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Abstract

We address the problem of space-invariant image restoration when the blurring operator is not

known exactly, a situation that arises regularly in practice. To account for this uncertainty, we

model the point spread function as the sum of a known deterministic component and an unknown

random one. Such an approach has been studied before, but the problem of estimating the pa-

rameters of the restoration �lter has not been addressed systematically. We propose an approach

based on a Gaussian statistical assumption and derive an iterative, expectation-maximization (EM)

algorithm that simultaneously restores the image and estimates the required �lter parameters. We

obtain two versions of the algorithm based on two di�erent models for the statistics of the im-

age. The computations are performed in the discrete Fourier transform (DFT) domain, thus they

are computationally e�cient even for large images. We examine the convergence properties of the

resulting estimators and evaluate their performance experimentally.

Permission to publish this abstract separately is granted

� corresponding author y corresponding author.
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I Introduction

Conventional image restoration algorithms assume exact knowledge of the blurring operator

whereas blind deconvolution methods assume that little or nothing is known about the blur (see

Ref. 1 and 2 for a recent review). In most practical applications, the point-spread function (PSF)

is neither totally unknown nor perfectly known. Instead, some PSF model is usually available, but

this model is often inaccurate. To represent this situation, we will assume that the PSF can be

modeled as the sum of a known deterministic component and an unknown random one. We refer

to this as a partially-known blur model.

The partially-known blur model is appropriate for many realistic applications and has been

studied previously (see Refs. 3, 4, 5, 6, 7, 8 and 9 ). For instance, in medical imaging techniques

such as positron emission tomography (PET) and single-photon emission computed tomography

(SPECT), the PSF is di�cult to specify completely10, in part because it is object-dependent, owing

to scattering and photon attenuation11. In astronomy, atmospheric turbulence yields a random

time-varying PSF which is not known exactly. Blind deconvolution, which assumes that the PSF is

completely unknown, does not accurately model situations such as these in which lack of knowledge

of the PSF is only partial.

To our knowledge the partially-known blur model was �rst considered in Ref. 3. In that work,

the linear minimummean square-error (LMMSE) solution was derived for the continuous case only,

the statistics of the PSF and noise were assumed to be known, and no experimental results were

provided. In Refs. 4, 6 and 7 the LMMSE �lter was derived for the discrete case and numerical

experiments were reported.

LMMSE restoration �lters require knowledge of the signal covariance, which is not usually

available in practice. In Ref. 6 the signal covariance is assumed known, but in the method proposed

in Refs. 4 and 7 it is estimated iteratively by using the current LMMSE signal estimate to update

the signal covariance estimate. However, convergence of the proposed iterative algorithm in Refs.
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4 and 7 was not shown. Furthermore, the �lter and the estimation algorithm is not derived for the

circulant case; thus, it cannot be e�ciently calculated for large images. In this paper we correct

the above mentioned shortcomings of previous work on this problem. In other words:

1. We propose an iterative algorithm to estimate the parameters of the derived restoration �lter

and we show the convergence of the proposed algorithm.

2. We derive both the LMMSE �lter and the iterative algorithm in the discrete Fourier domain

(DFT) using the circulant assumption. Thus, it can be e�ciently applied to large images.

More speci�cally, based on two di�erent image models we propose two approaches for simul-

taneous iterative identi�cation of the parameters and restoration of the image. These approaches

are based on the expectation-maximization (EM) algorithm in Ref. 14 and a Gaussian statistical

model. Our �rst approach is based on a stationary image model with a circulant covariance matrix;

the second uses a simultaneously autoregressive (SAR) image model (see Refs. 15, and 16.)

The EM algorithm iterates between the so-called expectation (E) and the maximization (M)

steps. The M-step maximum-likelihood (ML) estimates of the image and noise model parameters

are found. In the E-step the conditional mean of the image, given the data, is computed. Since,

for Gaussian data, the conditional mean is the LMMSE estimate (see Ref. 17 pp. 389). In the E

step of the algorithm we obtain the LMMSE estimate as an intermediate result. We derive both

proposed approaches in the DFT domain, thus they are computationally e�cient even for large

images. We show using numerical experiments that the LMMSE �lter we obtain performs better

than the LMMSE �lter derived in Ref. 4.

For linear models, there is a close relationship between LMMSE solutions, and statistical so-

lutions based on Gaussian statistics. In this paper we exploit that relationship by using a ML

approach and the EM algorithm to obtain a systematic approach to obtaining LMMSE estimates

using ML techniques.

The rest of the paper is organized as follows. In Section II the observation and image models
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are discussed. In Section III the EM algorithm is applied to the restoration problem from partially-

known blurs for two image models. The convergence properties of the resulting iterative sequences

are derived in Section IV. The proposed estimators are tested experimentally in Section V. In

Section VI conclusions and suggestions for future research are given.

II Observation and Image Models

II.A Observation Model

In Ref. 4 and 6 the space-invariant PSF was represented as the sum of a deterministic component

and a stochastic component of zero-mean, i.e.,

h = �h+�h; (1)

where �h 2 RN and �h 2 RN are the deterministic (known) and the random (unknown error)

components of the PSF, respectively. This is a very general model that attempts to incorporate

the random (unknown error) component of the PSF in the restoration algorithm. The unknown

component of the PSF is modeled as stationary zero-mean white noise with N � N covariance

matrix R�h = �I, where � denotes the variance of the PSF noise and I is the identity matrix. The

observation vector g is also contaminated by zero-mean additive white Gaussian noise with N �N

covariance matrix R�g = 
I, where 
 denotes the variance of the observation noise. Furthermore,

the noises in the observed data and the PSF are assumed independent of each other and independent

from the source image f . In this case, the image-degradation can be described by the model in Refs.

