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Abstract—In this paper, we present a new image recovery
algorithm to remove, in addition to blocking, ringing artifacts
from compressed images and video. This new algorithm is based
on the theory of projections onto convex sets (POCS). A new
family of directional smoothness constraint sets is defined based
on line processes modeling of the image edge structure. The
definition of these smoothness sets also takes into account the fact
that the visibility of compression artifacts in an image is spatially
varying. To overcome the numerical difficulty in computing the
projections onto these sets, a divide-and-conquer (DAC) strategy
is introduced. According to this strategy, new smoothness sets are
derived such that their projections are easier to compute. The
effectiveness of the proposed algorithm is demonstrated through
numerical experiments using Motion Picture Expert Group based
(MPEG-based) coders-decoders (codecs).

Index Terms—Compression artifacts, postprocessing, projec-
tions onto convex sets.

I. INTRODUCTION

A T THE PRESENT time, transform-based compression is
among the most popular, and is widely used for both

still images and video. In order to achieve high compression
ratio, part of the informtion about the transform coefficients of
the original image is discarded in the encoder. Quantization,
in various forms, is the most widely used approach for this
purpose [5]. Thus, in the decoder the original image or video
cannot be exactly reconstructed. Nevertheless, in a traditional
decoder, including Joint Photographers Expert Group (JPEG)
and Motion Pictures Expert Group (MPEG) [6], [12], the
decoded images are obtained by simply taking the inverse
transform of the received quantized transform coefficients. As
a result, in low bit rate applications, the compressed images
and video exhibit annoying compression artifacts.

“Blocking” artifacts—a direct result of independent block
processing in codecs such as JPEG and MPEG—have per-
haps received the most attention in the literature. Indeed,
various attempts have been made in the past to develop
postprocessing algorithms to improve the quality of block-
transform compressed images. In [9], [14], [16], and [18],
different filtering algorithms are used to remove blocking
artifacts in the decoded image. In [11], [17], [19], [20], and
[22], image recovery approaches are proposed for decoding
high-quality images from compressed image data. In [23] a
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spatially adaptive recovery algorithm, which takes into account
the local visibility of blocking artifacts, was introduced.

Apart from blocking, ringing is another annoying artifact
that appears frequently in transform-based compressed images.
However, it seems that this artifact has not received as much
attention in the literature. Ringing artifacts typically appear
as sharp oscillations or “ghost shadows” along the edges
in compressed images (see top of Figs. 3 and 4). Ringing
artifacts are especially objectionable in compressed video
when they occur around an object that is moving relative
to a flat background. In the video compression community,
these artifacts are also known asmosquitoor coronaartifacts,
depending on their appearance [7].

In this paper, we present a new image recovery algorithm
to remove, in addition to blocking, ringing artifacts from
compressed images and video. This new algorithm is based
on the theory of projections onto convex sets (POCS). A
new family of directional smoothness constraint sets is defined
based on line processes modeling of the image edge structure.
The definition of these smoothness sets takes into account the
fact that the visibility of compression artifacts in an image
is spatially varying. To overcome the numerical difficulty
in computing the projections onto these sets, a divide-and-
conquer (DAC) strategy is introduced. Based on this strategy
new smoothness sets are derived such that their projections
are easier to compute.

From an image recovery point of view, this work pro-
vides a new paradigm for the use of line processes. The
concept of line processes was first introduced in the study
of compound stochastic processes modeling of image fields
[3], [4], [13], [15]. In this study, line processes along the
horizontal, vertical, and two diagonal directions are introduced
to model the edge structure in an image. Then, the line
process along each direction is incorporated into a smoothness
constraint set so that local image activity is captured. In
addition to the guaranteed convergence property of the POCS
algorithm, this approach also offers implementation flexibility
and computational simplicity.

To our best knowledge, line processes were used for the first
time in [15] for recovering compressed images. The proposed
algorithm in [15] is based on the theory of mean field annealing
[3]. Since there is no rigorous proof for the convergence of the
mean field annealing algorithm, the convergence properties of
this algorithm cannot be rigorously established. In [15], line
processes in only two directions were used and the resulting
image model did not take into account the local visibility of
the coding artifacts.
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The rest of this paper is organized as follows. In Section II
a brief review of the POCS theory and previous related work
is given. In Section III the new smoothness constraint sets
are defined. In Section IV the DAC strategy is introduced,
and the projections onto the resulting new smoothness sets
are derived. In Section V the estimation of the line processes
and the visibility weights is presented. In Section VI, the
POCS algorithm for recovering MPEG compressed images is
outlined. In Section VII, numerical experiments are presented
to demonstrate the merit of the proposed algorithm. Finally, in
Section VIII conclusions and suggestions for future research
are given.

II. REVIEW OF PREVIOUS WORK

Since the pioneering work of Youla [26], the POCS method
has been applied successfully to solve a number of image
processing problems. The main result from the POCS theory
that we shall use for the rest of the paper is briefly summarized
as follows: Given closed convex sets1

in a Hilbert space, and nonempty, let denote
the projection operator onto i.e.,

(1)

and is called the projection of onto Then, the
iteration

(2)

will converge to a point of for an arbitrary initial point
[26].

The key for applying the POCS method for image recovery
problems is to express every piece of available knowledge
about the unknown image, which is to be recovered, by a
closed convex constraint set in the image space. Then, an
image vector that lies in the intersection of all the constraint
sets will satisfy all the available knowledge and henceforth
can be taken as a solution to the recovery problem. Clearly,
such a solution can be found by invoking the POCS iterative
algorithm in (2). Thus, the definition of a POCS-based image
recovery algorithm requires two steps in general: 1) the defini-
tion of the closed convex constraint sets that are used; and 2)
the derivation of the projections onto these constraint sets. The
main advantage of this approach is that it provides flexibility in
incorporatingprior knowledge about the unknown image into
the recovery algorithm. Indeed, any type of prior knowledge
can be included in a POCS-based recovery algorithm as long
as it can be represented by a closed convex constraint set in
the image space.

In earlier studies, Rosenholtz and Zakhor [17] and Yang
et al. [22], [23] used the POCS method to decode high-
quality images from compressed image data. According to
[17], [22], and [23], image decoding was treated as an image
recovery problem. Two types of constraint sets were used in
the recovery algorithms: 1) the constraint sets that are based on
the transmitted compressed image data; and 2) the constraint

1A setC is convexif for xxx1; xxx2 2 C;xxx3
�
= �xxx1 + (1� �)xxx2 is also in

C for all 0<�< 1:

sets that are based ona priori knowledge about the original
image that is available at the decoder without extra coding
cost.

Following the work in [22] and [23], a digital
image is treated as a vector in the Euclidean space
by lexicographic ordering either by rows or columns, where
as distance measure the norm is used. Then, the block
discrete-cosine transform (BDCT) [6], [12] is viewed as a
linear transform on and is denoted by using matrix
notation. In a BDCT-based image codec, the quantized BDCT
coefficients of an image are available at the decoder. The
knowledge of these quantized BDCT coefficients [17], [22]
leads to the following constraint set:

(3)

where and are the end-points of the quantization
interval that is associated with the received quantized level of
the th BDCT coefficient

The constraint set is closed and convex, and the projec-
tion of an image vector onto is given by

(4)

where the th component of is determined by

if
if
otherwise

(5)

for Note that due to the unitary nature of
the BDCT transform its inverse is simply its transpose.

In addition to the data constraint set smoothness
constraint sets were also introduced in [22], [23] to en-
force cross-block-boundary smoothness in the decoded images.
Write an image in its column vector form as

(6)

where denotes theth column of the image. Let be a linear
operator such that gives the difference between adjacent
columns at the coding block boundaries of For example,
for the case of and 8 8 blocks

(7)

Then the norm of

(8)

is a measure of the total intensity variations between the
image pixels at the adjacent block boundary columns. Thus,
by forcing this quantity to be small, we can suppress blocking
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artifacts along the vertical boundaries. This leads to the
following constraint set [22]:

(9)

where is a scalar upper bound that defines the size of this
set. In practice, the quantity is estimated from the received
compressed image data. The set is closed and convex. Its
projection operator is derived in [22].

