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Template Matching Based Object Recognition With
Unknown Geometric Parameters

Roger M. Dufour, Eric L. Miller, Member, IEEE, and Nikolas P. Galatsanos, Senior Member, IEEE

Abstract—In this paper, we examine the problem of locating an
object in an image when size and rotation are unknown. Previous
work has shown that with known geometric parameters, an image
restoration method can be useful by estimating a delta function at
the object location. When the geometric parameters are unknown,
this method becomes impractical because the likelihood surface to
be minimized across size and rotation has numerous local minima
and areas of zero gradient. In this paper, we propose a new ap-
proach where a smooth approximation of the template is used to
minimize a well-behaved likelihood surface. A coarse-to-fine ap-
proximation of the original template using a diffusion-like equa-
tion is used to create a library of templates. Using this library, we
can successively perform minimizations which are locally well-be-
haved. As detail is added to the template, the likelihood surface
gains local minima, but previous estimates place us within a well-
behaved “bowl” around the global minimum, leading to an accu-
rate estimate. Numerical experiments are shown which verify the
value of this approach for a wide range of values of the geometric
parameters.

I. INTRODUCTION

A COMMON image processing problem is to determine the
location of an object using a template when the size and ro-

tation of the true target are unknowns [1]–[3]. An algorithm for
finding the solution should be robust to noise, accurate across
a wide range of object configurations, and computationally ef-
ficient. With known geometric parameters (i.e., size and rota-
tion) and additive Gaussian noise, the classic solution for object
localization is a whitening filter followed by a matched filter.
Other estimators have been proposed, such as the phase only
matched filter (POMF) and the symmetric phase only matched
filter (SPOMF) which give better location discrimination than
the standard matched filter [3]. However these filters do not use
additional information regarding the background noise which
may be available or estimable. Alternatively, one may formu-
late the localization problem in the framework of image recon-
struction, where the image to be recovered is a delta function at
the location of the object and the blurring kernel is the template
to be matched [1]. This method follows the expansion matching
(EXM) method, which seeks to localize by expanding the image

Manuscript received February 27, 2001; revised July 11, 2002. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Josiane B. Zerubia.

R. M. Dufour is with the MIT Lincoln Laboratory, Lexington, MA
02420-9185 USA (e-mail: dufour@ll.mit.edu).

E. L. Miller is with the Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA 02115 USA.

N. P. Galatsanos is with the Department of Electrical and Computer Science,
University of Ioannina, Ioannina, Greece, and also with the Department of Com-
puter Science, University of of Ioannina, Ioannina, Greece.

Digital Object Identifier 10.1109/TIP.2002.806245

on a basis composed as translated versions of the object [4]–[6].
This approach makes available image reconstruction methods
such as the linear least squares estimator (LLSE) and maximum
likelihood estimator which can incorporate background statis-
tics. The final step in either the delta restoration or the EXM
method is simply to select the point of highest response in the
recovered image.

Since they rely upon an accurate template the methods men-
tioned above are not sufficient when geometric parameters such
as size and rotation are unknown. Here, one must compose an es-
timator which is invariant to these parameters or simultaneously
estimate these parameters. With the invariant approach [7]–[10],
a discriminant function is composed in the spatial, frequency or
another domain which is invariant to an affine transformation
of the template. The discriminant function is usually computed
from local or global features of the image, boundaries within the
image or regions of the image. The invariant function score can
then be used for detection or classification. The second approach
and the one followed in this paper is to estimate the parameters.
By estimating the parameters, an accurate template match can
be achieved as in the methods mentioned earlier. This approach
is also taken with the Fourier Mellin Matched Filter (FMMF)
[2]. In the FMMF, the amplitude of the Fourier transform is
mapped to a log-polar coordinate system. The translational de-
pendence is eliminated because it appears only in the phase of
the Fourier transform. The transformation to the log-polar coor-
dinate system converts the rotation and scaling parameters into
translational parameters. Scale and rotation are then solved with
a matched filter or phase only matched filter. While computa-
tionally fast and a simple method, it is not very robust to noise or
clutter. Additionally if the template does not accurately match
the object in the image, this method again will often fail. An-
other approach is to minimize a likelihood surface defined from
the difference between the matched template and the image.
However, this surface is not amenable to minimization due to
numerous local minima and areas of small or zero gradient. Nu-
merous randomized techniques for minimizing a surface with
multiple minima have been developed, such as simulated an-
nealing [11], [12] or by using a jump diffusion technique [13],
[14]. With these techniques, the parameter set is updated by a
step increment. As the algorithm progresses, the increment be-
comes smaller until the parameters settle into a minima. With
proper selection of the increment size, the final solution is, with
high probability, the global minimum.

