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Abstract

Restoration of image sequences is an important problem that can be encountered in many im�

age processing applications� such as� visual communications� robot guidance and target tracking�

The independent restoration of each frame in an image sequence is a suboptimal approach be�

cause the between�frame correlations are not explicitly taken into consideration� In this paper we

address this problem by proposing a multichannel restoration approach� The multiple time�frames

�channels� of the image sequence are restored simultaneously by using a multichannel regularized

least�squares formulation of the problem� The regularization operator captures both within and

between�frame �channel� properties of the image sequence with the explicit use of the displacement

vector �eld� We propose a number of di�erent approaches to obtain the multichannel regulariza�

tion operator� as well as� an algorithm to iteratively compute the restored images� We present

experiments that demonstrate the value of the proposed multichannel approach�
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� Introduction

Degradation of image sequences can occur during the recording� sensing� transmission and storage

stages� Since the degraded sequence has lost information� a restoration process that will recover

some of the lost information can be very useful in many applications where such sequences are

used� Visual communications is probably the most prominent application that could bene�t

directly from advances in image sequence restoration� However� many other applications where

image sequences are used can also bene�t from the restoration results described in this work� as

for example� remote sensing� robot guidance and search�detection of targets�

Image sequences are signals with very strong temporal correlation� This temporal correlation

is an important de�ning feature of such signals� and has been used for their compact represen�

tation� Indeed for image sequence compression there is a wide consensus among researchers that

the between�frame correlation� which is captured by the displacement�vector��eld �DVF� is an

indispensable feature ��	� and ����� Image restoration is an ill�posed problem� regularization has

to be used to ameliorate the e�ects of the noise and the ill�posed nature of the blurring operator

����� ��� and ���� Regularization refers to a class of methods according to which the image is

recovered using both the observed data and prior known properties of the original image� Since

image sequences exhibit strong temporal correlation� it is clear that this information must be

used in the regularization process of a restoration algorithm if optimal results are desired�

We de�ne as multichannel images the multiple image planes �channels obtained by an

imaging system that measures the same scene using multiple sensors� By de�nition multichannel

images exhibit strong between�channel correlations� Therefore� processing them as one entity is

very important because both the within and between�channel correlations are used� In the rest

of this paper we shall refer to this type of processing as multichannel�

Based on the previous de�nition� it is clear that image sequences are multichannel signals�

In this case the channels are the di�erent time�frames of the sequence� Other examples of

multichannel images are multispectral�color images� In this case the channels are the di�erent

spectral components red �R� green �G and blue �B of the color image� The literature of

multichannel restoration for multispectral�color images is quite mature� This problem was �rst

proposed in ���� where the separability of the spatial and spectral correlations was used in order

to derive multichannel linear minimum mean square error �LMMSE �lters� In �	�� ��� and

��� this separability assumption was relaxed and stochastic multichannel restoration �lters were

	



proposed� In ��� and ���� regularization was used to obtain deterministicmultichannel constrained

least squares �CLS �lters that avoid some of the di�culties of the stochastic �lters in �	� and

���� Recently� constrained minimum mean square error �CMMSE �lters were also proposed in

���� for this problem� The CMMSE formulation combines a stochastic LMMSE criterion with a

deterministic CLS error criterion�

Both color�multispectral and image sequences fall under the broad de�nition of multichannel

signals� However� for color�multispectral images the channels are registered� thus� the between�

channel correlation can be captured by a space�invariant regularization operator �	�� ���� ��� and

����� In contrast� image sequences are not registered� furthermore� their between�channel correla�

tion �DVF is space�variant� Therefore� their between�channel correlation cannot be captured by

a space�invariant regularization operator� If space�variant regularization is used the restoration

�lter cannot be implemented in the discrete frequency domain using the algorithms in �	�� ���� ����

and ����� In addition� since the DVF is not known a priori� the exact form of the regularization

operator is not known�

A �rst attempt to restore image sequences as multichannel signals can be found in ����� For

this purpose multichannel LMMSE �lters were proposed that assumed uniform motion over the

entire image� This assumption bypassed the main di�culty of this problem and the proposed

multichannel �lters were computed in closed form using the algorithms in �	�� ���� ���� and �����

However� this assumption is extremely limiting since image sequences with uniform motion are

encountered in few specialized applications� The multichannel approach was also used in ��� for

�ltering motion compensated image sequences corrupted by Poisson noise� In ��� no blurring was

assumed and a stochastic solution approach was used�

In this paper we propose a family of least�squares multichannel restoration �lters that use

a space�variant regularization operator to capture the between�channel correlations of image

sequences� This� gives us the capability to enforce smoothness both spatially and the temporal

direction and thus take full advantage of the available data� Although this seems to be a very

natural idea in the context of this problem� to the best of our knowledge� this is the �rst time

that it has been implemented� We provide numerical experiments that show beyond any doubt

that this idea works very well�

Since the DVF is unknown� an estimate is used to de�ne the regularization operator� Such

estimates are initially obtained either from the noisy�blurred images directly� or from the re�

stored image sequences without motion compensation� These estimates can be further re�ned by
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repeated steps of DVF estimation and multichannel restoration� As already mentioned above�

since a space�variant regularization operator is used� the algorithms proposed in ���� ���� and ����

can not be used to compute the restored images in closed form� Thus� in this paper an iterative

algorithm is used for the implementation of the proposed multichannel restoration �lters�

The rest of this paper is organized as follows� In section � we introduce notation and review the

theory of regularized least�squares restoration of multichannel images with registered channels�

This approach is extended in section � to image sequences� Image sequences are multichannel

images with non�registered channels� In section � we introduce a new multichannel regularization

operator that captures both the within�channel �spatial and the between�channel �temporal

properties of image sequences� In section � we propose an iterative algorithm for the computation

of the regularized least�squares solution and convergence issues of this algorithm are discussed�

In section 	 we present experimental results� Finally� in section � we present our conclusions

from this work�

� Regularized Least Squares Multichannel Restoration

In this paper we assume a discrete linear imaging model with N channels� Such a model is

described by

gi � Hifi � ni� for i � �� �� � � � � N� ��

where gi� fi and ni represent the lexicographically ordered i�th observed image� original image

and additive random noise� respectively� each aM��� vector� and Hi denotes the linear spatially

invariant or spatially varying degradation operator� By stacking the M� � � vectors gi� fi and

ni we obtain

g �

�
�����
g�
g�
���
gN

�
����� � f �

�
�����
f�
f�
���
fN

�
����� � n �

�
�����
n�
n�
���
nN

�
����� � ��

Thus Eq� �� can be rewritten as

g � Hf � n� ��

where

H � diagfH��H�� � � � HNg ��

is the NM��NM� multichannel degradation matrix and g� f and n denote the lexicographically

ordered multichannel vectors of size NM� � ��
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Using the constrained least squares regularization approach an estimate �f is obtained by

minizing

J�f �
NX
i��

�

�i
jjH if � gijj

�
� jjQf jj�� �	

where H i � ��� � � � � ��Hi� �� � � � � �� and �i represent the regularization parameter corresponding

to the i�th channel ���� The multichannel estimate �f is given in closed form by

�f � � HtH � �QtQ 
��
Htg� ��

with the matrix � de�ned as

� �

�
���������

���I� � � � � � �

� ���I� � � � �
���

� �
� � � �

���
���

��� �
� � � �

� � � � � � � � �N �I�

�
���������
� ��

where �I� are M� �M� identity matrices and Q is the multichannel regularization operator ����

The role of Q is to enforce both within and between�channel smoothness in the restored image�

The values of the regularization parameters de�ne the degree to which smoothness is enforced

����

For the multichannel restoration of R� G and B color images the ��D weighted Laplacian

was used as the regularization operator in ��� and ����� This operator assumes both spatial and

spectral smoothness of the original image and can be represented by the following block matrix