4, 5, 6, 9, 12 and 13

g =Hf +�g; (2)

in which

H = �H+�H; (3)

and g; f ;�g 2 RN are lexicographically ordered representations of the observed degraded image,

the source image, and the additive noise in the observed image, respectively. The matrix �H is the
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known (assumed, estimated or measured) component of the N � N PSF matrix H; �H is the

unknown component of the PSF matrix, generated by �h de�ned in (1). Throughout the rest of

this paper a circulant approximation of Toeplitz matrices18 will be used to allow calculations to be

performed using the discrete Fourier transform (DFT); thus, the matrices R�h, R�g, �H and �H

are N�N circulant matrices (see Ref. 18 pp. 224). We will furthermore assume a stationary image

model. Therefore, the image autocorrelation

Eff f tg = Rf ; (4)

is also a N �N circulant matrix, thus it is de�ned by N parameters. These parameters are either

the vector containing the elements of a row or column of Rf or the eigenvalues of this matrix which

can be found by the DFT (see Ref. 18 pp. 224). We shall refer to this model for the rest of this

paper as the full Rf model.

In many practical situations Rf in (4) may not be available and must be estimated from the

blurred and noisy data. However, the N parameters required for the de�nition of Rf may not be

identi�able from a single degraded image. To avoid this problem, the simultaneously autoregressive

(SAR) image models is used. The SAR model for image has been used previously in the context

of Bayesian estimation (see Refs. 15, 16 and 19). However, the SAR model has been also used

implicitly in the past in the context of regularized least-squares estimation (see Refs. 18 pp. 149 ,

and 20). For this model the covariance is assumed to be

[Rf ] =
h
�QtQ

i�1
; (5)

where Q represents the circulant convolution with the operator given by2
64 0 1 0
1 �(4 + �) 1
0 1 0

3
75 (6)

where � a small positive number. In the limit as � goes to zero Q becomes the Laplacian operator.

Since Rf and Q are circulant matrices their eigenvalues are given by the DFT (see Ref. 18 pp.

224). The SAR model is Eq. (5) implies that Qf the convolution of the image with the Q operator
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is an independent identically distributed (iid) signal. The parameter � is positive, unknown and

can be viewed as the variance of the iid signal. For natural images, that display a high-degree of

spatial correlation, this is a good model.

In this paper for simplicity a zero mean image model is used. This is a usual assumption in image

restoration applications. A zero mean image is estimated and then the mean of the observed data

is added. This is justi�ed by the fact that in most cases the noise is zero mean and the convolution

by the PSF does not a�ect the mean.

III Parameter Estimation and Restoration Using the

EM Algorithm

In this section we apply the Expectation-Maximization (EM)in Ref. 14 algorithm to the problem

of identifying, and restoring, from partially-known (random) blur. The EM algorithm is an iterative

approach for computing maximum-likelihood (ML) estimates of unknown parameters. In the present

application the EM algorithm is useful for its capability to identify the unknown parameters while

simultaneously restoring the degraded image. We derive two algorithms based on the EM approach:

one for each image model in (4) and (5). In the �rst algorithm, for the full Rf model, we assume

that the parameters that de�neRf , �, and 
, are the unknown parameters that we want to estimate.

In general, the covariance matrix Rf has N unknown parameters: therefore, in this case, there are

N + 2 parameters to estimate. In our second algorithm, for the SAR model, the image covariance

matrix contained in (5) is parameterized with a single parameter � (matrix Q is known), and that

� and 
 are also unknown; thus, there are a total of three parameters to estimate.

III.A EM Algorithm for the full Rf model

We begin by calculating the likelihood functional for our problem. Let 	
0
= fRf ; �; 
g denote

the set of unknown parameters we wish to estimate. We assume that f , �H, and �g, in (2) are
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independent, and that the observed image g is Gaussian distributed with PDF parameterized by

	
0
, i.e.,

P (gj	
0

) = [det(2�[�HRf
�Ht +RT (f)])]

� 1
2 exp

�
�
1

2
gt[�HRf

�Ht +RT (f)]
�1g

�
; (7)

where

RT (f) = E
n
(�H f +�g)(�H f +�g)t

o
: (8)

ML estimation of the parameter set 	
0
involves the determination of the 	

0

ML that maximizes the

likelihood function P (gj	
0
). The likelihood function in (7) is nonlinear and non-convex with respect

to 	
0
; thus, it is very di�cult to optimize. Therefore, we propose to use the numerically e�cient

iterative method of the EM algorithm in Ref. 14 to maximize the functional in (7).

In applying the EM algorithm, the observation g represents the incomplete data and a set of

complete data z must be de�ned. The sample realization z from the corresponding sample space

is observed through the linear transformation T, which relates the complete and incomplete data

according to

g = Tz: (9)

The particular form of T depends on the choice of de�nition of the complete data (see (17)). Since

g is zero-mean Gaussian, z is also zero-mean Gaussian with PDF parameterized by the set 	 and

equal to

P (zj	) = [det(2�Rz)]
� 1

2 exp
�
�
1

2
ztR�1

z z

�
; (10)

where Rz is the covariance matrix of z, and 	 = fRzg. Taking the logarithm of both sides of (10)

and discarding the additive and multiplicative constants, we obtain

logP (zj	) / �
n
log[det(Rz)] + ztR�1

z z
o
: (11)

The complete-data vector z is not available and is only observable through the non-invertible (many-

to-one) mapping (9).

The EM algorithm consists of two steps: the expectation step (E-step) and the maximization

step (M-step). In the E-step of the EM algorithm, the conditional expectation of logP (zj	) is

7



computed, conditioned upon the observed data g and the current estimate of the parameter set 	.

In the M-step, the result of the E-step is maximized with respect to unknown parameters.

In the present problem the conditional PDF of z given g is Gaussian17 with conditional mean

equal to

mzjg = Efzjgg = RzgR
�1
g g (12)

and conditional covariance equal to

Rzjg = Efz ztjgg = Rz �RzgR
�1
g Rgz; (13)

where Rzg = RzT
t, Rg = TRzT

t and Rgz = Rt
zg. Therefore, the E-step starts with an estimate

of the parameter set 	(n) (superscript (n) denotes the iteration index) and �nds the conditional

expectation of the log-likelihood (11) of the complete data given the incomplete data g and the

current parameter estimate 	(n):

EflogP (zj	) j g;	(n)g / �
n
log[det(Rz)] + tr[R�1

z (R
(n)
zjg +m

(n)
zjgm

(n)t

zjg )]
o
; (14)

where tr(�) denotes the trace of a matrix. Clearly, maximizing (14) is equivalent to minimizing

F (	;	(n)) = log[det(Rz)] + tr[R�1
z R

(n)
zjg ] +m

(n)t

zjg R
�1
z m

(n)
zjg : (15)

Therefore, the E-step of the EM algorithm amounts to computing F (	;	(n)) in (15) with the use

of (12) and (13), and the M-step reduces to minimizing the F (	;	(n)) with respect to 	.

