise.

Clearly g(i, ) — f(i,5) = 0. (22)
Solving these equations yields the following projectipn
Vi) =D Vi) (19) 1) For eachi = 1,2,---, N, and for eachj = 8 - b with
= b=0,1,---, Ny,
In the above the horizontal variatidn,( f) of the entire image (i,5+ k)

has been divided into a sum of smaller terfig,(f). Each

term Vi, (f) captures the weighted horizontal variation for =S+ k) = Biilf(5 5 +E) = G+ k4 1)]

every other eight columns of the image. Helg,(f) is so (23)
defined to reflect the fact that 8 8 block-size is used for  g¢(i,7+k—+1)
the BDCT. Indeed, fok = 1,2,---,7, the termV;,,(f) is the = fli, 5+ k+1) + Bijnlf(erd + k) — f6,5 +k+1)]

sum of the weighted variations between #th column and
(k + 1th column within all coding blocks; and fat = 8,
it is the sum of the weighted variations between all block  \here
boundary columns. . .
Since each of the smaller termis;(f) captures the hor- b A {0’ . if 1o(,j + k) =1
gk =

(24)

. L . . w3 (i, 5 + k) .
izontal variations of the image in part, they can be used to 1 2)\L IR otherwise.
define constraint sets to enforce the horizontal smoothness. + 22 wp (4, j + k)

The following constraint sets follow: (25)

2) For the rest of the pixels
Cre 2 {f: Vinlf) <E}) for k=128 (20) g(i, 5) = f(i, 7). (26)

Note that for:§_, By < Ej, f € Nj_; Cur implies that  The parameter\ in (25) is found through the condition

[ € Cy. That is, the constraint imposed by the &t is that the resulting image vectgr satisfiesVi,,(g) = E2,, or
automatically satisfied provided the constraints by the seiguivalently

C,; are satisfied altogether. Thus, the s€}s. can be used

instead ofC}, in a recovery algorithm to enforce smoothness W(A) 2 Vir(g) — E3, = 0. (27)
along the horizontal direction. There are two advantages in

using these sets. One of them is that blocking artifacts dabserving (18) and (23)—(25), we have

automatically taken into account by these sets. This is because M N,

the setC),s essentially enforces the smoothness between blook () Z Z (6,8 - b+ k))wp(i,8 ;’ +k)
boundary columns, a role that the €&t in (9) and the set€,, i=1 b=0 1 + 227 (4,8 - b+ k)]

in (10) played. The other advantage is that their projections, (fG8 b+ k) — f(i,8 b+ k+ 1) — E, =0.

unlike their counterpart;,, can be computed efficiently, as
will become clear in the following derivation.

It is straightforward to demonstrate that the s€lg. are Ciearly, this is a nonlinear equation jn In [23], it was shown
cIosed and convex. To derive the projectdy. for Cpy, l€t  that this type of equation has a unique positive root ind it
g = Phkf for an imagef ¢ C,;. Consider the Lagrange s this root that corresponds to the projectignfurthermore,
auxiliary function the Newton’s method given by

M N

=Y l96i,3) = f(i, )P + AViw(g) — ERa]. - (1)

i=1 j=1 with Ay = 0 convergesdncreasinglyto this positive root.

(28)

At 2 A = T/ (\) (29)
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A few remarks are in order. First, from (23)—(25) we observEhen, the termV,,(f) can be rewritten as
1) whenl,(i,j + k) = 1, i.e, when there exists an edge
between the pixelgi,j + &) and (¢,5 + k£ + 1), we have =2
90+ k) = [0, j+K) andg(i, j+k+1) = f(i,j +F+1), =2 2 a
that is, no smoothing is done over the pixels at the line process =1 (1.)€Pa
sites; and 2) whe, (¢, j + k) = 0, i.e, when no edge exists fG9) - fE+ 1,5+ D% (33)
between the pixel$:, ; + k) and (i, 5 + k£ + 1), we obtain

Ip(i )i i, )