Q��DWL �

�
�� Q�� Q�� Q��

Q�� Q�� Q��

Q�� Q�� Q��

�
�� � ��

Since both spatial and spectral relations within channels are assumed to be space�invariant� the

submatrices Qii and Qij �i �� j represent ��D convolution with �� � masks qii and qij centered

at ���� and given respectively by

qii �

�
�� � � �
� �� �
� � �

�
�� � qij �

�
�� � � �
� xi�j �
� � �

�
�� � ��

i� j � �� �� �� The scalar xi�j captures the between color channel intensity relation which is

assumed space�invariant ��� and ����� Thus� when Q��DWL is applied to a multichannel image f
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the result at the �i� j spatial location in the l�th channel is equal to

�Q��DWL f �l�i�j� � ��f l�i� j � f l�i� �� j � f l�i� �� j � f l�i� j � � � f l�i� j � �

�xl�l��f
l���i� j � xl�l��f

l���i� j� for i� j � �� �� � � � �M� ���

The choice of the ��D weighted Laplacian as a regularization operator for the color image

restoration problem is justi�ed by the fact that the R� G� and B channels are completely regis�

tered� In other words� the �i� j pixel in one channel corresponds to the �i� j pixel in all other

channels� Therefore� a ��D space�invariant operator like the ��D weighted Laplacian captures

e�ectively both the within and between�channel relations of color images ��� and �����

For N channels each of size M �M � when circulant convolution is assumed� QN�DWL is a

NM��M�N matrix� This matrix contains circulant submatrices Qij each of sizeM��M�� but

it is not circulant since Qij �� Qi�k�j�k� For a realistic imaging problem� i�e� M��	� and N���

the size of the matrix that has to be inverted in Eq� �� is ������� � �������� Matrices of this

size are too large to be handled even with present computer technology� Therefore� the special

structure of these matrices must be exploited in order to compute �f from Eq� ��� In ���� ����

and ���� a family of algorithms was proposed that allows the e�cient closed form computation

of �f from Eq� �� in the discrete frequency domain�

� Multichannel Regularization of Image Sequences

In image sequences� pixel �i� j in one frame does not necessarily correspond to pixel �i� j in

the neighborhood frames� Assuming integer motion� pixel �i� j in frame �l will correspond to

pixel �i �m
�i�j�
�l���l�� j � n

�i�j�
�l���l� in frame �l � �� where the integer �m�i�j�

�l���l�� n
�i�j�
�l���l� express the

horizontal and vertical motion between the �l � � and �l�th frames� respectively� at the �i� j

spatial location� Using a similar notation the correspondence of pixel �i� j in frame �l and �l��

can be expressed� In Figure � this between�frame correspondence is shown pictorially�

Furthermore� in real image sequences the motion is not space�invariant� In other words�

the vector �m
�i�j�
�l���l�� n

�i�j�
�l���l� changes from pixel�to�pixel� Thus� the between�channel smoothing

operators Qij for i �� j used for R� G� B color images and described by Eq� ��� are not

appropriate for the image sequence restoration problem because they fail to capture the space�

variant nature of the motion�
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For this purpose we propose a new regularization operator called the N�D motion compensated

Laplacian �MCL� For N � � this operator� as the previously de�ned Q��DWL is a �M� � �M�

block�matrix and is denoted by Q��DMCL� The application of this operator to a multichannel

image f is described by

�Q��DMCL f �l�i�j� � ��f l�i� j � f l�i� �� j � f l�i� �� j � f l�i� j � � � f l�i� j � �

� f l��
�
i�m

�i�j�
�l���l�� j � n

�i�j�
�l���l�

�
� f l��

�
i�m

�i�j�
�l���l�� j � n

�i�j�
�l���l�

�
� ���

where l is again the channel index� �i� j denotes the spatial location and �m�i�j�
�l�k�l�� n

�i�j�
�l�k�l� for

k � ��� � represent the DVF between l and �l� k�th frames at the spatial location �i� j� From

the de�nition of Q��DMCL in Eq� ��� it is clear that this operator �rst compensates for the

motion between�frames and then enforces both within and between�channel smoothness�

The operator Q��DMCL is a block matrix that can also be described by Eq� ��� However� in

the case of Q��DMCL submatrices Qij for i �� j are not circulant� Thus� direct computation of
�f from Eq� �� is impossible since the frequency domain techniques described in ��� and ���� are

not applicable and direct inversion of the matrix �HtH��QtQ is required� In what follows

an iterative method is proposed for the computation of �f �

� An Iterative Algorithm to Compute �f

The restored image �f is the solution of the linear system of equations

�HtH � �QtQ�f � Htg� ���

The direct computation of �f from Eq� ��� is not possible since for Q � Q��DMCL the ma�

trix A � HtH��QtQ does not have a special structure that will allow for its inversion� as

in the multichannel color image case� However� since it is possible to compute the product

�HtH��QtQy where y is a known vector iterative methods can be used to solve Eq� ����

The product �HtH��QtQy can be broken into HtHy ��QtQy� The �rst term is

straightforward to compute� For the second term we need to compute both Qy and Qtz where

z � Qy� For Q � Q��DMCL from Eq� ��� we can write

�Q��DMCL y�l�i�j� �
h
��yl�i� j � yl�i� �� j � yl�i� �� j � yl�i� j � � � yl�i� j � �

i
�

h
yl��

�
i�m

�i�j�
�l���l�� j � n

�i�j�
�l���l�

�
� yl�i� j

i
�
h
yl��

�
i�m

�i�j�
�l���l�� j � n

�i�j�
�l���l�

�
� yl�i� j

i
����

��



The terms inside the �rst bracket of the right hand side of Eq� ��� is the convolution of each

channel of yl with the ��D Laplacian operator� The terms inside the second and third brackets

represent the motion compensated prediction errors between the pair of frames �l � �� l and

�l � �� l� respectively� The multichannel regularization matrix used in this paper is symmetric�

i�e� Q��DMCL � QT
��DMCL� Thus� Q

tz can be computed similarly as Qy� In Appendix A we

elaborate in detail on the assumptions that yield this symmetry�

The successive approximations based iteration ���� for solving Eq� ��� is given by

�f� � � ���

�fk�� � �fk � �� Htg � � HtH � �QtQ �fk � ��	

where �� the relaxation parameter� is a scalar that controls the convergence properties of this

iteration� It is easy to check that a stationary point of this iteration satis�es Eq� ���� However�

in order for an iteration to have a unique stationary point the mapping de�ned by this iteration

must be a contraction mapping �����

With A �HtH��QtQ and k�k the l� norm one can show� see for example ���� and �����

that Eq� ��	 is a contraction mapping when

jjI � �Ajj � �� ���

Since A is a symmetric and positive de�nite matrix� the inequality in Eq� ��� is satis�ed if

��max � �� ���

where �max is the largest eigenvalue of A� Therefore� the bounds for � in order to ensure the

convergence of the iteration in Eq� ��	 are given by

� � � �
�

�max

� ���

Because of the size and structure of A in our application� the analytic computation of �max

is not feasible� Therefore� we use a method based on the Rayleigh quotient iteration to compute

�max numerically ����

Consider the iteration

Xk�� � BXk� for k � �� �� � � � � ���
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where B is a symmetric K �K matrix� and the ratio

��k �
�Xk��tXk

�XktXk

� ���

where t denotes the transpose of a vector and X� any vector � Rk which is not an eigenvector of

B or the zero�vector� Then� it can be shown that for k ��� � ��k �� �max� where �max is the

largest in magnitude eigenvalue of B ���� Furthermore� it can be shown that ��k � �max� 	k ����

If the value of the relaxation parameter used in Eq� ��	� is chosen as

� �
�

��k
� ���

for some large k� then this value always satis�es the bounds of Eq� ����

� Experiments

Experiments were performed to test the proposed iterative multichannel restoration algorithm�

Ten frames �each of size �	�� �	� from the �Trevor White� sequence were used as test images�

The results obtained with the proposed algorithm are compared with the results obtained by

restoring each frame separately �henceforth referred to Model �� The single channel version of

Eq� �� was used with Q� the ��D Laplacian� In order to apply iteration in Eq� ��	 the DVF

needs to be estimated �rst� Four di�erent approaches were used for this task� Each of these

approaches� along with iteration in Eq� ��	� is henceforth referred to as Model � � Model ��

More speci�cally �

�� Model � � The DVF was estimated directly from the degraded images�

�� Model � � The DVF was estimated from the images restored by Model ��

�� Model � � The DVF was estimated from the images restored by Model ��

�� Model � � The original image sequence is used to obtain the DVFs� This model is used

to test the upper bound of performance of the proposed multichannel restoration algorithm�

For Models �� � and � the DVF is computed from either the degraded or the restored images�

Since pel�recursive algorithms are more sensitive to artifacts in the degraded or the restored

images� a block search algorithm �BSA was used to estimate the between�channel DVFs� The
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motion vector at pixel �i� j between frames� l and k� was found by matching a 	 � 	 window

centered at pixel �i� j of frame l to a 	�	 window in frame k� An exhaustive search over �����

area centered at pixel �i� j of frame k was used and the matching metric was the sum of the

squared errors�

It is clear that the more strongly�correlated channels are available the better the restoration

results� if a multichannel approach is used� However� as a general rule� as the time separation

between frames in an image sequence increases� the correlation between�frames decreases� Thus�

it is expected that after a certain number of frames the improvements due to the inclusion of

additional frames diminish� In addition to this� the computational cost of the proposed algorithm

for N channels is proportional to N�� Taking all the above considerations into account N � 	

was chosen for our experiments�

Two experiments are presented in this paper �more experiments can be found in ��� and

���� In the experiments presented in this paper all �ve models were tested and compared� The

variance of the noise added to the blurred data is de�ned using the blurred signal�to�noise ratio

�BSNR metric which is given by

BSNR � �� log��
jjHf �Hf jj

�

M���
dB� ���

where �� is the variance of the additive noise�M� is the total numbers of pixel in the image� and

Hf is the spatial mean of the blurred image Hf � As an objective measure of performance of

the restoration algorithms the improvement signal�to�noise ratio �ISNR metric was used� This

metric is de�ned by

ISNR � �� log��
jjf � gjj�

jjf � �f jj
�dB� ���

where f� g and �f are the original image� the degraded image and the restored image� respectively�

In all experiments the relaxation parameter � was obtained numerically using the Rayleigh

quotient based method described in section �� The value of each of the regularization parameters

�i was chosen to be equal to
�
��

BSNR

��

�
��

���� ����� To restore all ten frames of the image sequence

six �ve�channel multichannel �lters were used� Except for the �rst and last two frames of the

sequence a �ve�channel non�causal �lter was used to restore each frame� This �lter used both

the two previous and the two following frames of the frame under restoration�

Experiment I

In this experiment ten frames �frames ���	� of the Trevor White sequence were blurred by

��



an �� � �� uniform blur� The point spread function of this blur is given by

h�i� j �

	
�
���

if �	 
 i� j 
 	
� otherwise�

���

Cases �i�� and �ii� corresponding to �� and �� dB BSNR respectively of additive white Gaussian

noise were examined� In Figures 	� 
 and �� ISNR plots are shown� while in Figures �� � and

�	 the displaced�frame di�erence �DFD is shown for both cases� The DFD is de�ned as