In [23], the fact that the local visibility of the coding artifacts
in compressed images is spatially varying was further taken
into account. For example, blocking artifacts are more visible
and more annoying in a smooth region than in a texture region
of an image. To exploit this fact, a visibility matrix was
introduced into the between-block-boundary variation term
to characterize the local visibility of the coding artifacts. This
gives rise to a new smoothness constraint set

(10)

The visibility matrix is diagonal, and its elements are
determined by the local statistical properties of the image. In
practice is estimated using the compressed image data at no
extra coding cost [23]. The set is closed and convex, and
its projection operator is derived in [23]. In a similar fashion,
we can extend this to define a constraint set for the block
boundary rows to enforce cross-block-boundary smoothness.

The incorporation of these smoothness sets into the POCS
recovery algorithm leads to a spatially adaptive processing
algorithm where image pixels are treated differently according
to the local visibility properties of the coding artifacts. The
resulting decoded images from this approach are demonstrated
to be better than that obtained from traditional decoders, both
visually and objectively using a distance metric [23].

Unfortunately, none of the smoothness constraint sets de-
scribed above address explicitly the ringing artifacts. In this
study, we propose a new class of smoothness constraint sets
to address this issue specifically. Due to its popularity, the
BDCT-based codec is considered in rest of the development.
However, the proposed approach can be applied to other
transform based image codecs as well.

III. SMOOTHNESSCONSTRAINT SETS ON RINGING ARTIFACTS

Since ringing artifacts mainly occur around edges in a
compressed image, it is natural for a processing algorithm to
process the image pixels around the image edges and leave
the pixels on the edges unprocessed. Such an approach is very
desirable, since it will preserve the existing edge structure in
a compressed image while removing ringing artifacts. The
main difficulty, however, is that the edge locations are not
immediately available at the decoder. In other words, the
locations of the ringing artifacts in a compressed image are
not known a priori, unlike the blocking artifacts which are
known to occur at block boundaries. This gives rise to the
need for a systematic approach to describe the edge locations
in an image.

In the study of compound stochastic processes modeling
of image fields, the concept ofline processeswas introduced
to describe the transition in the statistical model of an image

field [4], [13], [21]. In this paper, line processes are used to
describe the edge structure in an image. The edges in an image
typically appear in regions where sharp intensity transitions
occur and they exhibit different orientations. As a result, line
processes along different directions are used to describe the
existence of edge elements between two neighboring pixels
along different directions. Due to the use of a rectangular
image sampling structure, the following four directions are
considered: The horizontal (or 0 the vertical (or 90 the
positive diagonal (or 45 and the negative diagonal (or

45 This concept is illustrated in Fig. 1(a), where the
image pixel locations are denoted by the symbols “” while
the line sites denoted by the symbols “”. The 0 process
is used to characterize the existence of a horizontal edge
element between two neighboring pixels along the vertical
direction, while the 90 process is used for the existence of
a vertical edge element between two neighboring pixels along
the horizontal direction. In a similar fashion, the45 process
and the 45 process are defined for the edges along the45
and the 45 directions, respectively. To clarify this idea, Fig.
1(b) furnishes a pictorial example in which the realizations of
the four line processes are shown. In this example the symbols
“ ,” “ ,” “/,” and “ ” are used, respectively, to indicate the
existence of 0 90 45 and 45 line processes between
two adjacent image pixels.

Using these line processes, we can define smoothness con-
straint sets to capture the smoothness properties of an image
in the four directions. Let denote the 90 line process
at the site i.e.,

if these exists an edge between
the pixels and

otherwise
(11)

for and Then, the quantity

(12)

gives the weighted variation of the entire image along the
horizontal direction. For the purpose of artifacts removal, the
factors in (13) are used to quantify the local image
activity along the horizontal direction. Thus, by forcing the
quantity small we can enforce smoothness along the
horizontal direction in an image. This leads to the following
constraint set:

(13)

Note from (12) that the variations at the 90line sites are
excluded from the term As a result, the projection onto
the set will result in spatially adaptivesmoothing of the
image pixels along the horizontal direction, and in particular
image pixels at the 90line sites are excluded from being
smoothed. This certainly helps to remove coding artifacts
such as ringing in a compressed image, as will become clear
from the discussion in the next section. In a similar fashion,

and are defined as in (11) for the
0 , 45 , and 45 line processes, respectively. Also, the
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(a) (b)

Fig. 1. Illustration of line processes sites and their realization. (a) “�” indicates the pixel locations and “�” the possible line process sites. (b) “�,” “ j,” “/,”
and “n” indicate the existence of line processes in the 0�

; 90�; +45�, and�45� directions, respectively, for the edge shown.

weighted variations and along the 90,
45 , and 45 directions, respectively, are defined as in (12).

Consequently, smoothness sets and are defined,
respectively, for the 90, 45 , and 45 directions.

In order to apply these directional smoothness constraint sets
in a recovery algorithm, we need to compute their associated
projections. Unfortunately, this by no means is an easy matter.
To illustrate this point, let’s try to derive the projector for
the set Consider an image vector and let denote
its projection onto i.e., To obtain we use the
Lagrange multipliers approach. Consider the function

(14)

Taking the partial derivatives and setting them to
zero yields the following systems of equations:

(15)

where
and is a matrix defined by the equation

shown at the bottom of the page, where for convenience the

following notation is used:
Thus, the projection can be found by solving for the row
vectors from (15). The parameter in the matrix is
determined through the condition that the resultingshould
satisfy

(16)

From (15) it is clear that the solution is a
nontrivial nonlinear function of As a result, computing the
projection onto the set for a large becomes a difficult
task, if not impossible. Similarly, one can verify that the
same difficulty exists for computing the projections of other
directional smoothness constraint sets. In the next section, we
are going to apply a DAC strategy to overcome this difficulty.

IV. SMOOTHNESS CONSTRAINT

SETS USING DIVIDE-AND-CONQUER

As explained in Section III, it is difficult to include the
directional smoothness constraint sets and
directly in a recovery algorithm because of the numerical
difficulty in computing their projections. In the following we
will apply a DAC strategy to these sets so that new smoothness
constraint sets are derived and their projections are much easier
to compute. To derive these new constraint sets, the directional
variation term of the entire image in each set, e.g., in

in (12), is decomposed into a summation of subterms in an
interleaved fashion such that each subterm accounts for a part
of the total directional variation. Then smoothness constraints
sets are introduced on these subterms of directional variations.
Due to the inherent blocking structure of BDCT compression,
special attention is paid to the horizontal/vertical smoothness
sets and so that the resulting new smoothness sets
can also remove blocking artifacts in addition to ringing
artifacts. This is possible because of the flexibility of the POCS
approach.

...
...

...
...

...
...
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A. Horizontal/Vertical Smoothness Constraint Sets

Consider the horizontal variation term

(17)

For notational simplicity, assume a multiple of 8. Then for
each define

(18)

where for and otherwise.
Clearly

(19)

In the above the horizontal variation of the entire image
has been divided into a sum of smaller terms, Each
term captures the weighted horizontal variation for
every other eight columns of the image. Here, is so
defined to reflect the fact that 8 8 block-size is used for
the BDCT. Indeed, for the term is the
sum of the weighted variations between theth column and

th column within all coding blocks; and for ,
it is the sum of the weighted variations between all block
boundary columns.

Since each of the smaller terms captures the hor-
izontal variations of the image in part, they can be used to
define constraint sets to enforce the horizontal smoothness.
The following constraint sets follow:

(20)

Note that for implies that
That is, the constraint imposed by the set is

automatically satisfied provided the constraints by the sets
are satisfied altogether. Thus, the sets can be used

instead of in a recovery algorithm to enforce smoothness
along the horizontal direction. There are two advantages in
using these sets. One of them is that blocking artifacts are
automatically taken into account by these sets. This is because
the set essentially enforces the smoothness between block
boundary columns, a role that the set in (9) and the set
in (10) played. The other advantage is that their projections,
unlike their counterpart can be computed efficiently, as
will become clear in the following derivation.

It is straightforward to demonstrate that the sets are
closed and convex. To derive the projector for let

for an image Consider the Lagrange
auxiliary function

(21)

Taking the partial derivatives and setting them to
zero yields the following.

1) For each and for each with

2) The rest of the pixels do not appear in the term
so we have

(22)

Solving these equations yields the following projection.

1) For each and for each with

(23)

(24)

where

if

otherwise.