If we define
ihJj+k)—g(i,j+k+1 /
|g( J ) g( J )| an(f) é Z Z (1 -1 (L,J))UJQ(L,J)
=17 A2, ] 1K) |f(i, g+ k)= f(i,J+k+1) d=1,2,5,6,9,10,--- (i,§)eDq
(30) (G g) = FE+ 1,5+ D) (34)
Clearly, the difference between the image pixels is reduced3nd
the resulting image and the degree of reduction is determine A N2
by the local weighting factow? (4, j + k). This demonstrates dV"2 - > Z (1= 8p(5 w3, 5)
that projecting an image vector onto the 8%, indeed d=3,4,78,11,12, (1,5)€Da

enforces adaptive smoothing along the horizontal direction G5 = FE+ 1,5+ DP (35)
and, furthermore, the line processk$i,j) help preserving
the edges in the image. Finally, (26) reveals that eacli'sgt then
enforces the smoothness only for every other eight columns Volf) = Vi (f) + Vo (f). (36)
of the image. Thus, by including all these sets in a recovery
algorithm, the overall horizontal smoothness can be enforcddhat is, the total variation along the45° direction has been
The above development has employed the DAC strategy divided into two terms. As illustrated in Fig. 2(a), the term
break up the overall smoothness constraint into pieces so that(f) captures the variations between the pixels connected by
each piece is much easier to deal with. the solid arrows, while the terii,»(f) captures that between

A final remark is that when all the visibility factoes;, (i, ) pixels connected by the dashed arrows.
assume a uniform value, say one, (28) simply becomes &Based orV,;(f) andV,2(f).P we can define the following
second-order equation iR. In such a case) has a simple smoothness constraint sets
closed-form solution. Furthermore, the computations in (23)
and (24) also become much simpler. Thus, the constraint sets Cor = {f:Vu(f) < EZ} (37)
Ch1 can be simplified by segmenting the image according to
its local activity factorswy,(¢,7) so that constraint sets can?”
be defin_eo_l for each segment _using a L_miform_vx_/eight. Note Cz = {f: Vialf) < E2, ). (38)
that a similar approach was discussed in detail in [23]. The
interested reader is referred to [23] for more details. Note thsote that forE2, + E2, < E2, f € C,,1 N C,2 implies that
this approach also applies to the smoothness constraint sets C,,. That is, the constraint imposed by the &t is
that are to be defined in the following. automatically satisfied provided that the constraints by the sets

Similarly, by applying the same strategy we can introdud@y;, are both satisfied. Thus, the séts; andC,,» can be used
constraint set€’,;,k = 1,2,---,8, in place of the set’,, to instead ofC,, in a recovery algorithm to enforce smoothness

enforce vertical smoothness. along the—45° direction. As illustrated in Fig. 2(a), the set
C,1 enforces smoothness between the pixels connected by
B. Diagonal Smoothness Constraint Sets the solid arrows, whileC,» enforces smoothness between

the pixels connected by the dashed arrows. As a result, the
smoothness for the entire image is enforced when these two
sets are used together.

Co = {f: V() < E2Y. (31) It is straightforward to demonstrate that the s€tg and

- C,2 are closed and convex. The projections €&y, andC,,»

The termV,,(f) captures the weighted variation of the entiréan be derived in a fashion similar to that for the s€fs..
image along the-45° direction. For anV/ x N image, there are The result for the se€,, is furnished below.
atotal of D = M + N —1 diagonals along the-45° direction. For an image vectof ¢ C,,, its projectiong = 2 Puf
Let Dy denote the set of the pixels on thth diagonal, i.e., onto the setC;,; is computed as follows.

Consider the smoothness constraint Ggtalong the—45°
direction

Dy, A () itj—1=di=1,2,--,M, 1) Solve for A from

j=1,2,--- N} (32) Y (i, j
’ : Z Z 1+2)\w2(L J()]J)

For example, the first diagondP, contains pixel (1, 1); the d=1,2,5,6,9,10,--- (i,j) €Dy
second diagondD, contains pixels (2, 1) and (1, 2); -, etc.. fG,5) = fE+ 1,7+ D] = B2, =0. (39)
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Fig. 2. (a) lllustration of the pixel grids used in the DAC strategy for the smoothness set ir48e direction. (b) lllustration of the neighboring
blocks used to compute visibility in the-45° direction.