The art of using the EM algorithm lies in choosing an appropriate complete-data speci�cation z

(for details see for example Ref. 17). The di�culty of direct maximization of P (gj	) is overcome by

embedding the sample space g in a richer or larger sample space z where optimization problems are

easier to solve. We choose the complete data z as a concatenation of the lexicographically ordered

images f and g as in Ref. 21; i.e.,

z =

"
f

g

#
: (16)
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This particular choice of z allows for parameter identi�cation and easy computation of (15). The

incomplete and complete data are now related via

g = [0 I]

"
f

g

#
= Tz; (17)

where 0 and I are the N �N zero and identity matrices, respectively.

According to (16), the covariance matrix of z is given by

Rz = Efz ztg =

"
Rf Rf

�Ht

�HRf
�HRf

�Ht +RT (f)

#
; (18)

where RT (f) is given in (8).

The inverse of Rz is given by Ref. 17

R�1
z =

"
R�1

f + �HtR�1
T (f)�H ��HtR�1

T (f)
�R�1

T (f)�H R�1
T (f)

#
: (19)

Substituting (18) and (19) into (15) we obtain

F (	;	(n)) = log[det(Rf)] + tr[R�1
f R

(n)
f jg] +m

(n)t

f jg R
�1
f m

(n)
f jg

+ log[det(RT (f))] + tr[�HtR�1
T (f)�HR

(n)
f jg] + (�Hm

(n)
f jg � g)tR�1

T (f)(�Hm
(n)
f jg � g);

(20)

in which

m
(n)
f=g = R

(n)
f
�Ht

�
�HR

(n)
f
�Ht +R

(n)
T (f)

��1
g (21)

and

R
(n)
f=g = R

(n)
f �R

(n)
f
�Ht

�
�HR

(n)
f
�Ht +R

(n)
T (f)

��1
�HtR

(n)
f : (22)

Using the DFT diagonalization properties for circulant matrices, the eigenvalues of RT (f) given

in Appendix A and applying similar calculations as in Appendices A and B of Ref. 9, in the DFT

domain the representation of (20), (21), and (22) is given by:

F (	;	(n)) =
PN�1

i=0 log(Sf(i)) +
1

Sf (i)
(S

(n)
f jg(i) +

1
N
jM

(n)
f jg (i)j

2)

+ log(N�Sf(i) + 
) + 1
N�Sf(i)+


n
j �H(i)j2S(n)

f jg(i) +
1
N
j �H(i)M (n)

f jg (i)�G(i)j2
o
;

(23)
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M
(n)
f jg (i) =

�H�(i)S
(n)
f (i)

j �H(i)j2S
(n)
f (i) +N�(n)S

(n)
f (i) + 
(n)

G(i); (24)

and

S
(n)
f jg (i) =

S
(n)
f (i)

h
N�(n)S

(n)
f (i) + 
(n)

i
j �H(i)j2S

(n)
f (i) +N�(n)S

(n)
f (i) + 
(n)

; (25)

where i is the frequency index, �H(i) are the eigenvalues of the known part of the PSF, G(i) are the

DFT coe�cients of the observed data, and Sf(i) are the power spectrum coe�cients of the image

(i.e., the eigenvalues of Rf). M
(n)
f jg (i) and S

(n)
f jg (i) represent the DFT coe�cients of the conditional

mean vector and the eigenvalues of the conditional covariance matrix, respectively. According to

(24) the restored image-DFT coe�cients M (n)
f jg (i) are obtained as the output of a LMMSE �lter

based on the current estimate of 	, with the observed image as input. Equations (23), (24), and

(25) are the DFT-domain expressions for the E-step of the EM algorithm for the full Rf model.

In the M-step of the EM algorithm the likelihood functional in (23) is minimized with respect to

the unknown parameters. In Appendix B we show that the M-step reduces to simple linear update

equations in Sf (i), � and 
, i.e.,

S
(n+1)
f (i) = S

(n)
f jg(i) +

1

N
jM

(n)
f jg (i)j

2 (26)

�(n+1) = �(n)v(�
(n))

u(�(n))
(27)


(n+1) = 
(n)
v(
(n))

u(
(n))
(28)

where u(�(n)); v(�(n)); u(
(n)), and v(
(n)) are given in Appendix B in (B-4), (B-5), (B-10), and (B-

11), respectively. Thus, the M-step of the EM algorithm for full Rf model consists of calculating

(26), (27), and (28) at each iteration, in which M (n)
f jg (i) and S

(n)
f jg (i) are computed by (24) and (25).

The discrete form of the LMMSE �lter for the random blur restoration problem was �rst derived

in Ref. 4 and expressed in term of autocorrelation matrices. This �lter can be represented in the

DFT domain in terms of power spectra as

F
(n)
lmmse(i) =

�H�(i)S(n)
f (i)

j �H(i)j2S(n)
f (i) + �S

(n)
f (i) + 


G(i); (29)
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where � and 
 were assumed known. Clearly, although (29) is similar in form it to our solution

(24) it di�ers by a factor of N in the denominator. This observation is based on the assumption

that Sf(i) are the eigenvalues of the circulant autocorrelation matrix Rf .

In Appendix A we show that (24) is the LMMSE �lter, and in our experiments we demonstrate

that this �lter (24) always yields lower mean-square error (MSE) than the one in (29).

An algorithm for iterative image covariance estimation in the context of restoration from random

blur was also proposed in Ref. 4. The direct conversion of this algorithm into the DFT domain

yields the following power-spectrum update:

S
(n+1)
f (i) =

1

N
jF (n)

lmmse(i)j
2: (30)

By comparing the estimators in (26) and (30), one can see that the estimator in (30) does not

include the term S
(n)
f=g(i) given in (25) as suggested by the EM algorithm's estimator in (26). In

section IV the convergence properties of estimators in (26) and (30) are examined.

