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Abstract

Restoration of tmage sequences is an important problem that can be encountered in many 1m-
age processing applications, such as, visual communications, robot guidance and target tracking.
The independent restoration of each frame in an image sequence is a suboptimal approach be-
cause the between-frame correlations are not explicitly taken into consideration. In this paper we
address this problem by proposing a multichannel restoration approach. The multiple time-frames
(channels) of the image sequence are restored simultaneously by using a multichannel regularized
least-squares formulation of the problem. The reqularization operator captures both within and
between-frame (channel) properties of the image sequence with the explicit use of the displacement
vector field. We propose a number of different approaches to obtain the multichannel regulariza-
tion operator, as well as, an algorithm to iteratively compute the restored tmages. We present

experiments that demonstrate the value of the proposed multichannel approach.
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1 Introduction

Degradation of image sequences can occur during the recording, sensing, transmission and storage
stages. Since the degraded sequence has lost information, a restoration process that will recover
some of the lost information can be very useful in many applications where such sequences are
used. Visual communications is probably the most prominent application that could benefit
directly from advances in image sequence restoration. However, many other applications where
image sequences are used can also benefit from the restoration results described in this work, as

for example, remote sensing, robot guidance and search/detection of targets.

Image sequences are signals with very strong temporal correlation. This temporal correlation
is an important defining feature of such signals, and has been used for their compact represen-
tation. Indeed for image sequence compression there is a wide consensus among researchers that
the between-frame correlation, which is captured by the displacement-vector-field (DVF), is an
indispensable feature [15] and [14]. Image restoration is an ill-posed problem; regularization has
to be used to ameliorate the effects of the noise and the ill-posed nature of the blurring operator
[19], [9] and [8]. Regularization refers to a class of methods according to which the image is
recovered using both the observed data and prior known properties of the original image. Since
image sequences exhibit strong temporal correlation, it is clear that this information must be

used in the regularization process of a restoration algorithm if optimal results are desired.

We define as multichannel tmages the multiple image planes (channels) obtained by an
imaging system that measures the same scene using multiple sensors. By definition multichannel
images exhibit strong between-channel correlations. Therefore, processing them as one entity is

very important because both the within and between-channel correlations are used. In the rest

of this paper we shall refer to this type of processing as multichannel.

Based on the previous definition, it is clear that image sequences are multichannel signals.
In this case the channels are the different time-frames of the sequence. Other examples of
multichannel images are multispectral/color images. In this case the channels are the different
spectral components red (R), green (G) and blue (B) of the color image. The literature of
multichannel restoration for multispectral/color images is quite mature. This problem was first
proposed in [10] where the separability of the spatial and spectral correlations was used in order
to derive multichannel linear minimum mean square error (LMMSE) filters. In [5], [6] and

[7] this separability assumption was relaxed and stochastic multichannel restoration filters were



proposed. In [7] and [21] regularization was used to obtain deterministic multichannel constrained
least squares (CLS) filters that avoid some of the difficulties of the stochastic filters in [5] and
[6]. Recently, constrained minimum mean square error (CMMSE) filters were also proposed in

[20] for this problem. The CMMSE formulation combines a stochastic LMMSE criterion with a

deterministic CLS error criterion.

Both color/multispectral and image sequences fall under the broad definition of multichannel
signals. However, for color/multispectral images the channels are registered, thus, the between-
channel correlation can be captured by a space-invariant regularization operator [5], [6], [7] and
[21]. In contrast, image sequences are not registered, furthermore, their between-channel correla-
tion (DVF) is space-variant. Therefore, their between-channel correlation cannot be captured by
a space-invariant regularization operator. If space-variant regularization is used the restoration
filter cannot be implemented in the discrete frequency domain using the algorithms in [5], [6], [17]
and [13]. In addition, since the DVF is not known a priori, the exact form of the regularization

operator is not known.