I
)

2) For(t,5) € Dg withd =1,2,5,6,9,10,---, compute  from the compressed image data. In the following, the latter
o o o ) ) approach is discussed.
906, 5) = f(6,5) = viylf (6. 5) = fFle+ 1,5+ 1)]
(40) A, The Line Processes

gli+1i+1) =fi+17+1) +7 Edge detection is a well-known image processing problem;
G = e+ 1,5+ 1) (41) see [2], for example. In this study, directional derivatives are
used to estimate the line processes. Consider tifeli@i@

where process for example. At sitg, j), we compute the first order
0, if [,(4,7)=1 horizontal difference from the compressed imgde
g 2 Menid) otherwise (42) / Ay /
1+ 2 w2 (i, 5) ' |Drfipl = 1/ 5) = f65+ D) (44)

Note that wheni,(i,5) = 1, i.e, when there exists anThen the line procesk (4, j) is determined using a threshold-
edge between the pixe(s, j) and(i+1,7+1), we have ing decision rule, i.e.,

9(i,5) = f(i,j) andg(i + 1,5 +1) = f(i +1,j + 1), o

That is, no smoothing is done over the pixéls;) and 1,(i,§) = { 1, if |th_(z‘,j)| > T (45)

(i + 1,7 +1). This means that the projection onto the 0, otherwise

set(C,,; indeed preserves the edges in the image.

3) The rest of the image pixels are unchanged. The choice of the threshold} needs some discussion.
In a similar fashion, we can define two se&t§; andCp2  pye to the existence of blocking artifacts in the compressed
in place of the set’, to enforce smoothness along th&5° image f' for a BDCT-based codec, the quantlﬂ?hf@ j)| at
direction. Again, the details are omitted for brevity. a block boundary site tends to be larger than that at a site
inside a block. As a result, if;, is chosen to be too small,
V. DETERMINING PARAMETERS FOR many sites at block boundaries would be falsely classified as
THE SMOOTHNESS CONSTRAINT SETS line process sites. This obviously is undesirable, since it will

In the definition of the directional smoothness constrair?tﬁec'[ the removal of blocking artifacts. Thus, the threshﬁjd
sets in Sections Il and 1V, a few parameters were introducé?ﬁeds to be chosen to reflect the degree of blocking. Another

whereT}, is the decision threshold.

For example, for the horizontal smoothness sets consideration is that edges are typically small probability
' events in a natural image. Thus, only a small portion of sites
Cror = {f: Viu(f) < E?,} (43) at block boundaries should be classified as edges. With these

. in mind, the following estimation scheme is used:
where k. = 1,2,.--,8, the following parameters are used:

the 90 line processes$,(¢,7), the horizontal activity factors T, 2 pn + aom (46)
wp(4,7), and the smoothness bound¥, . These parameters

have to be determined when the sets are used in a recowsherey,, o7 denote, respectively, the mean and the variance
algorithm. One way would be to determine them from thef |th’(i7j)| over the vertical block boundary sites. In our
original image at the expense of extra coding cost. For practieadperiments, it is demonstrated thattypically in the range
purposes, a more reasonable approach is to determine th#m.5 ~ 2.0 gives good results. It is also demonstrated that
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this approach adapts very well to the coding bit rate, whidite
determines the severeness of the coding artifacts.
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inside the block. The weighty, (¢, j) is computed from

its neighboring blocks based on the relative location of the

In a similar fashion, the other line processes can be edite (¢,5) with respect to the line process sites. Withj; —
mated. For example, for the45° line processes the first orderl), (¢, j,. + 1) denoting the closest neighbors to the gitgj)
differenCGIan/(i,j) EY |f'(i,5) — f'(i+1,7+1)| is used. In from its left neighboring block and its right neighboring block,
such a case, the decision thresh@ldis simply chosen to be respectively, the following possibilities exist.

the average the decision thresholds for titeadd 90C line .
processes.