III.B EM Algorithm for SAR Model

The estimation of the full-blown power spectrum (N coe�cients for the full Rf model) is a

formidable task especially when a limited amount of data is available. This is the case in our

restoration problem since only one degraded image is available and there are N + 2 unknown

parameters to estimate. Furthermore, in general the total number of relevant data points for power

spectrum estimation is limited, since a degraded image usually contains relatively few high-frequency

components. If the number of unknown parameters is greater than the number of relevant data

points unreliable identi�cation results should be expected 22.

To reduce the number of unknown parameters in the identi�cation/restoration problem we

propose to use a SAR image model in (5). This image model is based on the single unknown

parameter �. Now, there are only three unknown parameters to estimate, i.e., 	 = f�; �; 
g.

Following a similar procedure to that in the previous section it can be shown that the E-step of the
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EM algorithm for a SAR model reduces to calculating the following functional:

F (	;	(n)) = log[det(��1I)] + tr[�QtQR
(n)
f jg] +m

(n)t

f jg �Q
tQm

(n)
f jg

+ log[det(RT (f))] + tr[�HtR�1
T (f)�HR

(n)
f jg] + (�Hm

(n)
f jg � g)tR�1

T (f)(�Hm
(n)
f jg � g);

(31)

in which

m
(n)
f=g = (�(n)QtQ)�1 �Ht

�
�H(�(n)QtQ)�1 �Ht +R

(n)
T (f)

��1
g (32)

and

R
(n)
f=g = (�(n)QtQ)�1 � (�(n)QtQ)�1 �Ht

�
�H(�(n)QtQ)�1 �Ht +R

(n)
T (f)

��1
�Ht(�(n)QtQ)�1: (33)

It is easy to show using similar steps to those used to derive Eqs. (23), (24), and (25) that the DFT

representation of (31), (32), and (33) is given by

F (	;	(n)) =
PN�1

i=0 � log[�] + �jQ(i)j2(S(n)
f jg (i) +

1
N
jM (n)

f jg (i)j
2)

+ log(N� 1
�jQ(i)j2 + 
) + 1

N� 1
�jQ(i)j2

+


n
j �H(i)j2S

(n)
f jg(i) +

1
N
j �H(i)M

(n)
f jg (i)�G(i)j2

o
;

(34)

M
(n)
f jg (i) =

�H�(i) 1
�(n)

j �H(i)j2 1
�(n)

+N�(n) 1
�(n)

+ 
(n)jQ(i)j2
G(i); (35)

and

S
(n)
f jg (i) =

1
�(n)jQ(i)j2

h
N�(n)

�(n)
+ 
(n)jQ(i)j2

i
j �H(i)j2

�(n)
+ N�(n)

�(n)
+ 
(n)jQ(i)j2

; (36)

in which Q(i) are the eigenvalues of the circulant matrix Q, and other quantities were de�ned in

(23). Equations (34), (35), and (36) are the DFT-domain expressions for the E-step of the EM

algorithm for SAR model.

The estimates of �, �, and 
 are obtained in the M-step of the algorithm according to the

following equations (see Appendix B):

1

�(n+1)
=

1

N

N�1X
i=0

jQ(i)j2
�
S
(n)
f jg (i) +

1

N
jM

(n)
f jg (i)j

2
�

(37)

�(n+1) = �(n)v(�
(n))

u(�(n))
(38)


(n+1) = 
(n)
v(
(n))

u(
(n))
; (39)
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where u(�(n)); v(�(n)); u(
(n)), and v(
(n)) are given in Appendix B, in (B-18), (B-19), (B-20), and

(B-21), respectively. Thus, the M-step of the EM algorithm for SAR model reduces to calculating

(37), (38), and (39) at each iteration, in which M
(n)
f jg (i) and S

(n)
f jg (i) are computed by (35) and (36).

In implementing these equation we let � = 0. Thus, Q becomes the Laplacian operator. Notice that

Q(0) = 0 does not cause any problems in our calculations because although S(n)
f jg (0) in (36) appears

to be in�nite in reality in all the formulas for the SAR model the product jQ(i)j2S
(n)
f jg (i) appears

which for i = 0 is �nite.

IV Convergence Analysis of the EM Power Spectrum

Estimators

It is a well-known fact that the EM algorithm converges to a stationary point of the likelihood

functional (see Ref. 14). In this section we examine the convergence properties of the estimator

in (26) not in the likelihood values, but, rather in terms of the power-spectrum coe�cient values.

More speci�cally, we identify the �xed points of the iteration in (26) to see where the power-

spectrum coe�cients converge. For this purpose we assume that � and 
 are known and restrict

our observations only to the update of the power-spectrum coe�cients.

Dropping the frequency index i for notational simplicity and substituting (24) and (25) into (26)

we obtain

S
(n+1)
f =

S
(n)
f

h
N�S

(n)
f + 


i
j �Hj2S

(n)
f +N�S

(n)
f + 


+
S
(n)2

f j �Hj2 1
N
jGj2h

j �Hj2S(n)
f +N�S

(n)
f + 


i2 : (40)

We assume that the periodogram estimate of the degraded image power spectrum 1
N
jGj2 is equal

to the ensemble power spectrum, i.e.,

1

N
jGj2 = j �Hj2Sf +N�Sf + 
; (41)

where Sf is the power spectrum of the original image. For the iterative process to be useful,

the sequence fS(1)
f ; S

(2)
f ; � � �g must converge to some value ~Sf which is a �xed point of the update
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equation, i.e.,

~Sf = Sf
(n+1) = Sf

(n): (42)

In other words, the update formula of (40) maps S
(n)
f into itself. To conclude convergence it su�ces

to show that the sequence in (40) is monotone and bounded. This is shown in Appendix C. To

�nd where the sequence of estimates converges we let ~Sf = S
(n+1)
f = S

(n)
f in (40). Solving for

the �xed points of the iteration (40) it is straightforward to see that ~Sf converges to the power

spectrum coe�cients Sf . Thus, we conclude that the proposed EM-based algorithm yields the

power-spectrum estimate of the source image in the sense of Eq. (41), under the assumption that

the statistics of the PSF and the observation errors are known.