A first attempt to restore image sequences as multichannel signals can be found in [17]. For
this purpose multichannel LMMSE filters were proposed that assumed wuniform motion over the
entire image. This assumption bypassed the main difficulty of this problem and the proposed
multichannel filters were computed in closed form using the algorithms in [5], [7], [17] and [13].
However, this assumption is extremely limiting since image sequences with uniform motion are
encountered in few specialized applications. The multichannel approach was also used in [1] for
filtering motion compensated image sequences corrupted by Poisson noise. In [1] no blurring was

assumed and a stochastic solution approach was used.

In this paper we propose a family of least-squares multichannel restoration filters that use
a space-variant regularization operator to capture the between-channel correlations of image
sequences. This, gives us the capability to enforce smoothness both spatially and the temporal
direction and thus take full advantage of the available data. Although this seems to be a very
natural idea in the context of this problem, to the best of our knowledge, this is the first time
that it has been implemented. We provide numerical experiments that show beyond any doubt

that this idea works very well.

Since the DVF is unknown, an estimate is used to define the regularization operator. Such
estimates are initially obtained either from the noisy-blurred images directly, or from the re-

stored image sequences without motion compensation. These estimates can be further refined by



repeated steps of DVF estimation and multichannel restoration. As already mentioned above,
since a space-variant regularization operator is used, the algorithms proposed in [7], [17] and [13]
can not be used to compute the restored images in closed form. Thus, in this paper an iterative

algorithm is used for the implementation of the proposed multichannel restoration filters.

The rest of this paper is organized as follows. In section 2 we introduce notation and review the
theory of regularized least-squares restoration of multichannel images with registered channels.
This approach is extended in section 3 to image sequences. Image sequences are multichannel
images with non-registered channels. In section 3 we introduce a new multichannel regularization
operator that captures both the within-channel (spatial) and the between-channel (temporal)
properties of image sequences. In section 4 we propose an iterative algorithm for the computation
of the regularized least-squares solution and convergence issues of this algorithm are discussed.
In section 5 we present experimental results. Finally, in section 6 we present our conclusions

from this work.

2 Regularized Least Squares Multichannel Restoration

In this paper we assume a discrete linear imaging model with N channels. Such a model is
described by
g, = IfzfZ —I-TLZ', for i:1,2,---,N, (1)

where g;, f; and n; represent the lexicographically ordered :-th observed image, original image
and additive random noise, respectively, each a M2 x 1 vector, and H; denotes the linear spatially
invariant or spatially varying degradation operator. By stacking the M? x 1 vectors g;, f; and

n; we obtain
g1 S m
92 i L)
g = o, f = |, n = ) ) (2)
gn In nN
Thus Eq. (1) can be rewritten as
g = Hf + n, (3)

where

H= diag{Hl,Hg, e HN} (4:)
is the NM? x NM? multichannel degradation matrix and g, f and n denote the lexicographically

ordered multichannel vectors of size NM? x 1.



Using the constrained least squares regularization approach an estimate f is obtained by

minizing
N
[ 2
IE) = I — all” + [1QfIF, (3)
=1 7"
where H; = [0,---,0, H;,0,---,0] and ); represent the regularization parameter corresponding

to the ¢-th channel [7]. The multichannel estimate f is given in closed form by

f = (H'H + AQ'Q) H'g, (6)
with the matrix A defined as
I 0 0 0 ]
0 XI 0
A=1| 0 o0 0 , (7)
: : 0o . 0
0 - o 0 (D

where [I] are M? x M? identity matrices and Q is the multichannel regularization operator [7].
The role of Q is to enforce both within and between-channel smoothness in the restored image.

The values of the regularization parameters define the degree to which smoothness is enforced

[7].