B. The Visibility Weights

The weighting factors in the directional smoothness sets
are used to capture both the local statistical properties of an
image and the characteristics of the human visual system.
The introduction of these weights is based on the observation
that the visibility of coding artifacts, like that of noise [1], *
decreases with the local image activity and in very bright or
very dark areas of the image [23]. In the past, a number of
different methods have been proposed to quantify the local
image activity; see [1], [8], and [10], for example.

In this paper, the effect of coding artifacts is taken into
account for the estimation of the local image activity from
compressed image data. The following facts are considereds
1) the existence of blocking artifacts tends to cause the image
variation to become larger at a block boundary site; and 2)
the presence of ringing artifacts tends to cause the image
variation to become larger at sites that are close to edges. As a
result, in such cases the local image activity of the compressed
image is no longer a good indication of the activity of the
original image. Fortunately, both the ringing and the blocking
artifacts have only limited extent in their occurrence. That is,
the blocking artifacts are limited only to the sites at the block[
boundaries, and ringing artifacts are limited only within blockd
inside which edges exist. Therefore, the local activity for these
guestionable sites in the above cases can be estimated f
their neighboring sites.

With the above considerations in mind, the horizontal ac-
tivity factors wy,(,5), for example, are determined in the
following fashion: At first, sites are classified inbtomputable
and noncomputabl®nes. A site is said to be computable if
lies inside a block that does not contain any 8fe processes;
otherwise, it is said to be noncomputable. Clearly, a site
noncomputable only if it either lies at a block boundary of.
lies inside a block which contains 90ine processes.

For a computable sitg, j), the factorwy, (i, j) is determined
using the average horizontal variation of the compressed ima}ge
along theith row inside the block. That is

0

IS

. -1
Jr—1

J=i

A

wn (i, 5) (47)

If no 9C° line process exists from the sifg j; — 1) to the
site (4, j»-+1) along theith row and at the same time both
the sites(4, j; — 1) and (4, j- + 1) are computable, then

.oy A Wph ivjl_]- +wh L7J1+1
i) & DA g 1)

(48)

That is, the average of the two immediate neighboring
computable sites is used.

Otherwise, if no 90 line process exists from the site
(4,71 — 1) to the current sitéi, j) along theith row, then
we setwy, (i, j) 2 wp (i, 51 — 1), provided that the site
(¢,5: —1) is computable; Similarly, if no 90line process
site exists from the current sitg, j) to the site(¢, 5,4+ 1)
along theith row, then we setvy, (i, ) 2 wp (4, jr + 1),
provided that the sité:, j,. + 1) is computable.
Otherwise, for the other cases, set

1
1+13°

wn(i, j) £ (49)
Note that the above definition gives the minimum for the
possible value of the weight,, (i, j) at a computable site.
This is not difficult to see from (47) because of the edge
detection scheme used for the°9dthe process.

Finally, for a site(¢, j) that is noncomputable because it lies
a block boundary, the average weight of its two horizontal
neighboring sites is used provided that none of them are line
rocess sites; in case either of them is a line process site but
norp the both, the weight of the other is used; otherwise, the
minimum weight is used.
In a similar fashion, the weights along the other directions
can be computed, though a few exceptions exist for the two
.diagonal directions. Take the weights, (¢, 7) for example.
irst, if the site(s, j) is computable, i.e., when ne45° line
sites exist inside the block, the local average variation is found
gver a part of the block, unlike in (47) the average is over a
single row. To be specific, consider a site within the center
block of Fig. 2(b). If the site is in region A, i.e., the lower-left
half of the block, then the average is over the region A; if
IS in region B, then the average is over the region B; and
finally, if it is on the diagonal that separates A and B, then the
average is over the whole block. This new added complexity is
due to the fact that the number of sites along4b° diagonal
within a block is different among different diagonals. On the

other hand, if the sitéi, j) is noncomputable, thew,, (¢, 5)
where j;, 7,- denote, respectively, the position of the leftmost determined from its neighboring blocks. Note, however, the
and the rightmost column of the block. Note that in (47), theeighboring blocks in such a case are no longer fixed. Again,
variations between block boundary pixels are not includedonsider a site within the center block of Fig. 2(b). If the site
Also, one is added to the denominator to avoid mathematigslin region A, then the neighboring blocks are 4 and 7; if it
singularity. is in region B, then the neighboring blocks are 2 and 5; and

Next, consider a noncomputable site;) that lies inside finally, if it is on the diagonal that separates A and B, then
a block. In such a case, there exists at least orfe @@ they are 1 and 8.
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Fig. 3. “Mother and daughter’ frame 21: MPEG compressed image (tof)id- 4. “Mother and daughter” frame 22: MPEG compressed image (top);
POCS reconstructed image (bottom). OCS reconstructed image (bottom).

C. The Smoothness Bounds VI. POCS DECODING FORMPEG VIDEO

The bounds of the smoothness sets are determined from th# this section, we illustrate how to incorporate the direc-
received data, i.e., the compressed imfig&ake the set€,;, tional smoothness constraint sets discussed in earlier sections
for example, the boundg&’?, are determined by into a recovery algorithm to decode images from compressed

image data. Due to its recent popularity, the MPEG video

5 A L , compression standard is used here for the illustration.

B, = K3 Zth(f) (50) In MPEG video coding, a video sequence is divided into

=t groups of pictures (GOP’s). In each GOP, pictures of different
fork=1,2,---,8.In (50), the constant is used to control the types are used to exploit both the spatial and the temporal
degree of smoothness. It is demonstrated in the experimemdundancy [12]. More specifically, intracoded pictures (I-
that » typically in the range off ~ 1 gives good results. pictures), predictive coded pictures (P-pictures), and bidi-
Note that the variatio,s(f*) is not included in (50) becauserectionally predictive coded pictures (B-pictures) are used.
it tends to be significantly larger than the others due to thg,ce pictures of different types are coded differently, we

eX|s_t ence of blocking artifacts. need to define constraint sets to capture the transmitted data
Similarly, the bounds for the other smoothness sets can .b

determined. For example, for the séts; andC,,» we simply m?ormatl(?n for each plcture. type. . S
set For I-pictures, the transmitted data information is captured

by the constraint set in (3). For P-pictures, the quantized BDCT
) coefficients of the motion compensation error are transmitted

E2 — g2 A VL) (51) | Iy : . .
nl = Ln2 = K3 Vald ) in addition to the motion vector information. Based on the
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Fig. 5. “Football” frame 26: MPEG compressed image (top); POCS recofiig. 6. “Mobile” frame 31: MPEG compressed image (top); POCS recon-
structed image (bottom). Note that only a 16144 segment of the whole structed image (bottom). Note that only a 126144 segment of the whole
image is shown here. image is shown here.

received data, the following constraint set [24] can be defined:A constraint set of the same form as in (52) can be used to
A in N e capture the data information for a B-picture. In such a case,
Cp = {f: E; < [B(f = )l S F the vector}'p is replaced with the bidirectionally predicted
n=12.--,M N} (52) B-picture using the received motion vector information.

where F2=in and F2% are the end-points of the quantization With constraint sets clearly defined and their projections

. X . . . . d?rived, the POCS algorithm in (2) can then be used to de-
interval that is associated with the received quantized Iev(tza0 de images from MPEG compressed data. For convenience
of the nth BDCT coefficient [B(f — f,)].. In (52), f, 9 P ’ '

. : . : let P;, denote the concatenation of the projectors for the
denotes the predicted P-picture using the received motion | ) A
vector information. horizontal smoothness sef§,;, i.e., P;, = Prg-- PuoPr1.

. . A
It is easy to show that the s€fp is closed and convex. SlmllAarIy, defineP, = P, - PPy, P, = PPy, and
Furthermore, for an image vectgt ¢ Cp, its projection P, = P, F,. Then, the iterative POCS algorithm for an
g = Ppf onto Cp is given by I-picture can be written as
_ 7 -1
g_fp+B E (53) fk+1:PTP])PTLP’Uthk; k:071727"' (55)
where thenth component off" is given by
min . 4 min here Py is the projector for the I-picture data set in (3). In
F, f [B(f = J)ln <F, wherefr .
o= FT:“?”; !f [B(f pr)] <F’fnax 54 practice, the MPEG compressed image can be used for the
e no ' [ ngi{l_ Fp)ln> e i (54) starting pointf,. Similarly, the POCS algorithms for P- or
(Bf)n, I 2R <[B(f = [p)ln < B B-pictures follow by replacing the projectd?; in (55) with
forn=1,2,.---,M-N. the corresponding projector for the P- or B-picture data set.
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Fig. 7. PSNR plots for MPEG compressed images (dashed) and POCS reconstructed images (solid). (a) “Mother and daughter” compressed at about 100: 1.

(b) “Football” compressed at about 25: 1. (c) “Mobile” compressed at about 12: 1. (d) “Table tennis” compressed at about 65: 1. (e) “Table-tenessedomp
at about 35:1.
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Note that additional constraint sets can be introduced intoFrom these experiments, it is clear that the proposed al-
the POCS algorithm in (55) to take into account other availabf@rithms can correct effectively MPEG compression artifacts
prior knowledge. One such example is the nonnegativiguch as blocking and ringing. The POCS reconstructed images
constraint on the pixel intensity. For more details see [2Bhve higher PSNR’s than their MPEG counterparts. A final
and [23]. note is that the proposed POCS-based algorithms are observed

A final note is that the algorithm in (55) can also be usei converge very rapidly. All the results given in this section
without modification to decode JPEG compressed images. are obtained after 3- 5 iterations.

VII. NUMERICAL EXPERIMENTS

The proposed algorithms have been tested using both still VIIl. CONCLUSIONS

images and image sequences. Due to space_limitation, or_wly $n this paper we presented a new POCS-based recovery
sample of the test results will be presented in the followingqoyithm to reconstruct transform-based compressed images
to demonstrate the effectiveness of the proposed algorlthrgﬁd video. The new feature of this algorithm comparing
One or two particular frames from eaph test sequence Wilkh our previous work in [22] and [23] is its capability
be presented to demonstrate the quality improvement of e correct ringing artifacts. Since ringing is an artifact that
resulting images from the proposed algorithms over tho§ghears in most transform-based codecs, this algorithm can
of compressed ones. Also, to demonstrate the overall PRl sed for codecs that use other transforms as well. Also,
formance an objective metric the peak-signal-to-noise-rafigis work provides a new approach for the use of line pro-
(PSNR) is used. The PSNR of a recoverkfl x N image cegses in image recovery problems. The resulting algorithm
g relative to its original imagef is defined in decibels by o this approach is easy to implement and converges very

9552 M . N rapidly.
PSNR 2 10log;, ‘)‘)72 (56) A remaining challenge in the video recovery problem is
I —gll to further utilize the between-frame smoothness property in

. a video sequence. This is accomplished in [25] and [27] by
For comparison purposes, PSNR values are computed and ) . . ;
- _using the transmitted motion vector information.
plotted for both the compressed and the reconstructed images

for the first 50 frames of each sequence.
The following test sequences are used in the following: REFERENCES

:mOther,, and daUghter" (176,(‘ 144)' “foqt?a”” (352 X 240)' [1] G. Anderson and A. Netravali, “Image restoration based on a subjective
mobile” (352 x 240), and “table-tennis” (35X 240). The criterion,” IEEE Trans. Syst., Man, Cyberrvol. SMC-6, pp. 845-853,
test sequences were first coded using an MPEG-based com- Dec. 1976.