DFD � �� log��
jjfk � fk

�

jj�

M�
dB� ��	

whereM� is the total numbers of pixel in the image� and fk
�

is the motion compensated estimate

of frame fk using all the DVFs used for the restoration of the frame fk� For example� for N � 	�

fj
�

�
�

�
�fj

�j��� � fj
�j��� � fj

�j��� � fj
�j����� ���

where fj
�i� is the motion compensated estimates of fj using frame i and the DVF between frames

i and j�

In Figures � � and �� the �th frame of this experiment is shown for cases �i and �ii� The

original and the degraded images are shown in Figure � In Figures � and �� the restored images

from this experiment are shown�

The DFD plots for this experiment when compared with the ISNR plots clearly point out

that the more accurate the motion estimation the better the restoration� From the ISNR and

the DFD plots it is also clear that for both cases BSNR ���� �� dB estimating the motion from

the restored images �Models � and � is clearly superior to using the degraded images directly

�Model �� This can also be veri�ed by visually inspecting the restored images in Figures ��b�

and ��c��

Needle plots for DVF are shown to visualize the actual motion estimates for the �� dB and

�� dB noise cases in Figure � and �� respectively� At this point we have to make an important

observation that was brought up during the review process� Finding the motion of a scene is a

very ill�posed problem� Therefore� from the degraded or the restored frames available� we have

no hope in estimating accurately the motion in this scene� see for example the needle plots in

Figure ��a� and ��a�� Even with the original image� the block matching algorithm that we use

does not provide a good estimate of the motion �eld of this scene� see Figure ��d�� However� for

our application we do not need a good motion �eld estimate what we need is an approximate
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direction of temporal correlation� This� we can get from the degraded or restored images available

using a full search block matching algorithm for each pixel� The DFD results shown in Figure

� and �� con�rm this observation�

Experiment II

In this experiment the same ten frames as in Experiment I were used� However� this time

each frame was blurred by a di�erent size blur simulating the blur that would occur by the

accelerating�decelerating motion of a recording camera� Uniform horizontal motion blurs of size

� � �� 	� �� � � �� � � �� �� � �� �� � �� �� �� �� �� 	 � � and � � � were used to blur frames

�� �� �� �� 	� �� �� �� � � and �� respectively� �� dB BSNR of additive white Gaussian noise

was examined� In Figure �� the ISNR results from this experiment are plotted� In Figure �	

the DFD plots are given� Original and degraded images are shown in Figure ��� while restored

images from this experiment are shown in Figure ���

In both of our experiments we observed that the value of the relaxation parameter decreased

as the BSNR increases �see for example the � values in Figures 	 and 
� This is explained by

the fact that since QtQ is a possitive de�nite matrix the value of the largest eigenvalue �max of

the matrixA � HtH��QtQ increases with �� Furthermore� � is inversely proportional to �max�

We also observed that the number of iterations required to �nd the stationary point of Eq� ��	

increases as the BSNR increases� For example� in experiment I in the case of BSNR � �� dB�

�� iterations were required whereas in case of BSNR � �� dB� ��� iterations were required�

This can be explained by the fact that the condition number of the matrix A given by the ratio
�max
�min

where �min and �max are the smallest and largest eigenvalues of A� respectively� decreases

as � increases� Larger values of � corresponds to more regularization� in other words� a better

conditioned matrix A� However� it is well known that the smaller the condition number of a

matrix the faster the successive approximation iterations given by Eq� ��	 converge ����

� Conclusions

In this paper multichannel least squares �lters were used for the regularized restoration of image

sequences� It was found that the multichannel �lters which enforce both spatial and temporal

smoothness along the direction of the motion give by far superior results both visually and using

a mean square error metric� over the single�channel restoration �lters that only enforce spatial

�	



smoothness� Our experiments also demonstrated that the accuracy with which the direction

of the temporal correlation can be found is crucial to the quality of the multichannel restored

images� We also found that if the direction of the temporal correlation is found from the original

sequence �even with the integer motion assumption the multichannel restored image �Model �

for BSNRs ranging from ��� and ��� dB is almost identical to the original image�
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 Appendix A

In this appendix the assumptions that result in a symmetricmultichannel regularization operator