Based on the preceding discussion and on the fact that the estimator in (30) neglects the

conditional covariance term in (25), it is clear that (30) cannot converge to the power spectrum of

the source image. It is easy to see where this estimator converges. Dropping the frequency index

i for notational simplicity and solving for the �xed points of the iteration (30), we obtain three

solutions, given by

~S2
f (j �Hj

2 +N�)2 + ~Sf

�
2(j �Hj2 +N�)
 � j �Hj2

1

N
jGj2

�
+ 
2 = 0 and ~Sf = 0: (43)

Substituting (41) into (43) it is straightforward to show that ~Sf converges to Sf only if � = 
 = 0.

If � 6= 0 or 
 6= 0, ~Sf will never converge to the power spectrum Sf .

V Numerical Experiments

In this section numerical experiments are reported that test the proposed EM algorithms (for

full Rf and SAR models), and to compare them with the LMMSE approach in Ref. 4. All three

algorithms are also compared to the \ideal" LMMSE restoration �lter in (24) assuming the knowl-

edge of all parameters. Since the true image power spectrum (ensemble statistic) is unavailable, for

the \ideal" LMMSE �lter we used the periodogram estimate of the power spectrum assuming the

knowledge of the original image.
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Although the proposed EM-based algorithms do not attempt to minimize the mean square error

(MSE) of the restored image (it is the likelihood functional that is being optimized), for comparison

purposes with the LMMSE �lter in Ref. 4 and the \ideal" LMMSE �lter we choose the MSE

criterion as an objective measure of performance in all our experiments. The (per pixel) MSE is

de�ned as

MSE =
1

N
kf � f̂k22; (44)

where f and f̂ are the original and the restored (upon convergence) images, respectively. For the

EM-based algorithms the convergence was tested in the likelihood, while for the LMMSE approach

in Ref. 4 the convergence was tested on two subsequent power-spectrum estimates. To obtain

statistically meaningful results we performed Monte-Carlo simulations in which the MSE was av-

eraged over �ve di�erent noise realizations. We experimentally observed that more than �ve noise

realizations did not change the nature of the MSE results that we present.

The MSE is a function of two noise parameters: � and 
. To avoid plotting the 3-D plot of the

MSE versus both noise parameters and to enhance clarity and visibility of the results we plot two

representative 2-D MSE plots: (constant-
): For a �xed SNRg = 30dB we plot MSE versus SNRh

by varying �, and (constant-�): For a �xed SNRh = 20dB we plot MSE versus SNRg by varying 
.

In those plots the noise parameters are expressed in terms of the signal-to-noise ratios (SNR), i.e.,

SNRh =
k�hk2

N�
; (45)

where k�hk2 is the energy of the known part of the PSF, and

SNRg =
kfk2

N

; (46)

where kfk2 is the energy of the original image. In what follows we present three experiments in

which the 256 � 256 \Lena" test image was used as the source image.

In all experiments presented in this paper Gaussian-shaped PSF given below was used for blur-

ring:

h(i; j) = c � exp

(
�
i2 + j2

2 � 32

)
; for i; j = �15;�14; � � � ;�1; 0; 1; � � � ; 14; 15; (47)
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where c is a constant chosen so that
P

i;j h(i; j) = 1. The same kernel as in (47) with the addi-

tive white-noise component of variance � was used for restoration. The blurred data was further

degraded with additive white observation noise of variance 
. We also performed the experiments

where the \smooth" PSF from (47) was used for restoration, while the noisy one ((47) plus the

additive PSF noise) was used in the blurring process. Due to the lack of space those experiments

are not presented. Similar results in both cases are obtained.

In every iteration of the EM algorithm the function F (	;	(n)) was monitored. The algorithm

is terminated based on the convergence of F (	;	(n)). Furthermore, since the exact minimum of

F (	;	(n)) cannot be found in the M-step, decreasing values of F (	;	(n)) guarantee convergence

based on the theory of the generalized EM (GEM) algorithm14. During all our experiments we

observed that the proposed updates for Sf , �, � and 
 reduced F (	;	(n)) at each iteration.

Experiment 1

In the �rst part of this experiment we compare the LMMSE restoration �lter in Ref. 4 (Eq.

(29) in this paper) and the proposed EM-based conditional-mean estimator in (24). For comparison

purposes we assume that noise parameters � and 
 are known. To examine the lower MSE bound

of these restoration �lters we supply to both �lters the periodogram estimate of Sf (i) obtained from

the source image. Note that in this case the EM-based conditional mean estimator for the full Rf

prior is equivalent to the \ideal" LMMSE estimator. The constant-
 MSE plot is shown in Fig.

1(a), and the constant-� MSE plot is shown in Fig. 1(b). It is interesting to notice in Fig. 1(b)

that the MSE of the LMMSE in Ref. 4 increases as the variance of the additive noise 
 decreases.

This counter-intuitive behavior can be explained by the fact that the LMMSE �lter in Eq. (29) is

underegularized due to the lack of the factor N that in the term �. Thus, when the additive noise


 is small the underegularization is more severe, therefore, the LMMSE �lter in Eq. (29) is less

stable which increases the MSE.

In the second part of this experiment in Figs. 2(a) and 2(b) we compare the image power

spectrum estimators in (26) (full Rf model case) and (37) (SAR model case) with the image power-
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spectrum estimator in Ref. 4 (Eq. (30) in this paper) when � and 
 are known. The constant-
 MSE

plot is shown in Fig. 2(a), and the constant-� MSE plot is shown in Fig. 2(b). The sample images

corresponding to the presented plots are in Fig. 2(b) are shown in Fig. 3. It is interesting to notice

in Figs. 2(a) and 2(b) that the \ideal" LMMSE �lter, the one where the periodogram estimate

using the source image is used for the power spectrum Sf , yields slightly worse performance, for

high SNRs, than the LMMSE where the power spectrum is estimated by the EM algorithm. An

explanation for this is that the EM algorithm for high SNRs provides better estimates for the power

spectrum of the source signal than the periodogram.

In both parts of this experiment all �lters converged within 30 iterations. The presented exper-

iments verify our previous claim that the derived LMMSE �lter expression in (24) is the correct

one as opposed to the one in (29) from Ref. 4 (without proper scaling of the autocorrelation to

compensate for the lack of the N factor, see Appendix A), since it results in lower MSE. Based on

the presented experiments and on the convergence analysis in Section IV it is clear that (in both

perfectly-known and partially-known blur cases) the EM-based algorithms have the capability to

simultaneously identify the image power spectrum and restore the degraded image. In other words,

the EM algorithms for both image models attain (or almost attain, at very low SNR's) the lower

MSE bound de�ned by the \ideal" LMMSE �lter.

Experiment 2

In the �rst part of this experiment we test the proposed EM algorithms in estimating one

of the noise parameters along with the image power spectrum while simultaneously restoring the

degraded image. The other noise parameter is assumed known and is held �xed. Since no provision

for estimating noise parameters was made in the LMMSE �lter in Ref. 4, the �lter could not be

included in the comparison. The constant-
 MSE plot is shown in Fig. 4, and the constant-� MSE

plot is shown in Fig. 5(a). The corresponding sample images are shown in Fig. 6.

In the second part of this experiment we assume that the PSF is perfectly known. In other

words � = 0 and we test the EM algorithm for both image models in estimating the observation
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noise parameter 
 along with the image power spectrum. In this case the proposed EM algorithm

with the full Rf model becomes equivalent to the iterative Wiener �lter described in Ref. 21 (Ch.

6, pp. 158). The MSE versus SNRg plot is shown in Fig. 5(b). In both parts of this experiment we

initialized the estimates of the power spectrum of the source image for all �lters using the degraded

image.

In both parts of the experiment the algorithms converged within 20-30 iterations. Based on

these experiments we make the following observations: (i) The EM algorithm (in both perfectly-

known and partially-known blur cases) for the SAR model attained (or almost attained at very

low SNRs) the \ideal" LMMSE lower-bound. At high SNR's, in the partially-known blur case, the

proposed algorithm actually slightly outperformed the \ideal" LMMSE �lter, which only con�rms

that the periodogram estimate of the power spectrum assuming the knowledge of the original

image is inferior to the true (ensemble) statistics. The algorithm also identi�ed the unknown noise

parameters with very high accuracy. (ii) The EM algorithm (in both perfectly-known and partially-

known blur cases) for the fullRf model failed to attain the \ideal" LMMSE lower bound for very low

SNR's. The reason for this could be the lack of information in the data to identify simultaneously

N + 1 parameters (the full power-spectrum and the unknown noise parameter). Additional prior

knowledge of the unknown parameters (or more data) may be needed.

VI Conclusions and Future Work

In this paper we derived two image-restoration techniques based on the Expectation-Maximization

(EM) algorithm in Ref. 14 which allow for inexact knowledge of the point-spread function (PSF). In

the �rst algorithm the full Rf model for the source image was used, while in the second algorithm

the SAR model was utilized. We showed that the linear minimum mean square error (LMMSE)

algorithm of Refs. 4 and 6 is a special case of our �rst EM algorithm. Furthermore, we showed and

veri�ed experimentally that the correct expression of the LMMSE �lter for this problem, when the

PSE noise is white, contains a factor N which multiplies the PSF noise variance. This factor was
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omitted in the derivation of the LMMSE �lter in Ref. 6 and 4.

Convergence analysis of the EM algorithm for the full Rf image model indicates that if good

estimates of the statistics of both observation and PSF noises are available, then the algorithm

can overcome the lack of knowledge of the signal statistics and produce excellent restorations. The

SAR image model -based EM algorithm showed the capability to accurately identify both the power

spectrum of the source image and one noise parameter simultaneously while producing excellent

restorations.

When the variances of both noises are unknown it is not possible to estimate them accurately.

The total noise term N�Sf(i)+
 for the Gaussian model or N�
�jQ(i)j2

+
 for the SAR model contains

� and 
 in a complementary fashion and they cannot be distinguished from the data only. We have

observed that in this case the iterative estimation algorithm is very ill-behaved and the estimate

depends on the initialization. In order to correct this problem knowledge in the form of a prior

distribution for � and 
 is necessary in order to simultaneously restore the image and estimate all

the unknown parameters in this problem. Work along those lines is currently under way (see Refs.

13 Ch. 5 and 19).

Finally, we would like to point out that the algorithms in this paper could be derived without

the Gaussian assumption using �xed-point analysis and additive correction in a manner similar to

the work in Refs. 23, and 24 for the classical restoration problem where the PSF is perfectly known.

However, for this problem this approach is very tedious and somewhat ad-hoc.
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VIII Appendix A: Derivation of the Eigenvalues of the

Noise Autocorrelation Matrix RT (f ).

First, we calculate RT (f) in DFT domain using the circulant assumption for �H and Rf . We

�rst rewrite (8) as follows:

RT (f) = E�h

n
�HRf�H

t
o
+R�g =

h
E�h

n
�Ht�H

oi
Rf +R�g

=
h
E�h

nPN�1
i=0 (�H)i(�H

t)i
oi
Rf +R�g;

(A�1)

where (�H)i is the ith column of matrix �H, whose nth element is equal to:

(�H)i(n) =�h(n� i)mod N
: (A�2)

Let W denote the N � N DFT matrix, (�)�1 and (�)H denote the inverse and the Hermitian

operations, respectively, andW�1 = 1
N
WH . It is easy to see that the DFT coe�cient corresponding

to (A-2) is given by

[W(�H)i] (n) = [W�h](n) exp (�j
2�

N
n i); (A�3)

where j is the imaginary unit. Then, the DFT of (�H)i can be written as

W(�H)i = diag
�
1; exp (�j

2�

N
i); � � � ; exp (�j

2�

N
(N � 1)i)

�
[W�h]: (A�4)

Further, we note that

WE�h

nPN�1
i=0 (�H)i(�H

H)i
o
W�1 =

PN�1
i=0 E�h

n
W(�H)i (�H

H)iWH 1
N

o
(A�5)

can be rewritten using (A-4) as follows:

WE�h

nPN�1
i=0 (�H)i(�H

H)i
o
W�1 =

PN�1
i=0 E�h

n
[W�h][W�h]H 1

N

o

=
PN�1

i=0 WE�h

n
�h�hH

o
W�1 =

PN�1
i=0 WR�hW

�1

=
PN�1

i=0 diag [�; � � � ; �] = Ndiag [�; � � � ; �] ;

(A�6)

where � is the variance of the PSF noise (or the eigenvalues of R�h). Finally, using the result of

(A-6), it is straightforward to obtain the DFT of (A-1), i. e.,

WRT (f)W
�1 = diag [N�Sf (0) + 
;N�Sf(1) + 
; � � � ; N�Sf(N � 1) + 
] ; (A�7)
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where Sf (i) are the power spectrum coe�cients of the source image (or the eigenvalues of Rf ) and


 denotes the observation-noise power-spectrum (or the eigenvalues of R�g). Thus, the eigenvalues

of RT (f) are equal to

N�Sf (i) + 
: (A�8)

A di�erent formula for calculating RT (f) was derived in Ref. 4; in the white-noise case this

formula becomes (Ref. 4, Eq. (18a), pp. 1256):

RT (f) = �Rf + 
I: (A�9)

It is easy to see that the eigenvalues of RT (f) in (A-9) are given by

�Sf(i) + 
: (A�10)

Comparing the expressions for the eigenvalues of RT (f) in (A-10) and (A-8) we note that (A-10)

lacks a factor of N . Proper scaling of the autocorrelation of Rf in the implementation of the

LMMSE �lter could render this problem non existent. However, lack of this N factor compromises

the value of this �lter as demonstrated in our experiments.

IX Appendix B: Derivation of the M-step of the EM

algorithm

IX.A Full Rf Model

From (23) it is clear that its minimization with respect to the ith frequency coe�cient is in-

dependent from other frequencies. Therefore, taking the partial derivative of (23) with respect to

Sf (i), and setting it equal to zero yields the following nonlinear equation with respect to S
(n+1)
f (i) :

1

S
(n+1)
f

(i)
� 1

[S
(n+1)
f

(i)]2

n
S
(n)
f jg(i) +

1
N
jM

(n)
f jg (i)j

2)
o
+ N�(n)

N�(n)S
(n+1)
f

(i)+
(n)

� N�(n)

[N�(n)S
(n+1)
f

(i)+
(n)]2

n
j �H(i)j2S(n)

f jg (i) +
1
N
j �HM (n)

f jg (i)�G(i)j2
o
= 0:

(B�1)
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The minimization of (B-1) can be greatly simpli�ed by observing that the dependency of the last two

terms of (B-1) with respect to Sf (i) is very weak compared to the �rst two terms. This is due to the

multiplication of Sf(i) by a factor of N� in the last two terms of (B-1). This multiplication factor

is small (typically less than 10�2 for SNRh = 20dB) and therefore, the location of the minimum

of (23) with respect to Sf(i) is primarily determined by the �rst two terms. We veri�ed this in

computer simulations in which we minimized (B-1) with respect to Sf (i) with and without the last

two terms: the obtained minimizers were practically identical. We also analyzed the plots of (B-1)

as a function of Sf(i), and we observed that the curvature of the functional in (B-1) is captured

by the �rst two terms only. Therefore, for the purposes of numerical computations of (B-1) we can

neglect the last two terms of (B-1). Now, the minimizer of (B-1) can be obtained in the closed

form, i.e.,

S
(n+1)
f (i) = S

(n)
f jg (i) +

1

N
jM (n)

f jg (i)j
2: (B�2)

Taking the partial derivative of (23) with respect to � and setting it equal to zero we obtain

PN�1
i=0

NS
(n)
f

(i)

N�(n+1)S
(n)
f

(i)+
(n)
=
PN�1

i=0

NS
(n)
f

(i)

[N�(n+1)S
(n)
f

(i)+
(n)]2

n
j �H(i)j2S

(n)
f jg (i) +

1
N
j �H(i)M

(n)
f jg (i)�G(i)j2

o
:

(B�3)

Let

u(�) =
N�1X
i=0

NS
(n)
f (i)

N�S
(n)
f (i) + 
(n)

(B�4)

and

v(�) =
N�1X
i=0

NS
(n)
f (i)

[N�S(n)
f (i) + 
(n)]2

�
j �H(i)j2S

(n)
f jg (i) +

1

N
j �HM

(n)
f jg (i)�G(i)j2

�
: (B�5)

Then, the solution of (B-3) is attained when

u(�) = v(�) (B�6)

for some � = ��. The functions u(�) and v(�) have linear and quadratic rates of decrease in

�, respectively. Furthermore, it can be shown that v(0) > u(0). Therefore, (B-6) has a unique

solution on the positive � axis. Thus, the solution of (B-6) can be obtained using a simple iterative
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procedure:

�(n+1) = �(n) v(�
(n))

u(�(n))
; (B�7)

where u(�(n)) and v(�(n)) are Eqs. (B-4) and (B-5) calculated at iteration (n). It is straightforward

to verify that �(n+1) converges to ��. To see this, assume that �(n) < ��. This implies v(�(n))
u(�(n))

> 1,

and then �(n+1) > �(n). In this case �(n+1) will converge to �� from below. Conversely, if �(n) > ��,

the ratio v(�(n))
u(�(n))

< 1, and then �(n+1) < �(n) which guarantees convergence from above.

Taking the partial derivative of the last two terms in (23) with respect to 
 and setting it equal

to zero we obtain:

PN�1
i=0

1

N�(n)S
(n)
f

(i)+
(n+1)
=
PN�1

i=0
1

[N�(n)S
(n)
f

(i)+
(n+1)]2

n
j �H(i)j2S(n)

f jg (i) +
1
N
j �H(i)M (n)

f jg (i)�G(i)j2
o
:

(B�8)

Following similar steps as in the case of solving (B-3), an iterative procedure for �nding the solution

of (B-8) can be obtained as follows:


(n+1) = 
(n)
v(
(n))

u(
(n))
; (B�9)

where

u(
(n)) =
N�1X
i=0

1

N�(n)S
(n)
f (i) + 
(n)

(B�10)

and

v(
(n)) =
N�1X
i=0

1

[N�(n)S
(n)
f (i) + 
(n)]2

�
j �H(i)j2S(n)

f jg (i) +
1

N
j �HM (n)

f jg (i)�G(i)j2
�
: (B�11)

IX.B SAR Model

Taking the derivative with respect to � of F (	;	(n)) in Eq. (34), the M-step of the EM algorithm

for the SAR model yields the following non-linear equation:

� N
�(n+1)

+
PN�1

i=0 jQ(i)j2
�
S
(n)
f jg(i) +

1
N
jM

(n)
f jg (i)j

2
�
�
PN�1

i=0
N�(n)

N�(n+1)�(n)+(�2)(n+1)jQ(i)j2
(n)

+
PN�1

i=0
N�(n)jQ(i)j2

(�2)(n+1)[ N�(n)

�(n+1)+

(n)jQ(i)j2]2

n
j �H(i)j2S(n)

f jg (i) +
1
N
j �H(i)M (n)

f jg (i)�G(i)j2
o
= 0:

(B�12)
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To simplify this minimization we neglect the last two terms in (B-12), as in the full Rf model,

since those terms for the same reasons as before, do not signi�cantly in
uence the minimum of the

functional. Then, from (B-12) the closed form solution for � reads:

1

�(n+1)
=

1

N

N�1X
i=0

jQ(i)j2
�
S
(n)
f jg (i) +

1

N
jM

(n)
f jg (i)j

2
�
: (B�13)

In a manner similar to the Gaussian case, the estimates for � and 
 can be obtained respectively

from the following equations:

PN�1
i=0

N

�(n)

N�(n+1)

�(n)
+
(n)jQ(i)j2

=
PN�1

i=0

N jQ(i)j2

�(n)

[N�(n+1)

�(n)
+
(n) jQ(i)j2]2

n
j �H(i)j2S(n)

f jg (i) +
1
N
j �H(i)M (n)

f jg (i)�G(i)j2
o

(B�14)

and

PN�1
i=0

jQ(i)j2

N�(n)

�(n)
+
(n+1) jQ(i)j2

=
PN�1

i=0
jQ(i)j4

[N�(n)

�(n)
+
(n+1)jQ(i)j2]2

n
j �H(i)j2S(n)

f jg (i) +
1
N
j �H(i)M (n)

f jg (i)�G(i)j2
o
:

(B�15)

By following the same approach as in the Gaussian case the iterative solutions for (B-14) and (B-15),

respectively can be obtained as follows:

�(n+1) = �(n)v(�
(n))

u(�(n))
(B�16)

and


(n+1) = 
(n)
v(
(n))

u(
(n))
; (B�17)

where

u(�(n)) =
N�1X
i=0

N
�(n)

N�(n)

�(n)
+ 
(n)jQ(i)j2

(B�18)

v(�(n)) =
N�1X
i=0

N jQ(i)j2

�(n)

[N�(n)

�(n)
+ 
(n)jQ(i)j2]2

�
j �H(i)j2S

(n)
f jg(i) +

1

N
j �H(i)M

(n)
f jg (i)�G(i)j2

�
(B�19)

u(
(n)) =
N�1X
i=0

jQ(i)j2

N�(n)

�(n)
+ 
(n)jQ(i)j2

(B�20)

v(
(n)) =
N�1X
i=0

jQ(i)j4

[N�(n)

�(n)
+ 
(n)jQ(i)j2]2

�
j �H(i)j2S(n)

f jg(i) +
1

N
j �H(i)M (n)

f jg (i)�G(i)j2
�
: (B�21)
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X Appendix C: Convergence proof for the iterative

power-spectrum estimator

Let us �rst examine the �rst derivative of the iteration sequence in (40). It is straightforward

to show that

@S
(n+1)
f

@S
(n)
f

=
2j �Hj2 1

N
jGj2S

(n)2

fh
j �Hj2S

(n)
f +N�S

(n)
f + 


i3
 + 
(2N�S
(n)
f + 
) +N�S

(n)2

fh
j �Hj2S

(n)
f +N�S

(n)
f + 


i2 � 0; (C�1)

for all S(n)
f � 0, which proves the monotonicity of the sequence. To show boundedness, we rewrite

(40) as follows

S
(n+1)
f =

S
(n)
f

(j �Hj2 +N�)S
(n)
f + 


2
4 1

N
jGj2

(j �Hj2 +N�)S
(n)
f + 


j �Hj2S
(n)
f +N�S

(n)
f + 


3
5 ; (C�2)

where 1
N
jGj2 = (j �Hj2 + N�)Sf + 
, and Sf are the true image power-spectrum coe�cients. If

S
(n)
f � Sf , then

(j �Hj2 +N�)S
(n)
f + 
 �

1

N
jGj2 (C�3)

and (C-2) implies

S
(n+1)
f � S

(n)
f : (C�4)

Thus, the sequence in (40) is bounded from above. Similarly, if

(j �Hj2 +N�)S(n)
f + 
 �

1

N
jGj2 (C�5)

then (C-2) implies

S
(n+1)
f � S

(n)
f ; (C�6)

and the sequence is bounded from below. (The sequence is trivially bounded from below by zero

since all quantities in (40) are positive).
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Figure 1: Experiment 1: Restoration with all statistics assumed known. (a) Constant-
 MSE plot.
(b) Constant-� MSE plot.
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Figure 2: Experiment 1: Restoration and simultaneous estimation of the image statistics. (a)
Constant-� MSE plot. (b) Constant-
 MSE plot.
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(a) (b)

(c) (d)

(e)

Figure 3: Experiment 1: Restoration and simultaneous estimation of the image statistics: (a)
Degraded image by SNRh = 20dB, SNRg = 11dB. (b) LMMSE in [4], (c) EM with full Rf model,
(d) EM with SAR model, (e) \ideal" LMMSE.
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Figure 4: Experiment 2: Restoration and simultaneous estimation of the PSF noise and the image
statistics. Constant-
 MSE plot.
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Figure 5: Experiment 2: Restoration and simultaneous estimation of the additive noise and image
statistics. (a) Constant-� MSE plot for partially known blur case. (b) Constant-� MSE plot for
perfectly known blur case (� = 0)..
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(a) (b)

(c) (d)

Figure 6: Experiment 2: Restoration and simultaneous estimation of the additive noise and the
image statistics. (a) Degraded image by SNRh = 20dB, SNRg = 11dB, (b) EM with full Rf model,
(c) EM with SAR model, (d) \ideal" LMMSE.
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