; ; ; - [2] J. Canny, “A computational approach to edge detectiolgEE
pression algorithm and then POCS reconstruction was applielf! Trans. Pattern Anal. Machine Intellvol. PAMI-8, pp. 679697, Nov.

The following pattern was used for each GOP: “I, B, B, P, B,  1986.
B, P, B, B, P.” Purely for demonstration purposes, the defaulf] D. Geiger and F. Girosi, “Parallel and deterministic algorithms from

. . . . . - MRF’s: Surface reconstruction|JEEE Trans. Pattern Anal. Machine
intra- and nonintraquantization matrices in MPEG-1 were used |0 "\l 13, pp. 401-412, May 1991.

. 4] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distribution, an
12 [4] S.G dD. G Stochastic rel ion, Gibbs distributi d
Shown in Fig. 3 are the MPEG Compressed image (tOp) Bayesian restoration of imageslEEE Trans. Pattern Anal. Machine

. Intell., vol. PAMI-6, pp. 721-741, Nov. 1984.
and the POCS reconstructed image (bottom) of frame 21 (l5; a. Gersho and R. GrayVector Quantization and Signal Compression

frame) of the “mother and daughter” sequence. Also, Fig. 4 Boston, MA: Kluwer, 1991.

~ ; 6] ISO/IEC CD 10918-1Digital Compression and Coding of Continuous-
shows the results of frame 22 (B-frame) of this Sequenoé' tone Still Images, Part 1: Requirements and Guidelinbtar. 15,

The PSNR result of this sequence is given in Fig. 7(a). The 1991,

achieved MPEG compression ratio for this sequence is aboli M. Kaneko, Y. Hatori, and A Koike, “Improvement of transform coding

100:1 algorithm for motion compensated interframe prediction errdSEE
S . J. Select. Areas Commuvol. 5, pp. 1068-1078, Aug. 1987.

Fig. 5 shows the MPEG compressed image (top) and thg] A. K. Katsaggelos, J. Biemond, R. M. Mersereau, and R. W. Schafer,
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is shown in Fig. 7(b). The achieved MPEG compression ratio images,”|EEE Trans Circuits Syst. Video Technalol. 5, pp. 298-304,

i i - Aug. 1995.
for 'FhIS sequence 1s about 25:1. . th] R. L. Lagendijk, J. Biemond, and D. E. Boekee, “Regularized iterative
Fig. 6 shows the MPEG compressed image (top) and the" restoration with ringing reductionJEEE Trans. Acoust., Speech, Signal

POCS reconstructed image (bottom) of frame 31 (I-frame) of Processingvol. 36, pp. 1874-1888, Dec. 1988.

« Han ; [1d] J. Luo, C. Chen, K. Parker, and T. S. Huang, “Artifact reduction in low
the “mobile” sequence. The PSNR result for this sequence s bit rate DCT-based image compressiol;EE Trans. Image Processing

shown in Fig. 7(c). The achieved MPEG compression ratio yo|. 5, pp. 1363-1368, Sept. 1996.
for this sequence is about 12:1. Note that for this sequen&‘e?,] ISO/IEC DIS 11172 Coding of Moving Pictures and Associated Audio

. . : : for Digital Storage Media up to about 1.5 Mbits/$992.
On!y the “.n? Proces_s was used in the POCS algorithm (I'e'{lg] F. C. Jeng and J. W. Woods, “Compound Gauss-Markov random fields
uniform visibility weights were used). for image restoration,"EEE Trans. Signal Processing/ol. 39, pp.
Finally, the PSNR results for the “table-tennis” sequence = 683-697, Mar. 1991.

. . . [14] S. Minami and A. Zakhor, “An optimization approach for removing
are presented in Fig. 7(d) and (e) when  this sequence | blocking effects in transform codingJEEE Trans. Circuits Syst. Video

compressed at ratio 65:1 and 35:1, respectively. Technol, vol. 5, pp. 74-82, Apr. 1995.
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