(25)
2) For the rest of the pixels

(26)

The parameter in (25) is found through the condition
that the resulting image vector satisfies or
equivalently

(27)

Observing (18) and (23)–(25), we have

(28)

Clearly, this is a nonlinear equation in In [23], it was shown
that this type of equation has a unique positive root inand it
is this root that corresponds to the projectionfurthermore,
the Newton’s method given by

(29)

with convergesincreasinglyto this positive root.
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A few remarks are in order. First, from (23)–(25) we observe
1) when i.e, when there exists an edge
between the pixels and we have

and
that is, no smoothing is done over the pixels at the line process
sites; and 2) when i.e, when no edge exists
between the pixels and we obtain

(30)

Clearly, the difference between the image pixels is reduced in
the resulting image and the degree of reduction is determined
by the local weighting factor This demonstrates
that projecting an image vector onto the set indeed
enforces adaptive smoothing along the horizontal direction
and, furthermore, the line processes help preserving
the edges in the image. Finally, (26) reveals that each set
enforces the smoothness only for every other eight columns
of the image. Thus, by including all these sets in a recovery
algorithm, the overall horizontal smoothness can be enforced.
The above development has employed the DAC strategy to
break up the overall smoothness constraint into pieces so that
each piece is much easier to deal with.

A final remark is that when all the visibility factors
assume a uniform value, say one, (28) simply becomes a
second-order equation in In such a case, has a simple
closed-form solution. Furthermore, the computations in (23)
and (24) also become much simpler. Thus, the constraint sets

can be simplified by segmenting the image according to
its local activity factors so that constraint sets can
be defined for each segment using a uniform weight. Note
that a similar approach was discussed in detail in [23]. The
interested reader is referred to [23] for more details. Note that
this approach also applies to the smoothness constraint sets
that are to be defined in the following.

Similarly, by applying the same strategy we can introduce
constraint sets in place of the set to
enforce vertical smoothness.

B. Diagonal Smoothness Constraint Sets

Consider the smoothness constraint setalong the 45
direction

(31)

The term captures the weighted variation of the entire
image along the 45 direction. For an image, there are
a total of diagonals along the 45 direction.
Let denote the set of the pixels on theth diagonal, i.e.,

(32)

For example, the first diagonal contains pixel (1, 1); the
second diagonal contains pixels (2, 1) and (1, 2); etc..

Then, the term can be rewritten as

(33)

If we define

(34)

and

(35)

then

(36)

That is, the total variation along the45 direction has been
divided into two terms. As illustrated in Fig. 2(a), the term

captures the variations between the pixels connected by
the solid arrows, while the term captures that between
pixels connected by the dashed arrows.

Based on and ,P we can define the following
smoothness constraint sets

(37)

and

(38)

Note that for implies that
That is, the constraint imposed by the set is

automatically satisfied provided that the constraints by the sets
are both satisfied. Thus, the sets and can be used

instead of in a recovery algorithm to enforce smoothness
along the 45 direction. As illustrated in Fig. 2(a), the set

enforces smoothness between the pixels connected by
the solid arrows, while enforces smoothness between
the pixels connected by the dashed arrows. As a result, the
smoothness for the entire image is enforced when these two
sets are used together.

It is straightforward to demonstrate that the sets and
are closed and convex. The projections for and

can be derived in a fashion similar to that for the sets
The result for the set is furnished below.

For an image vector its projection
onto the set is computed as follows.

1) Solve for from

(39)
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(a) (b)

Fig. 2. (a) Illustration of the pixel grids used in the DAC strategy for the smoothness set in the�45� direction. (b) Illustration of the neighboring
blocks used to compute visibility in the�45� direction.

2) For with compute

(40)

(41)

where

if

otherwise.
(42)

Note that when i.e, when there exists an
edge between the pixels and we have

and
That is, no smoothing is done over the pixels and

This means that the projection onto the
set indeed preserves the edges in the image.

3) The rest of the image pixels are unchanged.

In a similar fashion, we can define two sets and
in place of the set to enforce smoothness along the45
direction. Again, the details are omitted for brevity.

V. DETERMINING PARAMETERS FOR

THE SMOOTHNESS CONSTRAINT SETS

In the definition of the directional smoothness constraint
sets in Sections III and IV, a few parameters were introduced.
For example, for the horizontal smoothness sets

(43)

where the following parameters are used:
the 90 line processes the horizontal activity factors

and the smoothness bounds These parameters
have to be determined when the sets are used in a recovery
algorithm. One way would be to determine them from the
original image at the expense of extra coding cost. For practical
purposes, a more reasonable approach is to determine them

from the compressed image data. In the following, the latter
approach is discussed.

A. The Line Processes

Edge detection is a well-known image processing problem;
see [2], for example. In this study, directional derivatives are
used to estimate the line processes. Consider the 90line
process for example. At site we compute the first order
horizontal difference from the compressed image

(44)

Then the line process is determined using a threshold-
ing decision rule, i.e.,

if
otherwise

(45)

where is the decision threshold.
The choice of the threshold needs some discussion.

Due to the existence of blocking artifacts in the compressed
image for a BDCT-based codec, the quantity at
a block boundary site tends to be larger than that at a site
inside a block. As a result, if is chosen to be too small,
many sites at block boundaries would be falsely classified as
line process sites. This obviously is undesirable, since it will
affect the removal of blocking artifacts. Thus, the threshold
needs to be chosen to reflect the degree of blocking. Another
consideration is that edges are typically small probability
events in a natural image. Thus, only a small portion of sites
at block boundaries should be classified as edges. With these
in mind, the following estimation scheme is used:

(46)

where denote, respectively, the mean and the variance
of over the vertical block boundary sites. In our
experiments, it is demonstrated thattypically in the range
of gives good results. It is also demonstrated that
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this approach adapts very well to the coding bit rate, which
determines the severeness of the coding artifacts.

In a similar fashion, the other line processes can be esti-
mated. For example, for the45 line processes the first order

difference is used. In
such a case, the decision thresholdis simply chosen to be
the average the decision thresholds for the 0and 90 line
processes.

B. The Visibility Weights

The weighting factors in the directional smoothness sets
are used to capture both the local statistical properties of an
image and the characteristics of the human visual system.
The introduction of these weights is based on the observation
that the visibility of coding artifacts, like that of noise [1],
decreases with the local image activity and in very bright or
very dark areas of the image [23]. In the past, a number of
different methods have been proposed to quantify the local
image activity; see [1], [8], and [10], for example.

In this paper, the effect of coding artifacts is taken into
account for the estimation of the local image activity from
compressed image data. The following facts are considered:
1) the existence of blocking artifacts tends to cause the image
variation to become larger at a block boundary site; and 2)
the presence of ringing artifacts tends to cause the image
variation to become larger at sites that are close to edges. As a
result, in such cases the local image activity of the compressed
image is no longer a good indication of the activity of the
original image. Fortunately, both the ringing and the blocking
artifacts have only limited extent in their occurrence. That is,
the blocking artifacts are limited only to the sites at the block
boundaries, and ringing artifacts are limited only within blocks
inside which edges exist. Therefore, the local activity for these
questionable sites in the above cases can be estimated from
their neighboring sites.

With the above considerations in mind, the horizontal ac-
tivity factors for example, are determined in the
following fashion: At first, sites are classified intocomputable
andnoncomputableones. A site is said to be computable if it
lies inside a block that does not contain any 90line processes;
otherwise, it is said to be noncomputable. Clearly, a site is
noncomputable only if it either lies at a block boundary or
lies inside a block which contains 90line processes.

For a computable site the factor is determined
using the average horizontal variation of the compressed image
along the th row inside the block. That is

(47)

where denote, respectively, the position of the leftmost
and the rightmost column of the block. Note that in (47), the
variations between block boundary pixels are not included.
Also, one is added to the denominator to avoid mathematical
singularity.

Next, consider a noncomputable site that lies inside
a block. In such a case, there exists at least one 90line

site inside the block. The weight is computed from
its neighboring blocks based on the relative location of the
site with respect to the line process sites. With

denoting the closest neighbors to the site
from its left neighboring block and its right neighboring block,
respectively, the following possibilities exist.

• If no 90 line process exists from the site to the
site along the th row and at the same time both
the sites and are computable, then

(48)

That is, the average of the two immediate neighboring
computable sites is used.

• Otherwise, if no 90 line process exists from the site
to the current site along the th row, then

we set provided that the site
is computable; Similarly, if no 90line process

site exists from the current site to the site

along the th row, then we set
provided that the site is computable.

• Otherwise, for the other cases, set

(49)

Note that the above definition gives the minimum for the
possible value of the weight at a computable site.
This is not difficult to see from (47) because of the edge
detection scheme used for the 90line process.