For the multichannel restoration of R, G and B color images the 3-D weighted Laplacian
was used as the regularization operator in [7] and [21]. This operator assumes both spatial and

spectral smoothness of the original image and can be represented by the following block matrix

Qu Q12 Q3
Qs pwL = | Q21 @2 Q2 |. (8)
Qa1 Q32 Qa3

Since both spatial and spectral relations within channels are assumed to be space-invariant, the
submatrices @Q;; and @;; (¢ # 7) represent 2-D convolution with 3 x 3 masks ¢;; and g;; centered

at (0,0) and given respectively by

0 1 0 0 0 O
gz = |1 =6 11, g; = |0 =y 0, (9)
0 1 0 0 0 O
1, 7 = 1,2,3. The scalar z;; captures the between color channel intensity relation which is

assumed space-invariant [7] and [21]. Thus, when Q3_pwr, is applied to a multichannel image f



the result at the (¢, 7) spatial location in the I-th channel is equal to

[Qs_pwr ;= —6£(,5) + F/G—1,7) + fG+13) + f(,i—1) + F(E,5+1)
‘|‘$l,l—1fl_1(i7j) + ml,l-l-lfl-l—l(i;j); for 27.7 = 1727"'7M' (10)

The choice of the 3-D weighted Laplacian as a regularization operator for the color image
restoration problem is justified by the fact that the R, G, and B channels are completely regis-
tered. In other words, the (z,7) pixel in one channel corresponds to the (z,7) pixel in all other
channels. Therefore, a 3-D space-invariant operator like the 3-D weighted Laplacian captures

effectively both the within and between-channel relations of color images [7] and [21].

For N channels each of size M x M, when circulant convolution is assumed, QN_DWTL is a
NM? x M?N matrix. This matrix contains circulant submatrices @,; each of size M? x M? but
it is not circulant since Q;; # @itk j+k- For a realistic imaging problem, i.e. M=256 and N=3,
the size of the matrix that has to be inverted in Eq. (6) is 196,608 x 196,608. Matrices of this
size are too large to be handled even with present computer technology. Therefore, the special
structure of these matrices must be exploited in order to compute f from Eq. (6). In [7], [17]
and [13] a family of algorithms was proposed that allows the efficient closed form computation

of f from Eq. (6) in the discrete frequency domain.

3 Multichannel Regularization of Image Sequences

In image sequences, pixel (z,7) in one frame does not necessarily correspond to pixel (z,7) in
the neighborhood frames. Assuming integer motion, pixel (z,7) in frame ({) will correspond to
pixel (7 + mg’_ji,l), 7+ ng_ql)) in frame (I — 1), where the integer (mg’_ji,l), ng_ql)) express the
horizontal and vertical motion between the (I — 1) and (I)-th frames, respectively, at the (z,7)
spatial location. Using a similar notation the correspondence of pixel (7, j) in frame () and ({+1)

can be expressed. In Figure I this between-frame correspondence is shown pictorially.

Furthermore, in real image sequences the motion is not space-invariant. In other words,
the vector (mgﬂ,l), ng_ql)) changes from pixel-to-pixel. Thus, the between-channel smoothing
operators Q,; for ¢ # j used for R, G, B color images and described by Eq. (10) are not
appropriate for the image sequence restoration problem because they fail to capture the space-

variant nature of the motion.



For this purpose we propose a new regularization operator called the N-D motion compensated
Laplacian (MCL). For N = 3 this operator, as the previously defined Qs_pwr, is a 3M? x 3M?
block-matrix and is denoted by Q3z_pmc1L. The application of this operator to a multichannel
image f is described by

[Qs_pmor ', = —6f£(,5) + fG—1,5) + fG+1,5) + fG5-1) + £E5+1)

+ 1 (2 + mgﬂ,z),j + ngfiz)) + (2 + mgﬂ,z),j + ngﬁz)) , (11)
where [ is again the channel index, (7, ) denotes the spatial location and (mgﬂ,l), ng_i?cl)) for
k = —1,1 represent the DVF between [ and (I + k)-th frames at the spatial location (7, 7). From
the definition of Q3_pmct in Eq. (11) it is clear that this operator first compensates for the

motion between-frames and then enforces both within and between-channel smoothness.

The operator Q3_pmcL is a block matrix that can also be described by Eq. (8). However, in
the case of Qs_pmcI, submatrices Q;; for = # 7 are not circulant. Thus, direct computation of
f from Eq. (6) is impossible since the frequency domain techniques described in [7] and [13] are
not applicable and direct inversion of the matrix (H*H + AQ!Q) is required. In what follows

an iterative method is proposed for the computation of f.

~

4 An Iterative Algorithm to Compute f

The restored image f is the solution of the linear system of equations
(H'H + AQ!Q)f = H'g. (12)

The direct computation of f from Eq. (12) is not possible since for Q = Q3_pmcrL the ma-
trix A = H*H + AQ'Q does not have a special structure that will allow for its inversion, as
in the multichannel color image case. However, since it is possible to compute the product

(H'H + AQ!Q)y where y is a known vector iterative methods can be used to solve Eq. (12).

The product (H*H + AQ!Q)y can be broken into H'Hy + AQ!Qy. The first term is
straightforward to compute. For the second term we need to compute both Qy and Qtz where

z = Qy. For Q = Qs_pmcrL from Eq. (11) we can write

[Qs_pmor Yoy = [-49'6Gd) + (= 1,5) + ¥ G+ 1,5) + v'(hi—1) + ¢G5+ 1))
+ [yl_l (2 + mgﬂ,z),j + ngfiz)) - yl(i;j)] + [?/IH (2 + mgﬂ,z),j + ngﬁz)) - yl(i;j)] (13)

10



The terms inside the first bracket of the right hand side of Eq. (13) is the convolution of each
channel of y' with the 2-D Laplacian operator. The terms inside the second and third brackets
represent the motion compensated prediction errors between the pair of frames (I — 1,1) and
(I 4 1,1), respectively. The multichannel regularization matrix used in this paper is symmetric,
i.e. Qs_DMCL = Q3T—DMCL- Thus, Qtz can be computed similarly as Qy. In Appendix A we

elaborate in detail on the assumptions that yield this symmetry.

The successive approximations based iteration [18] for solving Eq. (12) is given by

~

fo = o0 (14)
fii = fi + o Hg — (H'H + AQ'Q )fy ), (15)

where «, the relazation parameter, is a scalar that controls the convergence properties of this
iteration. It is easy to check that a stationary point of this iteration satisfies Eq. (12). However,
in order for an iteration to have a unique stationary point the mapping defined by this iteration

must be a contraction mapping [16].

With A = H*H + AQ'Q and ||.|| the I, norm one can show, see for example [18] and [12],
that Eq. (15) is a contraction mapping when

I - aAll < 1. (16)

Since A is a symmetric and positive definite matrix, the inequality in Eq. (16) is satisfied if
Almax < 27 (17)

where fmq; 1s the largest eigenvalue of A. Therefore, the bounds for « in order to ensure the

convergence of the iteration in Eq. (15) are given by

0 < a <

(18)

Hmazx

Because of the size and structure of A in our application, the analytic computation of pmee
is not feasible. Therefore, we use a method based on the Rayleigh quotient iteration to compute

Pmaz numerically [3].

Consider the iteration

Xk_|_1 = B)(k7 for k= 0, 1, 2... (19)

11



where B is a symmetric K x K matrix, and the ratio

' (Xk-l-l )th

By = NCAD A (20)

where * denotes the transpose of a vector and X, any vector € R* which is not an eigenvector of
B or the zero-vector. Then, it can be shown that for £k — o0 , gy, — lmaz, Where pmqa, is the
largest in magnitude eigenvalue of B [3]. Furthermore, it can be shown that p'y > tmasz, VE [3].

If the value of the relaxation parameter used in Eq. (15), is chosen as

2

Oé:—,
I
Hg

(21)

for some large k, then this value always satisfies the bounds of Eq. (18).

5 Experiments

Experiments were performed to test the proposed iterative multichannel restoration algorithm.
Ten frames (each of size 256 x 256) from the ”Trevor White” sequence were used as test images.
The results obtained with the proposed algorithm are compared with the results obtained by
restoring each frame separately (henceforth referred to Model 0). The single channel version of
Eq. (6) was used with Q, the 2-D Laplacian. In order to apply iteration in Eq. (15) the DVF
needs to be estimated first. Four different approaches were used for this task. Each of these
approaches, along with iteration in Eq. (15), is henceforth referred to as Model 1 - Model 4.
More specifically :

(1) Model 1 : The DVF was estimated directly from the degraded images.
(2) Model 2 : The DVF was estimated from the images restored by Model 0.
(3) Model 3 : The DVF was estimated from the images restored by Model 2.

(4) Model 4 : The original image sequence is used to obtain the DVFs. This model is used

to test the upper bound of performance of the proposed multichannel restoration algorithm.

For Models 1, 2 and 3 the DVF is computed from either the degraded or the restored images.
Since pel-recursive algorithms are more sensitive to artifacts in the degraded or the restored

images, a block search algorithm (BSA) was used to estimate the between-channel DVFs. The

12



motion vector at pixel (7,j) between frames, [ and k, was found by matching a 5 x 5 window
centered at pixel (¢,7) of frame [ to a 5 x 5 window in frame k. An exhaustive search over 31 x 31
area centered at pixel (¢,7) of frame k was used and the matching metric was the sum of the

squared errors.

It is clear that the more strongly-correlated channels are available the better the restoration
results, if a multichannel approach is used. However, as a general rule, as the time separation
between frames in an image sequence increases, the correlation between-frames decreases. Thus,
it is expected that after a certain number of frames the improvements due to the inclusion of
additional frames diminish. In addition to this, the computational cost of the proposed algorithm
for N channels is proportional to N3. Taking all the above considerations into account N = 5

was chosen for our experiments.

Two experiments are presented in this paper (more experiments can be found in [2] and
[4]). In the experiments presented in this paper all five models were tested and compared. The

variance of the noise added to the blurred data is defined using the blurred signal-to-noise ratio

(BSNR) metric which is given by

S 2
|Hf — Hf|
Mz202

where o2 is the variance of the additive noise, M? is the total numbers of pixel in the image, and

BSNR = 10log,, dB, (22)

Hf is the spatial mean of the blurred image Hf. As an objective measure of performance of
the restoration algorithms the improvement signal-to-noise ratio (/SN R) metric was used. This
metric is defined by

2
ISNR = 1010g10MdB, (23)
1f = flI

where f, ¢ and f are the original image, the degraded image and the restored image, respectively.
In all experiments the relaxation parameter o was obtained numerically using the Rayleigh
quotient based method described in section 4. The value of each of the regularization parameters

-1
A; was chosen to be equal to (10351@”2) [7], [21]. To restore all ten frames of the image sequence

six five-channel multichannel filters were used. Except for the first and last two frames of the
sequence a five-channel non-causal filter was used to restore each frame. This filter used both

the two previous and the two following frames of the frame under restoration.
Experiment [

In this experiment ten frames (frames 41-50) of the Trevor White sequence were blurred by

13



an 11 x 11 uniform blur. The point spread function of this blur is given by

L i 5<4,5<5

) = { g (24)

otherwise.
Cases (i), and (%) corresponding to 10 and 30 dB BSN R respectively of additive white Gaussian
noise were examined. In Figures 2, 5 and 11 ISNR plots are shown, while in Figures 3, 6 and

12 the displaced-frame difference (DF D) is shown for both cases. The DF D is defined as

_ £ — i II?

where M? is the total numbers of pixel in the image, and fk’ is the motion compensated estimate

of frame fi using all the DVFs used for the restoration of the frame f;. For example, for N = 5,
Coo1 g | |
fi = Z[fj(J D4 £ 4 [ 4 ) (26)

where fj(i) is the motion compensated estimates of f; using frame ¢ and the DVF between frames

1 and 7.

In Figures 8, 9 and 10 the 8 frame of this experiment is shown for cases (z) and (:2). The
original and the degraded images are shown in Figure 8. In Figures 9 and 10 the restored images

from this experiment are shown.

The DF D plots for this experiment when compared with the ISNR plots clearly point out
that the more accurate the motion estimation the better the restoration. From the ISNR and
the DF D plots it is also clear that for both cases BSNR (10, 30 dB) estimating the motion from
the restored images (Models 2 and 3) is clearly superior to using the degraded images directly

(Model 1). This can also be verified by visually inspecting the restored images in Figures 9(b)
and 9(c).

Needle plots for DVF are shown to visualize the actual motion estimates for the 10 dB and
30 dB noise cases in Figure 4 and 7, respectively. At this point we have to make an important
observation that was brought up during the review process. Finding the motion of a scene is a
very ill-posed problem. Therefore, from the degraded or the restored frames available, we have
no hope in estimating accurately the motion in this scene, see for example the needle plots in
Figure 4(a) and 7(a). Even with the original image, the block matching algorithm that we use
does not provide a good estimate of the motion field of this scene, see Figure 4(d). However, for

our application we do not need a good motion field estimate what we need is an approzimate

14



direction of temporal correlation. This, we can get from the degraded or restored images available
using a full search block matching algorithm for each pixel. The DF D results shown in Figure

& and 6. confirm this observation.
Experiment I

In this experiment the same ten frames as in Experiment I were used. However, this time
each frame was blurred by a different size blur simulating the blur that would occur by the
accelerating-decelerating motion of a recording camera. Uniform horizontal motion blurs of size
3x1,5x1,7x1,9%x1,11x1,11x1,9x1,7x1,5x%x1and 3 x 1 were used to blur frames
1, 2, 3, 4,5, 6, 7, 8 9, and 10 respectively. 30 dB BSNR of additive white Gaussian noise
was examined. In Figure 11 the ISN R results from this experiment are plotted. In Figure 12
the DF D plots are given. Original and degraded images are shown in Figure 13, while restored

images from this experiment are shown in Figure 14.

In both of our experiments we observed that the value of the relaxation parameter decreased
as the BSNR increases (see for example the o values in Figures 2 and 5). This is explained by
the fact that since QtQ is a possitive definite matrix the value of the largest eigenvalue fimag of
the matrix A = H*H+ AQ'Q increases with A. Furthermore, a is inversely proportional t0 fimag-
We also observed that the number of iterations required to find the stationary point of Eq. (15)
increases as the BSN R increases. For example, in experiment I in the case of BSNR = 10 dB,
40 iterations were required whereas in case of BSNR = 30 dB, 110 iterations were required.
This can be explained by the fact that the condition number of the matrix A given by the ratio
ﬁ where fmin and fme, are the smallest and largest eigenvalues of A, respectively, decreases
as A increases. Larger values of A corresponds to more regularization, in other words, a better

conditioned matrix A. However, it is well known that the smaller the condition number of a

matrix the faster the successive approximation iterations given by Eq. (15) converge [3].

6 Conclusions

In this paper multichannel least squares filters were used for the regularized restoration of image
sequences. It was found that the multichannel filters which enforce both spatial and temporal
smoothness along the direction of the motion give by far superior results both visually and using

a mean square error metric, over the single-channel restoration filters that only enforce spatial

15



smoothness. Our experiments also demonstrated that the accuracy with which the direction
of the temporal correlation can be found is crucial to the quality of the multichannel restored
images. We also found that if the direction of the temporal correlation is found from the original
sequence (even with the integer motion assumption) the multichannel restored image (Model 4)

for BSN Rs ranging from [10 and 30] dB is almost identical to the original image.
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8 Appendix A

In this appendix the assumptions that result in a symmetric multichannel regularization operator
Qs_pnmcL as discussed. To simplify notation and without loss of generality N = 3 is used. Then,
this operator Qs_pmcrL is given by
Q M MG
Qs-pmcr = | Mj,; Q M, |, (27)
M MU Q
where all the entries of the right-hand-side for M x M images are M? x M? matrices. Q is the

matrix that represents the convolution of a M x M image with the kernel

0 1 0
q=|1 -6 1], (28)
0 1 0

and M; form =1—1,[,14 1 are the motion compensation matrices. In other words,
X; = MIX; (29)

where X; is the motion compensated estimate of frame 2 when frame j is used. Q is symmetric
since it represents a convolution with a symmetric kernel. Furthermore, we will demonstrate
using an example that

T

MY = M! (30)

Assuming perfect motion compensation the two frames z and ;7 are related via the following
matrix-vector equation.

X; = MX,. (31)

To better illustrate the properties of matrix M;-, without loss of generality we show a simple

2 X 2 image.

The assumption that is made in this paper is that the same pixel from frame ;7 cannot be used
to compensate more than one pixel of frame 2. Using the lexicographic ordering the following
equation is an example of what this assumption would imply for matrix M; For this example
Eq. (31) in detail gives

X,(1,1) 01 0 07/ X,(1,1)
X;(2,1) | |00 1 0[] X201 (32)
X(1,2) | T |10 0 0[] X41,2)
X(2,2) 000 1]][X,22)



This assumption yields an M; which is an indicator matriz of full rank. Thus, the following

equation holds
(M:) M = L (33)
Then, from Eq. (31) and (33) we get
AT
X; = (M) X.. (34)

T ,
in other words, (M;) =M. Therefore, Q3—DMCL:QE—DMCL- This assumption is without
doubt limiting, however, it greatly simplifies the calculation of the filter.

References

[1] C. L. Chan, A. K. Katsaggelos and A. V. Sahakian, Image Sequence Filtering in Quantum-
Limited Noise with Applications to Low-Dose Fluoroscopy, IEEE Trans. on Medical Imaging,
Vol. 12, No. 3, Sept. 1993, pp. 610-621.

[2] Mun Gi Choi, Multichannel Regularized Iterative Restoration of Image Sequences, M.S.
Thesis, lllinois Institute of Technology, Chicago, IL, August 1993.

[3] S. D. Conte and C. de Boor, Elementary Numerical Analysis, McGraw-Hill Book Company
1980.

[4] Ozan E. Erdogan, A Multichannel Regularized Iterative Algorithm for the Restoration of
Noisy and Blurred Image Sequences, M.S. Thesis, Northwestern University, Evanston, IL,
June 1993.

[5] N. P. Galatsanos and R. T. Chin, Digital Restoration of Multichannel Images, IEEE Trans.
Acoustics, Speech and Signal Processing, Vol. 37, No. 3, March 1989.

[6] N. P. Galatsanos and R. T. Chin, Restoration of Color Images by Multichannel Kalman
Filtering, IEEE Trans. Signal Processing, vol. ASSP-39, no. 10, Oct. 1991, pp. 2237-2252.

[7] N.P. Galatsanos, A. K. Katsaggelos, R. T. Chin and A. D. Hillery, Least Squares Restoration
of Multichannel Images, IEEE Trans. Signal Processing , Vol. 39, No. 10, Oct. 1991, pp.
2222-2236.

18



8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

N. P. Galatsanos, and A. K. Katsaggelos, Methods for Choosing the Regularization Param-
eter and Estimating the Noise variance in Image Restoration and their Relation, IEEE
Trans. on Image Processing, Vol. 1, No. 3, July 1992, pp. 322-336.

B. R. Hunt, The Application of Constrained Least Squares Estimation to Image Restoration
by Digital Computer, IEEE Trans. Computers, Vol. 22, No. 9, Sept. 1973, pp. 805-812.

B. R. Hunt and O. Kubler, Karhunen-Loeve Multispectral Image Restoration, Part I: The-
ory, IEEE Trans. Acoustics, Speech and Signal Processing, Vol. ASSP-32, No. 3, June 1984,
pp. 592-600.

A. K. Katsaggelos, Iterative Image Restoration Algorithms, Opt. Eng., vol. 28, no. 7, July
1989, pp. 735-748.

A. K. Katsaggelos, J. Biemond, R. W. Schafer and R. M. Mersereau, A Regularized Iterative
Image Restoration Algorithm, IEEE Trans. Signal Processing , Vol. 39, No. 4, April 1991,
pp. 914-929.

A. K. Katsaggelos, K. T. Lay, and N. P. Galatsanos, A General Framework for Frequency
Domain Multichannel Signal Processing, IEEE Trans. Image Proc., vol. 2, no. 3, July 1993,
pp- 417-420.

D. LeGall, MPEG-A Video Compression Standard for Multimedia Applications, Communi-
cations of the ACM, Vol. 34, No. 4, April 1991, pp. 46-58.

H. Musmann, P. Pirsch, H. Grallert, Advances in Picture Coding, Proc. IEEE, April 1985,
pp- 523-542.

J. M. Ortega and W.C. Rheindoldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, 1970.

M. K. Ozkan, A.T. Erdem, M. I. Sezan and A. M. Tekalp, Efficient Multiframe Wiener
Restoration of Blurred and Noisy Image Sequences, IEEE Trans. Image Processing, Vol. 1,
No. 4, Oct. 1992, pp. 453-476.

R. W. Schafer, R. M. Mersereau and M. A. Richards, Constrained Iterative Restoration
Algorithm, Proc. of IEEFE, vol. 69, April 1981, pp. 432-450.

A. Tikhonov and V. Arsenin, Solution of Ill-Posed Problems, John Wiley and Sons, 1977.

19



[20] M. E. Zervakis, Optimal restoration of multichannel images based on constrained mean
square estimation, Journal of Visual Communication and Image Representation, Vol. 3, No.

4, Dec. 1992, pp. 392-411.

[21] W. Zhu, N. P. Galatsanos and A. K. Katsaggelos, Regularized Multichannel Restoration
using Cross-Validation Graphics Models and Image Processing, Vol. 57, No. 1, Jan. 1995,
pp- 38-54.

20



FEG 4G5+ i)

F7H(5,9) o (I-1)-frame

FHE,7) ¢ (I)-frame

-
,
S

FHL(4,5) ',/f’“.(i 1+ m((ziﬂ)’j + n((,’jz (I4+1)-frame

NN N

Figure 1: Between-Frame Pixel Correspondence in Image Sequences.
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Figure 2 : ISNR plots ; Experiment I, case (i) : BSNR = 10 dB,
11 x 11 blur, @ = 0.1 and A = 0.1.
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Figure 3 : DFD plots ; Experiment I, case (z) : BSNR = 10 dB,
11 x 11 blur, @ = 0.1 and A = 0.1.
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Figure 4 : (a) Experiment I case (¢), DVF plots between twy047 and twy048 frames,
(a) using Model 1, (b) using Model 2, (c) using Model 3, and (d) using Model 4.
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Figure 5 : ISNR plots ; Experiment I, case (iz) : BSNR = 30 dB,
11 x 11 blur, @ = 2.0 and A = 0.001.
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Figure 6 : DFD plots ; Experiment I, case (:2) : BSNR = 30 dB,
11 x 11 blur, @ = 2.0 and A = 0.001.
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Figure 7: (a) Experiment I case (22), DVF plots between twy047 and twy048 frames,
(a) using Model 1, (b) using Model 2, (c) using Model 3, and (d) using Model 4.
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Figure 8 : (a) Original Image(twy048), (b) Experiment I case (2): Degraded image,
with 11 x 11 blur and 10 dB of BSNR additive noise. (c) Experiment I case (72):
Degraded image, with 11 x 11 blur and 30 dB of BSN R additive noise.
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Figure 9 : (a) Experiment I case (2), restored images, (a) using Model 0, (b) using
Model 1, (c) using Model 3, and (d) using Model 4.
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Figure 10 : (a) Experiment I case (21), restored images, (a) using Model 0, (b) using
Model 1, (c) using Model 3, and (d) using Model 4.
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Figure 11 : ISNR plots ; Experiment I] : BSNR = 30 dB, variable
zooming/panning with 11 x 1 motion blur, @ = 2.0 and A = 0.001.
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Figure 12 : DFD plots ; Experiment I] : BSNR = 30 dB, variable
zooming/panning with 11 x 1 motion blur, @ = 2.0 and A = 0.001.
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Figure 18 : (a) Original Image(twy046), (b) Experiment I1 : Degraded
image, 11 x 1 motion blur, and 30 dB of BSNR, a = 2.0 and A = 0.001.
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Figure 14 : Experiment Il : restored images, (a) using Model 0,
(b)using Model 1, (c) using Model 3, and (d) using Model 4.
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