We propose a deterministic method for searching this sur-
face using a progression of templates. The early templates are
smooth approximations of the exact template. This results in a
search of a well-behaved approximation of the true likelihood
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surface and therefore we can get close to the global minimum
of the cost surface. A standard optimization routine such as
the Newton algorithm can be used to find the best fit solution.
Using this estimate as a starting point, we add more detail to
our template and search again. As we add detail, the surface be-
comes more ill-behaved, but the previous estimates have placed
us within a “basin of attraction” of the global minimum. This
method is similar to the Graduated Non-Convexity (GNC) ap-
proach [15]–[17] in that it allows us to locally search a series of
approximations to the likelihood surface and in a small number
of iterations will carry us to an accurate solution. To generate
the templates for the search, we use a diffusion like equation
which allows fast Fourier based computations of the templates,
coupled with the Fourier based image restoration method [1].
This leads to a Fourier domain algorithm which is not compu-
tationally burdensome.

We demonstrate the performance of the algorithm using syn-
thetic images, infrared images and optical images. The experi-
mental evidence shows that this approach is able to accurately
estimate the size, rotation and location of an object across a wide
range of signal to noise ratios and clutter. In addition, it was
demonstrated that it also works well for a wide range of values
of the rotation and scaling parameters.

In Section II we will introduce the problem setup and the so-
lution method via an impulse estimation routine. In Section III,
we present a method for developing the template library. Sec-
tion IV shows the Newton algorithm used for parameter estima-
tion. Section V discusses the information loss and performance
of the parameter estimates. In Section VI, we present our nu-
merical experiments. Finally, in Section VII we present some
conclusions and directions for future work.

II. BACKGROUND

In [18] the problem of template matching was formulated
using a novel nonorthogonal image expansion approach. In [1] it
was shown that this approach in essence was an image restora-
tion approach. According to this approach the signal to be re-
stored is a delta function at the template location. This leads to
the convolution equation

(1)

where the position vector , and represents two-
dimensional (2-D) convolution. Here the object is represented
by the template, , at some location . We have described the
template using a parameter set,(where is the true parameter
set), which specifies the geometric parameters of the template
(i.e., the size and rotation ), as

(2)

The template is a rotated and resized version of the standard
template, , given as

where

(3)

As in [1] for estimation purposes we assume that the noise
and the are zero-mean stochastic functions with spectra given
as

and, (4)

where are the spatial frequencies used in the 2-D
Fourier Transform

(5)

With this framework, we now use a maximum likelihood es-
timate of the parameter set, while using the delta restoration
method [1] for the location estimation. Since the additive noise
is assumed Gaussian, the negative log-likelihood for our param-
eters is

(6)

The maximum likelihood solution is then achieved by mini-
mizing (6) as

(7)

In general, determining the exact solution to this optimization
problem (i.e., the ML estimate of location, size, and rotation) is
not a trivial task. This is seen by the wide range of localization
techniques discussed in the Introduction both when the geom-
etry is known and when it is not known. Hence, in this paper, we
propose a suboptimal estimation scheme which is both compu-
tationally tractable and is demonstrated to work effectively on
real data. Our approach has two steps. First, the delta restora-
tion technique of Abu-Naseret al. [1] is used to determine an
almost closed-form estimate of the location of the target in terms
of the geometric parameters. Using this estimate to reduce the
space of unknowns only to the size and rotation parameters, a
nonlinear least squares approach is employed to determine these
remaining quantities. Because even this problem is plagued by
local minima of the cost function, the template progression ap-
proach is introduced to “ease” the estimate of the geometric pa-
rameters into the global basin of attraction.

With a given set of geometric parameters, we can construct
an estimate of position following Abu-Naser [1] by first making
a Linear Least Squares Estimate (LLSE) of the delta function,

(8)

and selecting the point of maximum response as our position
estimate, as1

(9)

1While ^� is the statistically optimal estimate of�, taking the maximum in (9)
does not guarantee that the final estimate of position is in fact the maximum
likelihood estimate
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(a) (b)

(c) (d)

Fig. 1. Likelihood surfaces and associated templates. (a) Exact template, (b)
exact surface, (c) smooth approximate template, and (d) smooth approximate
surface.

Substituting (9) into (7), we have a nonlinear least squares
estimator, as

(10)

The minimization of could be accomplished by cal-
culating on a dense grid in the space to find the
minimum point. However, the calculations required to perform
this are generally prohibitive. The computation of the surface
shown in Fig. 1 needed 67 billion flops. Instead, we seek to use
standard optimization tools to find the minimum, the gradient
descent algorithm we propose used only 260 million flops to
find the minimum of the surface in Fig. 1. The problem which
we encounter when we attempt to do this is that the likelihood
surface is not amenable to a gradient descent methods because
of local minima and other areas of zero gradient. We find that
these problem areas are a direct result of the shape of the tem-
plate, ; specifically, multiple maxima in the template lead to
multiple maxima in the likelihood surface. This can be seen in
Fig. 1 where we have in (a) a simple target template with mul-
tiple maxima and in (b) the surface beside it. The ex-
ample given here is for estimating the same two peaked object
with size and rotation with noiseless data. The
minimum of this surface is a sharp point at size 1.0 and rotation
0, but the irregularity of the surface makes descent-type mini-
mizations impractical. Conversely, if we use a smooth rotation-
ally invariant template, shown in (c), to perform the match we
obtain the surface in (d) which is far better behaved. The
minimum of this surface while close to 1.0 is no longer a sharp
point, but has a broad minimia with much less curvature. This
broader curve implies that the estimate will be more sensitive
to noise in the data relative to that produced by the exact tem-
plate. Thus the primary objective of this work is to capture the

Fig. 2. Four templates and contour plots of the associated likelihood surfaces.
The exact parameters are marked by the “o”, the local minimum found by
gradient descent is marked by the “x.”

accuracy of the exact template estimation with the more easily
minimizable surface of the approximate template.

We formulate a method which uses smooth approximate tem-
plates which allow us to minimize on a well-behaved surface.
Since the results of the minimizations which we obtain from
the approximations are not as accurate as those which could
be obtained from the exact template, we will add detail back
to our templates and minimize again with the previous esti-
mate starting our current estimate within a well-behaved region
around the global minimum.

III. T EMPLATE PROGRESSION

In this section we will detail a method of generating target
templates which are approximations of the true template. This
will allow us to make successive estimates beginning at smooth
approximation which will generally locate us near the global
optimum and refine that estimate with more detailed approxi-
mations of the template until a sufficiently accurate estimate of
the parameters is reached.
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TABLE I
VALUES OF ELEMENTS OFr

���
r̂(���) FOR 1095 ITERATIONS

We will generate a spectrum of templates, indexed byas
, ranging from a smooth template to the exact template

. We desire that the most smooth template
be monomodal to induce the behavior in the likelihood surface
which we discussed in Section II. A relatively simple choice of
this is a Gaussian blob matched (in the two-norm sense) in size
and amplitude to the original template given as

(11)

While successive estimation will locate us inside a “well of
attraction” of the global minimum where we will avoid local
minima, discontinuities in any template can yield discontinuities
on our surface. We therefore choose a method for generating
templates which in the continuous domain produces continuous
templates. A diffusion like process performs this adequately. We
specify the Fourier transform of a templateas

(12)

where and are the Fourier transforms of the exact and
most smooth templates, respectively.

A progression for the two peak template is shown in Fig. 2.
We see that at small values of, the template is a smooth ap-
proximation of the true template, asincreases, the true tem-
plate emerges. Associated with this are the likelihood surfaces
related to each template. Here we see that at small values of
, the surface is very smooth has no rotational localization and

a very broad scale localization. Asincreases, the ill-behavior
returns, but previous estimates place us within the area of the
global minimum, and our estimate becomes more accurate. The
final solution for the parameters will of course be a local min-
imum, but may not necessarily be the global minimum. As will
be shown later, the rate at which the templates evolve influences
the final outcome of the optimization. Slower-schedules as ex-
pected lead to more accurate estimates of the global minimum.

We can now describe a complete algorithm using the template
progression as

1. Begin at .
2. Construct with (12).
3. Minimize the likelihood surface con-
structed via the equations

(13)

(14)

(a)

(b)

Fig. 3. The curvature of the likelihood surface with respect tot for (a) size
estimates and (b) rotation estimates.

The minimization in (14) is performed via
a Newton algorithm given in Section IV.
4. Increase and proceed to step 2. The
-schedule should be chosen to take small

steps at low values of where the al-
gorithm is more sensitive to changes in
the likelihood surface. This agrees with
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(a) (b)

(c)

Fig. 4. The bounds upon the parameter estimates with respect to SNR for (a) size estimates, (b) rotation estimates, and (c) location estimates.

the observations in [16] for the method
of graduated nonconvexity and also demon-
strated in the analysis of the bounds on
estimation accuracy in Section V. In our
implementation, a small value is chosen
for the initial value of and it is dou-
bled for each subsequent . If a longer
schedule is desired, a smaller multiplier
is used.

IV. NEWTON ALGORITHM

The Newton algorithm [19] is used for the minimizations in
our paper. The Newton algorithm implemented here seeks to
minimize the squared error in the estimated image against the
data according to

(15)

where is the error image given as

(16)

The Newton iterative procedure produces updates of the param-
eter vector as [19]

(17)

with

(18)

where is the update vector for the parameter set,is the
Jacobian vector of the error function, and and are func-
tions of the Jacobian and Hessian that are described below.
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The Jacobian vector is the vector of first derivative functions
of the of the error as

(19)

(20)

The first term of (20) is directly computable from the template
function, however the second term is troublesome. The gradient

is not guaranteed to exist everywhere, and even if it
does exist, it cannot be calculated in closed form since
involves a maximization. Numerical computation of is
also complicated by the large granularity of image pixels with
respect to the usual size of . By this, we mean that if
we attempt to approximate an element of (for example

) by the relation

(21)

we find that the numerator is either zero (if the two estimates of
position are usually the same pixel), or arbitrarily large (if they
are different pixels) because is made small. Therefore we
used an alternative method to obtain a more accurate approx-
imation of the elements of . First we increase until

moved at least by a pixel and denoted this point by.
Similarly, we then find another point by decreasingand this
point is denoted by . The derivative is then approximated by

(22)

A similar approach was used to compute the remaining three
elements of , that is , , and

.
The disadvantage of this method is that it is computationally

intensive since we must calculate at many points. Using
this method, we find that the elements of the matrix
are typically two to three orders of magnitude smaller than

in (20). This is demonstrated by the figures
in Table I, which shows a comparison between the average
magnitude of and the elements of for
20 runs (1095 iterations) of the algorithm for the two-peak
example shown earlier. It is reasonable therefore to simplify
the calculation by eliminating this term, and using the approxi-
mation for the Jacobian given by

(23)

TheHessianof theerror, or thematrixofsecondderivatives, is

(24)

Similarly to the Jacobian, the terms of the Hessian which contain
the gradients of are usually not significant and can cause
computational problems, so we disregard those terms. The ap-

Fig. 5. Synthetic example. The two-peak target in 0 dB SNR. Accurate
parameter estimation was achieved in 24 iterations with four values oft.

proximate Hessian which we used is given by

(25)

The two matrices on the left hand side of (18) are computed
from the Jacobian and Hessian. The first is the inner product of
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Fig. 6. Scatter plots of estimations from 400 simulations of the two-peak example. The ellipse is drawn at 3 times the bounds around the exact parameters, and
is used to define “good” estimations.

the Jacobian with itself, and the second is given as the integral
of the Hessian components with the error. Therefore,

(26)

Specifying the elements of , by and the elements
of by we have

(27)

The Newton algorithm is then an iteration of (17) and (18)
until the likelihood as evaluated by (10) ceases to change sig-
nificantly. That is, while

(28)

for some small value of .

V. COMPUTING THE -SCHEDULE

In the last section we presented the Newton algorithm which
finds the minimum of the cost surface with respect to the pa-
rameters. The minimization is performed successively for many
values of . As explained earier, the values ofmust be chosen

to induce better behavior from the minimization. The better be-
havior is induced by smoothing, or flattenning, the surface about
the global minimum. The selection of the appropriate values of
has a direct affect upon the amount of computation and whether
the algorithm will converge to a local minimum or the global
minimum. It seems appropriate then to base the-schedule on
the expected value of the local curvature around the global min-
imum.

The expected local curvature at the minimum for any value of
can be approximated by the expected values of the elements

of the Hessian matrix [20]. The elements of the Hessian matrix,
with respect to the parameters, are given as

(29)

In Fig. 3, we plot the value of the local curvature with respect
to for the two-peaked target examined earlier. We see that the
value of the curvature is small for small value ofwhen the tem-
plate is a smooth approximate template. The curvature quickly
increases as is raised until it asymptotically approaches the
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Fig. 7. Scatter plots of estimations from 400 simulations of the two-peak example for two schedules, longer schedules result in fewer misses.

TABLE II
ESTIMATION ERRORS FORSIZE, ROTATION AND LOCATION

curvature of the exact template. For efficient and accurate esti-
mation, it is important that we step throughquickly, however,
if increases too rapidly then we are likely to end up in a local
minimum. At , the template is smoothest and the surface
is the most well behaved and has the broadest well around the
global minimum. The template must evolve in such a way that
the estimate remains within the well. Using the curvature as a
gauge of this well, we see that initially small changes inare
necessary so as not to too drastically change the surface. How-
ever as increases larger steps can be taken since the surface
evolves slower with respect to. Using this knowledge, we have
computed a geometric series for our-schedules in the examples
presented in this paper. This type of schedule is similar to that
used in the Graduated Non-Convexity approach in [15]–[17].

VI. PERFORMANCE ANDBOUNDS

Closely related to the curvature of the surface is the
Cramer-Rao bound on the variance of the parameter estimation.
The CRB for the estimates is arrived at by inverting the Fisher
information matrix, which is computed by evaluating the Hes-
sian as given above at . The CRB establishes the lower

Fig. 8. Estimation error for location for 400 simulations using the Fourier
Mellin Matched Filter and the current algorithm. The current algorithm
performs significantly better at low SNR values.

limit on the variance of the estimates for an unbiased estimator.
The CRB is only achievable for an unbiased estimator which
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(a) (b)

(c) (d)

Fig. 9. Infrared target example. (a) The template, (b) the data with estimated center location, (c) the estimated size at each iteration, and (d) the estimated rotation
at each iteration.

uses the sufficient statistic for the parameter to be estimated.
If such a statistic is not available, then the CRB cannot be
achieved. Nonetheless, it is useful to examine the lower limit
to the variance of the estimates

(30)

Then from the elements of the inverse of the information matrix
we have the lower bounds upon the variance of the parameter
estimations, as

(31)

(32)

(33)

In Fig. 4 we see the CRB versus noise. These behave as ex-
pected with exact estimation possible in the no noise case and
estimation performance degrading as noise increases.

VII. N UMERICAL EXPERIMENTS

In this section we present numerical experiments from the
proposed algorithm and performance comparisons with the
Fourier Mellin Matched Filter estimate [2]. We first present
a synthetic target estimation example using a Monte Carlo
simulation analysis. Then we show results of the proposed
algorithm when applied to infrared (IR) and optical images.

Fig. 5(a) shows the two-peak target shown earlier buried in
noise with 0 dB SNR. Fig. 5(b) and (c) show the estimates of
and at each iteration of the Newton algorithm. Here we used
a -schedule with four values, . We see here that
the algorithm converged to close to the true parameters in 25
iterations. The true parameters were a size of 1.0 and a rotation
angle of 0.25 the estimations converged to values of 0.9914 for
size and 0.2354 for rotation.
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Fig. 10. Optical example of a cup in a cluttered scene. (a) The data, (b) the template at estimated size, rotation and location, (c) the estimated size ateach iteration,
and (d) the estimated rotation at each iteration.

In Fig. 6, we show scatter plots of estimates from 400 simula-
tions of the two-peak example at varying signal to noise ratios.
The true parameters are a size of 0.5 and a rotation of 0.25. The
ellipses are used to show estimates which are “accurate”, that
is are close to the true parameters. The center of the ellipse is
at the true parameters and the ellipses are drawn at 3 times the
CRB computed from the equations in Section VI. The interiors
of these ellipses can be viewed as regions of sufficient confi-
dence in which “accurate” estimates of the parameters fall. We
observe that in (a)–(c), the number of estimates which are out-
side the ellipse, and are therefore considered misses, decreases.
The number of misses increases for the highest SNR because of
a bias in the size estimates which when combined with the tight-
ness of the CRB causes us to register more misses at high SNR
levels than may be warranted by the fact that these estimates are
close to the true parameters.

Table II summarizes the Monte Carlo runs of the example
just presented. Each line shows the result of 400 simulations
of the algorithm for a specific level of noise and-schedule.
The error in the estimates is composed of two components,
one caused by the variance of the local minimum around the
true parameters, and the second caused by the the algorithm
becoming trapped in a local minimum which is far from the

true parameters. The first type of error is bounded below by the
CR bounds, and in practice is usually so small as to effect the
target location estimation by less than one pixel. The second
type of error constitutes a catastrophic miss by the algorithm.
This error is demonstrated in Fig. 7 with a pair of Monte Carlo
runs at two different -schedules. From the first scatter plot,
we see that the majority of estimates are grouped around the
true parameters, but 35 of the estimates missed dramatically.
These are instances where the algorithm became caught in a
local minimum which was not the global minimum, and thus
resulted in an enormous error. The second scatter plot shows
the same Monte Carlo runs with a-schedule which has twice
as many stops and thus has twice the computational burden.
Here, the number of misses was reduced from 35 to 18. By
progressing through the-schedule at a slower rate, we can
reduce the chances of become trapped in a local minimum
at the expense of more computations.

In Fig. 8 the performance for these Monte Carlo runs is com-
pared with that of the Fourier Mellin Matched Filter [2]. The
plot shows the standard deviation of the error in the location
estimate versus SNR. We see that at high SNR, both methods
perform well, but as the SNR decreases then error in the FMMF
increases at a faster rate.
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Fig. 11. FMMF of the cup in a cluttered scene. The FMMF fails to accurately estimate the parameters.

Fig. 9 shows an example of estimating the size, rotation and
location of a vehicle in an IR image. Shown first is the target
template which we are using followed by the data image. Below
this is are the estimation values for size and rotation for each iter-
ation. The iterations are divided into several sections by vertical
dotted lines denoting the respective value offor each stage of
the algorithm. We can see that the algorithm converges in 60 it-
erations to values which upon matching the template to the data
appear to be appropriate. Also shown is the position estimate of
the target which also appears to be correct.

Fig. 10 shows an example with a real optical image. The first
image shows a cup in a simple background which is close to
white noise. The second image shows the estimated position of
the template with proper size and rotation. We see here that the
algorithm settled into this estimate after 42 iterations and that
it is an accurate estimate. In Fig. 11, we show the output of the
Fourier-Mellin matched filter which fails to isolate the true size
and rotation for this image. The performance of the FMMF is
degraded by the clutter in the scene. The FMMF operates across
the entire image while the template matching is isolated to the
support of the template.

The last topic of consideration is the ranges of scale and
rotation over which this algorithm converges to the proper
values. This would be highly dependent upon the shape of the
template, the resolution to which template data is available

TABLE III
TOTAL MISSES OUT OF20 MONTE CARLO SIMULATIONS OF ESTIMATING

SEVERAL SCALES AND ROTATIONS. PROPERESTIMATION WAS USUALLY

ACHIEVED FORSCALES DOWN TO 0.6,AND FOR ROTATIONS LESSTHAN 30

and the -schedule used. For the two-peak example used
in this paper, and the-schedule discussed earlier, we ran
Monte Carlo simulations of the convergence for values of
scale of and values of rotation of

. The noise variance was set to produce
a SNR of 10 dB across the support of the target. Table III
summarizes the results of this experiment as the number of
misses out of 20 simulations. The results show that the algo-
rithm converges to the proper parameters across a wide range
of values of the rotation and scale parameters. The algorithm
converges to the correct parameter for scale values down to 0.6
and the correct rotation. For values of rotation higher than,
the algorithm often converged to a local minimum around.
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Interestingly, the performance at higher rotations improves
for smaller scale objects. We believe that this is a result of
the smoothing operation. Since the smoothing is constant, the
relative amount of smoothing is greater for smaller objects. This
results in an effectively finer-schedule than the-schedule
for larger objects. We believe that if the-schedule were made
sufficiently fine, performance would improve for all areas of
Table III. However, this is part of the larger issue of optimal
-scheduling. This topic is beyond the scope of the paper, but

one which we intend to pursue in the future.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this work, we have examined the problem of finding a
target in a noisy image. Following in the work of Abu-Naser [1],
we represent the problem as an image restoration problem where
the object to be reconstructed is a delta function encoding the
target location and the blur is a target template. Previous work
showed that the restoration can be performed using a LLSE and
choosing the location of maximum response [1]. However, this
did not consider the problem of unknown geometric parame-
ters, i.e., the size and rotation of the target within the image.
To estimate size and rotation of the object, we choose to follow
the previous approach for location estimation and minimize the
negative of the likelihood function across size and rotation to
find the true parameters.

This approach was not amenable to minimization, however,
due to local minima and regions of zero derivative on the likeli-
hood surface. To overcome these difficulties, we present a new
method of generating a library of target templates which range
from smooth monomodal approximations to the exact target.
Using this library of templates, it is possible to sequentially es-
timate the parameter set using standard optimization tools.

Furthermore, since this method relies upon a functional de-
scription of the target template, we believe it to be extensible
to more complicated target detection problems. Three-dimen-
sional (perspective mappings of targets could be functionally
described, allowing us to locate a target under a three-dimen-
sional rotation. Also, since all targets degenerate to the same
template at the extremely smooth scale and the algorithm returns
a likelihood score as it converges toward the true parameters,
we could perform target classification by allowing our library to
branch toward several targets or target classes and pruning those
which score poorly. Overall, we believe this algorithm could be
extended for multiple target, multiple template recognition with
reasonable computational costs.
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