Finally, for a site that is noncomputable because it lies
at a block boundary, the average weight of its two horizontal
neighboring sites is used provided that none of them are line
process sites; in case either of them is a line process site but
not the both, the weight of the other is used; otherwise, the
minimum weight is used.

In a similar fashion, the weights along the other directions
can be computed, though a few exceptions exist for the two
diagonal directions. Take the weights for example.
First, if the site is computable, i.e., when no45 line
sites exist inside the block, the local average variation is found
over a part of the block, unlike in (47) the average is over a
single row. To be specific, consider a site within the center
block of Fig. 2(b). If the site is in region A, i.e., the lower-left
half of the block, then the average is over the region A; if
it is in region B, then the average is over the region B; and
finally, if it is on the diagonal that separates A and B, then the
average is over the whole block. This new added complexity is
due to the fact that the number of sites along a45 diagonal
within a block is different among different diagonals. On the
other hand, if the site is noncomputable, then
is determined from its neighboring blocks. Note, however, the
neighboring blocks in such a case are no longer fixed. Again,
consider a site within the center block of Fig. 2(b). If the site
is in region A, then the neighboring blocks are 4 and 7; if it
is in region B, then the neighboring blocks are 2 and 5; and
finally, if it is on the diagonal that separates A and B, then
they are 1 and 8.
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Fig. 3. “Mother and daughter” frame 21: MPEG compressed image (top);
POCS reconstructed image (bottom).

C. The Smoothness Bounds

The bounds of the smoothness sets are determined from the
received data, i.e., the compressed imageTake the sets
for example, the bounds are determined by

(50)

for In (50), the constant is used to control the
degree of smoothness. It is demonstrated in the experiments
that typically in the range of gives good results.
Note that the variation is not included in (50) because
it tends to be significantly larger than the others due to the
existence of blocking artifacts.

Similarly, the bounds for the other smoothness sets can be
determined. For example, for the sets and we simply
set

(51)

Fig. 4. “Mother and daughter” frame 22: MPEG compressed image (top);
POCS reconstructed image (bottom).

VI. POCS DECODING FORMPEG VIDEO

In this section, we illustrate how to incorporate the direc-
tional smoothness constraint sets discussed in earlier sections
into a recovery algorithm to decode images from compressed
image data. Due to its recent popularity, the MPEG video
compression standard is used here for the illustration.

In MPEG video coding, a video sequence is divided into
groups of pictures (GOP’s). In each GOP, pictures of different
types are used to exploit both the spatial and the temporal
redundancy [12]. More specifically, intracoded pictures (I-
pictures), predictive coded pictures (P-pictures), and bidi-
rectionally predictive coded pictures (B-pictures) are used.
Since pictures of different types are coded differently, we
need to define constraint sets to capture the transmitted data
information for each picture type.

For I-pictures, the transmitted data information is captured
by the constraint set in (3). For P-pictures, the quantized BDCT
coefficients of the motion compensation error are transmitted
in addition to the motion vector information. Based on the
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Fig. 5. “Football” frame 26: MPEG compressed image (top); POCS recon-
structed image (bottom). Note that only a 176� 144 segment of the whole
image is shown here.

received data, the following constraint set [24] can be defined:

(52)

where and are the end-points of the quantization
interval that is associated with the received quantized level
of the th BDCT coefficient In (52),
denotes the predicted P-picture using the received motion
vector information.

It is easy to show that the set is closed and convex.
Furthermore, for an image vector its projection

onto is given by

(53)

where the th component of is given by

if
if
if

(54)

for

Fig. 6. “Mobile” frame 31: MPEG compressed image (top); POCS recon-
structed image (bottom). Note that only a 176� 144 segment of the whole
image is shown here.

A constraint set of the same form as in (52) can be used to
capture the data information for a B-picture. In such a case,
the vector is replaced with the bidirectionally predicted
B-picture using the received motion vector information.

With constraint sets clearly defined and their projections
derived, the POCS algorithm in (2) can then be used to de-
code images from MPEG compressed data. For convenience,
let denote the concatenation of the projectors for the

horizontal smoothness sets i.e.,
Similarly, define and

Then, the iterative POCS algorithm for an
I-picture can be written as

(55)

where is the projector for the I-picture data set in (3). In
practice, the MPEG compressed image can be used for the
starting point Similarly, the POCS algorithms for P- or
B-pictures follow by replacing the projector in (55) with
the corresponding projector for the P- or B-picture data set.
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(a) (b)

(c) (d)

(e)

Fig. 7. PSNR plots for MPEG compressed images (dashed) and POCS reconstructed images (solid). (a) “Mother and daughter” compressed at about 100 : 1.
(b) “Football” compressed at about 25 : 1. (c) “Mobile” compressed at about 12 : 1. (d) “Table tennis” compressed at about 65 : 1. (e) “Table-tennis” compressed
at about 35 : 1.
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Note that additional constraint sets can be introduced into
the POCS algorithm in (55) to take into account other available
prior knowledge. One such example is the nonnegativity
constraint on the pixel intensity. For more details see [22]
and [23].

A final note is that the algorithm in (55) can also be used
without modification to decode JPEG compressed images.

VII. N UMERICAL EXPERIMENTS

The proposed algorithms have been tested using both still
images and image sequences. Due to space limitation, only a
sample of the test results will be presented in the following
to demonstrate the effectiveness of the proposed algorithms.
One or two particular frames from each test sequence will
be presented to demonstrate the quality improvement of the
resulting images from the proposed algorithms over those
of compressed ones. Also, to demonstrate the overall per-
formance an objective metric the peak-signal-to-noise-ratio
(PSNR) is used. The PSNR of a recovered image

relative to its original image is defined in decibels by

PSNR (56)

For comparison purposes, PSNR values are computed and
plotted for both the compressed and the reconstructed images
for the first 50 frames of each sequence.

The following test sequences are used in the following:
“mother and daughter” (176 144), “football” (352 240),
“mobile” (352 240), and “table-tennis” (352 240). The
test sequences were first coded using an MPEG-based com-
pression algorithm and then POCS reconstruction was applied.
The following pattern was used for each GOP: “I, B, B, P, B,
B, P, B, B, P.” Purely for demonstration purposes, the default
intra- and nonintraquantization matrices in MPEG-1 were used
[12].

Shown in Fig. 3 are the MPEG compressed image (top)
and the POCS reconstructed image (bottom) of frame 21 (I-
frame) of the “mother and daughter” sequence. Also, Fig. 4
shows the results of frame 22 (B-frame) of this sequence.
The PSNR result of this sequence is given in Fig. 7(a). The
achieved MPEG compression ratio for this sequence is about
100 : 1.

Fig. 5 shows the MPEG compressed image (top) and the
POCS reconstructed image (bottom) of frame 26 (B-frame) of
the “football” sequence. The PSNR result for this sequence
is shown in Fig. 7(b). The achieved MPEG compression ratio
for this sequence is about 25 : 1.

Fig. 6 shows the MPEG compressed image (top) and the
POCS reconstructed image (bottom) of frame 31 (I-frame) of
the “mobile” sequence. The PSNR result for this sequence is
shown in Fig. 7(c). The achieved MPEG compression ratio
for this sequence is about 12 : 1. Note that for this sequence,
only the line process was used in the POCS algorithm (i.e., a
uniform visibility weights were used).

Finally, the PSNR results for the “table-tennis” sequence
are presented in Fig. 7(d) and (e) when this sequence is
compressed at ratio 65 : 1 and 35 : 1, respectively.

From these experiments, it is clear that the proposed al-
gorithms can correct effectively MPEG compression artifacts
such as blocking and ringing. The POCS reconstructed images
have higher PSNR’s than their MPEG counterparts. A final
note is that the proposed POCS-based algorithms are observed
to converge very rapidly. All the results given in this section
are obtained after 3 5 iterations.

VIII. C ONCLUSIONS

In this paper we presented a new POCS-based recovery
algorithm to reconstruct transform-based compressed images
and video. The new feature of this algorithm comparing
with our previous work in [22] and [23] is its capability
to correct ringing artifacts. Since ringing is an artifact that
appears in most transform-based codecs, this algorithm can
be used for codecs that use other transforms as well. Also,
this work provides a new approach for the use of line pro-
cesses in image recovery problems. The resulting algorithm
from this approach is easy to implement and converges very
rapidly.

A remaining challenge in the video recovery problem is
to further utilize the between-frame smoothness property in
a video sequence. This is accomplished in [25] and [27] by
using the transmitted motion vector information.
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