Q��DMCL as discussed� To simplify notation and without loss of generalityN � � is used� Then�

this operator Q��DMCL is given by

Q��DMCL �

�
�� Q Ml��

l Ml��
l��

Ml
l�� Q Ml

l��

Ml��
l�� Ml��

l Q

�
�� � ���

where all the entries of the right�hand�side for M �M images are M� �M� matrices� Q is the

matrix that represents the convolution of a M �M image with the kernel

q �

�
�� � � �
� �� �
� � �

�
�� � ���

and Mi
j for m � l � �� l� l� � are the motion compensation matrices� In other words�

�Xi � Mi
jXj ���

where �Xi is the motion compensated estimate of frame i when frame j is used� Q is symmetric

since it represents a convolution with a symmetric kernel� Furthermore� we will demonstrate

using an example that

Mi
j

T
� M

j
i ���

Assuming perfect motion compensation the two frames i and j are related via the following

matrix�vector equation�

Xi � Mi
jXj� ���

To better illustrate the properties of matrix Mi
j� without loss of generality we show a simple

�� � image�

The assumption that is made in this paper is that the same pixel from frame j cannot be used

to compensate more than one pixel of frame i� Using the lexicographic ordering the following

equation is an example of what this assumption would imply for matrix Mi
j� For this example

Eq� ��� in detail gives

�
����
Xi��� �
Xi��� �
Xi��� �
Xi��� �

�
���� �

�
����
� � � �
� � � �
� � � �
� � � �

�
����
�
����
Xj��� �
Xj��� �
Xj��� �
Xj��� �

�
���� � ���

��



This assumption yields an Mi
j which is an indicator matrix of full rank� Thus� the following

equation holds �
Mi

j

�T
Mi

j � I� ���

Then� from Eq� ��� and ��� we get

Xj �
�
Mi

j

�T
Xi� ���

in other words�
�
Mi

j

�T
�Mj

i � Therefore� Q��DMCL�Q
T
��DMCL� This assumption is without

doubt limiting� however� it greatly simpli�es the calculation of the �lter�
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Figure 	 � ISNR plots � Experiment I� case �i � BSNR � �� dB�
�� � �� blur� � � ��� and � � ����

��



Figure � � DFD plots � Experiment I� case �i � BSNR � �� dB�
�� � �� blur� � � ��� and � � ����

��



�a �b

�c �d

Figure � � �a Experiment I case �i� DVF plots between twy��� and twy��� frames�
�a using Model �� �b using Model �� �c using Model �� and �d using Model ��

��



Figure 
 � ISNR plots � Experiment I� case �ii � BSNR � �� dB�
�� � �� blur� � � ��� and � � ������

�	



Figure � � DFD plots � Experiment I� case �ii � BSNR � �� dB�
�� � �� blur� � � ��� and � � ������
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�a �b

�c �d

Figure � � �a Experiment I case �ii� DVF plots between twy��� and twy��� frames�
�a using Model �� �b using Model �� �c using Model �� and �d using Model ��

��



�a

�b �c

Figure  � �a Original Image�twy���� �b Experiment I case �i� Degraded image�
with �� � �� blur and �� dB of BSNR additive noise� �c Experiment I case �ii�
Degraded image� with �� � �� blur and �� dB of BSNR additive noise�
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�a �b

�c �d

Figure � � �a Experiment I case �i� restored images� �a using Model �� �b using
Model �� �c using Model �� and �d using Model ��
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�a �b

�c �d

Figure �� � �a Experiment I case �ii� restored images� �a using Model �� �b using
Model �� �c using Model �� and �d using Model ��
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Figure �� � ISNR plots � Experiment II � BSNR � �� dB� variable
zooming�panning with �� � � motion blur� � � ��� and � � ������

��



Figure �	 � DFD plots � Experiment II � BSNR � �� dB� variable
zooming�panning with �� � � motion blur� � � ��� and � � ������

��



�a

�b

Figure �� � �a Original Image�twy���� �b Experiment II � Degraded
image� ���� motion blur� and �� dB of BSNR� � � ��� and � � ������
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�a �b

�c �d

Figure �� � Experiment II � restored images� �a using Model ��
�busing Model �� �c using Model �� and �d using Model ��

��


