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ABSTRACT 

Herein we investigate the problem of detecting and localizing a known signal in a photon-limited image, 

where Poisson noise is the dominant source of image degradation. For this purpose we developed and 

evaluated three new algorithms. The first two are based on the impulse restoration (IR) principle and the 

third is based on the generalized likelihood ratio test (GLRT). In the IR approach, the problem is 

formulated as one of restoring a delta function at the location of the desired object. In the GLRT approach, 

which is a well-known variation on the optimal likelihood ratio test, the problem is formulated as a 

hypothesis testing problem, in which the unknown background intensity of the image and the intensity scale 

of the object are obtained by maximum-likelihood estimation.  We used Monte Carlo simulations and 

localization receiver operating characteristic curves (LROC) to evaluate the proposed algorithms 

quantitatively. LROC curves demonstrate the ability of an algorithm to detect and locate objects in a scene 

correctly. Our simulations demonstrate that the GLRT approach is superior to all other tested algorithms.   

 

1. Introduction 

Template matching, also known as signal-known-exactly (SKE) detection is the problem of detecting 

and localizing a known template (signal) image within a cluttered background image in the presence of 

noise [1].  This is one of the most basic and widely studied tasks in image processing, with many 

applications in fields such as object recognition, novelty detection, motion estimation, industrial 

inspection, medical imaging and sensor fusion [2]. 

Most research on SKE detection has focused on the Gaussian noise model.  In this paper, we 

propose algorithms for signal detection in photon-limited images, where the dominant source of noise is 

caused by lack of light, and is correctly modeled by a Poisson law [3]-[5].  Important photon-limited 
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applications are night vision and medical imaging (such as nuclear medicine [6]) where the number of 

collected photons is low.  The same theory applies to low-dose electron microscopy, where the limiting 

factor is the low number of electrons used to form the image.   

Object recognition in photon-limited imagery can be very challenging for a human observer, but 

a numerical detector, informed by the Poisson noise model, can be surprisingly effective [3],[4].  

Template matching in photon-limited imaging was first described in [3], in which a simple correlation 

detector was used.  The correlation detector lends itself to real-time computation; however, it is by no 

means an optimal detector for the Poisson noise case. An approximate likelihood-ratio test (LRT) for the 

photon-limited image classification problem was derived in Ref. [4] for the simplified case in which the 

template resides in a black background.  In Ref. [5] the detection problem was investigated for photon-

limited images passed through a linear system.  

In this paper, we develop, evaluate, and compare three algorithms for SKE detection in Poisson 

noise:  two based on the concept of impulse restoration (IR), and one consisting of a generalized 

likelihood ratio test (GLRT).  We evaluate these methods using localization receiver-operating-

characteristic (LROC) analysis, which captures both the detection and localization performance of the 

algorithms. 

The IR approach is a less-traditional method, in which the detection problem is framed as one of 

restoring a delta function that indicates the spatial location of the detected signal.  This can be viewed as 

an improvement on classical template-matching methods, such as the matched filter, which aim to 

produce a peak in their output at the detected signal location.  The potential benefit of IR methods is that 

they produce a sharp delta function at the desired position. The first explicit application of the IR 

principle was reported in Refs. [7] and [8]. More recently, the relationship between linear-minimum-
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mean-square-error (LMMSE) IR and object recognition was recognized and IR object-recognition filters 

were proposed [9]-[11]. IR-based methods that are robust to orientation and scale uncertainties were 

presented in Refs. [12] and [13]. A potential advantage of the IR viewpoint is that it permits the 

substantial base of knowledge gained in the image-restoration field to be brought to bear on the 

template-matching problem.  This observation was exploited for the Gaussian noise case in [14] and [15] 

and for the Poisson noise case in [16].  The work presented in this paper expands on the discussion of 

the IR methods described in Ref. [16], and introduces the GLRT, which we find outperforms the IR 

methods. 

The GLRT is a standard and widely used variation on the likelihood ratio test (LRT), which is a 

pillar of basic decision theory [1].  Many optimal decision strategies—e.g., Bayes risk, Neyman-

Pearson, maximum-likelihood—have the form of an LRT.  In a GLRT, the unknown parameters of the 

required likelihood functions are replaced by maximum-likelihood (ML) estimates of these parameters.  

Many well-known hypothesis-testing techniques, including the classical Student t-test, are examples of 

GLRTs. 

The rest of this paper is organized as follows. In Section 2 we present the IR formulation for the 

photon-limited noise case, and we solve the problem in two ways: 1) maximum-likelihood (ML) 

estimation and 2) maximum a posteriori (MAP) estimation. In Section 3 a GLRT is developed, which 

accounts in a simple way for local variations in background intensity and intensity scaling of the 

template, and thus significantly boosts performance over a previous LRT implementation [4].  In Section 

4 we present quantitative performance evaluations based on localization ROC (LROC) curves, which 

plot the probability of detection and correct localization of an object versus the false-alarm probability. 

Finally, in Section 5 we present our conclusions. 
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2. Impulse Restoration (IR) Methods 

We begin by reviewing the formulation of object recognition as an impulse-restoration problem.  Let the 

observed 00 NM ×  photon-limited image be denoted by ( )g m , where ( , )m n=m  denotes the discrete 

spatial coordinates of a pixel ( 00, , 1m M= −… , 00, , 1n N= −… ), and let pm , 1, ,p P= … , denote the 

set of unknown positions within the image at which the signal is located.   In photon-limited imaging, 

the image obeys the Poisson law, i.e., ( ) ~ ( [ ( )])g Poisson E gm m .  Here, we model the image as a scene 

containing one or more instances of a signal object ( )f m so that the expected value of the image is: 

 
1

[ ( )] ( )
P

p
p

E g f
=

= −∑m m m ,  (1) 

or, equivalently,  

 [ ( )] ( ) ( )E g f δ= ∗m m m� , (2) 

where  

 
1

( ) ( )
P

p
p

δ δ
=

= −∑m m m� . (3) 

Here, ( )δ m  represents a discrete impulse function and ∗  denotes convolution.    

For notational convenience, we will use the following matrix-vector notation to describe the 

imaging model in Eq. (2).:   

 [ ]E =g Fδ , (4) 

where F  is a doubly block-circulant matrix composed from the elements of ( )f m in such a way that Fδ  

represents circular convolution of the zero-padded versions of f  and δ� .  This representation is 

equivalent to Eq. (2) if the images are zero-padded to dimension 1 1 ( )M N N× =  and arranged as 1N ×  
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vectors by using lexicographic ordering.  Thus, in photon-limited imaging, the observed image can be 

modeled as ~ ( )Poissong Fδ .  Such a statistical relationship is commonly known as a Poisson linear 

model. 

 In the IR formulation, the detection problem reduces to one of deconvolving the observed image 

g  to obtain the indicator image δ , which contains an impulse at each location where the known signal 

is present.  In the following sections, we describe a maximum-likelihood (ML) and a maximum a 

posteriori (MAP) method of estimating δ . 

2.1 ML Solution 

We model the observed photon-limited image by the following Poisson likelihood function [6]: 

 
[ ]1

0

[ ]
( | )

!

i igN
i

i i

e
p

g

−−

=

= ∏
FF

g
δδδ , (5) 

where [ ]iFδ  is the thi  element of the vector Fδ .  The aim of impulse restoration is to estimate the 

indicator image δ  from the observed image g .  Here we pursue a maximum-likelihood (ML) estimation 

strategy [1] to obtain the desired estimate δ̂  , i.e.,  

 ˆ arg max{ln ( | )}p= g
δ

δ δ . (6) 

Taking the natural logarithm of (5) we obtain the required log-likelihood function 

 [ ] ( ) ( )
1

0

ln ( | ) [ ] ln [ ] ln ! .
N

i i i i
i

p g g
−

=

= + −∑g F Fδ δ δ  (7) 

From Eq. (7) it is clear that a closed-form solution for the ML estimate cannot be found; therefore, we 

employ the widely used the expectation-maximization (EM) algorithm [17] to obtain the solution 

iteratively. 
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In the present problem we define the complete data ijz  as the number of photoevents in ig  which 

were emitted, transmitted, or reflected by a region of the object that maps onto image location j . Under 

this definition, the functional relationship between the complete and incomplete data is  

 
1

0

, 0,1, , 1.
N

i ij
j

g z i N
−

=

= = −∑ …  (8) 

where 

 ij ij jz F δ= . (9) 

A similar relationship between complete- and incomplete-data sets has been used to solve the 

reconstruction problem in emission tomography, which leads to the following well-known iterative 

formula for the EM algorithm [18]-[20]: 

 
( ) 1

( 1)
1 1

( )0

0 0

ˆ
ˆ , 0, , 1

ˆ

l N
j ij il

j N N
li

ij ik k
i k

F g
j N

F F

δ
δ

δ

−
+

− −
=

= =

⎧ ⎫
⎪ ⎪⎪ ⎪= = −⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∑
∑ ∑

… . (10) 

2.2 MAP Solution 

Because the ML principle has no intrinsic form of regularization, it can produce undesirable results if 

used without modification.  Thus, it is common instead to use a maximum a posteriori (MAP) 

estimation procedure, which regularizes the solution through the use of a prior ( )p δ  on the signal.   

The MAP estimate is obtained by the following maximization: 

 
ˆ arg max{ln ( | )}

arg max{ln ( | ) ln ( )}

p

p p

=

= +

g

g
δ

δ

δ δ

δ δ
. (11) 



8

We assume a Gibbs prior on the indicator image δ , an approach that is now widely used in image 

processing and pattern analysis [21]. The Gibbs prior is defined as 

 [ ]1
( ) exp ( )p U

Z
β= −δ δ  (12) 

where 

 
,

( ) ( , ).
j

j k
j k C

U V δ δ
∈

= ∑δ  (13) 

The function U  is called the energy function and is the weighted sum of potential functions V  

associated with individual cliques jC . The parameter β  determines the relative weight of the prior term 

in the posterior function, and the parameter Z  is a normalization factor which is unnecessary to 

calculate. 

For the Poisson linear model, the MAP solution can be obtained by the one-step-late algorithm 

[22],[20]: 

 ( )
( ) 1

( 1)
11

( )0
( )

00

ˆ
ˆ , 0, , 1

l N
j ij il

j NN
li

ik kij l
ki j

F g
j N

U
FF

δ
δ

δβ
δ

−
+

−−
=

==

⎧ ⎫
⎪ ⎪⎪ ⎪= = −⎨ ⎬∂⎧ ⎫ ⎪ ⎪+⎨ ⎬ ⎪ ⎪∂ ⎩ ⎭⎩ ⎭

∑
∑∑

δ
… . (14) 

Note that the MAP algorithm differs from the ML EM algorithm only in the extra term in the 

denominator. As β  approaches zero, the MAP algorithm places diminishing emphasis on the prior 

information, and approaches the ML solution.  

 In traditional applications of MAP estimation to image reconstruction and restoration, the 

purpose of the prior is to encourage smoothness of the solution, under the assumption that the true image 

is correlated whereas the noise is not.  In our application, the true signal (the delta function) is not low-
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pass; therefore, standard image priors are not appropriate.  Therefore, we propose a modification of the 

traditional approach to make it suitable for our problem. 

 Specifically, we propose the following potential function, which is an adaptation of a form that 

has been used widely in other image-recovery problems [22]: 

 ( ) ( )ln cosh rV r λ λ
⎡ ⎤= −
⎣ ⎦

 (15) 

which yields 

 
( ) / /

/ /

r r

r r

V r e e

r e e

λ λ

λ λ

−

−

∂ −= −
∂ +

. (16) 

where 

 
i

jr
δ
δ
ˆ

ˆ
= , (17) 

with j  and k  denoting the pixel indices of neighboring pixels.  Examples of the derivative of the 

potential function, ( ) /dV r dr  are shown in Fig. 1 for various values of the parameter λ .   

The practical effect of this prior on the iterative formula can be understood by considering a 

location j  where the value jδ  is much larger than at the surrounding locations, so that r >>1. This leads 

to a negative value for ( ) /dV r dr , which decreases the denominator in Eq. (14), thus increasing the 

estimate of jδ .  If the value jδ  is not significantly larger than its surrounding locations (so that r  is 

nearly one), the derivative term will be nearly zero and the prior will have little effect on the estimate.  

The parameter λ  controls the sensitivity of the potential function to differences among neighboring 

pixels. 
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Note that the aim of this prior is contrary to the usual purpose of priors in image recovery.  

Whereas priors usually are used to encourage a smooth image solution (based on the prior assumption 

that natural images are smooth), our potential function seeks to emphasize the impulsive nature of the 

output (based on our knowledge that δ  is a collection of delta functions).  Those familiar with Gibbs 

priors will recognize that, whereas r  is usually defined as the difference between neighboring pixel 

values, we have instead defined it as a ratio of these values.  We have also negated the function 1( )V r  to 

make it have the desired sense of optimality. 

3. Generalized Likelihood Ratio Test (GLRT) 

In this section, we describe a second approach to the problem detecting a signal in Poisson noise, 

namely a GLRT [1].  The GLRT is a standard hypothesis test for choosing between competing 

hypotheses based on noisy observations.  In general, the GLRT solves the binary detection problem 

when the likelihood function ( | , )j jp Hg θ  describing hypothesis jH , 1, 2j = , is specified by an 

unknown parameter vector jθ .  In a GLRT, the log-likelihood ratio is evaluated by replacing the 

unknown parameter vectors with their maximum-likelihood (ML) estimates, i.e.,  

 
1 1

0 0

ˆ( ; )
( )

ˆ( ; )

p H

p H
Λ =

g
g

g

θ

θ
, (18) 

where ˆ
jθ  is ML estimate of jθ .  The hypothesis test is performed by comparing the log-likelihood ratio 

ln ( )Λ g  to a pre-determined threshold T , and making a decision accordingly, i.e.,  

 
1

0

ln ( )
d

d

TΛ ><g , (19) 
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where jd  indicates decision in favor of hypothesis jH .  Methods for selecting the threshold T are well 

known [1].  In this paper, we evaluate the results using localization receiver-operating-characteristic 

(LROC) curves [23], which examine the entire range of possible choices for T. 

We frame the object detection problem as a binary hypothesis test at every image location, in 

which one chooses between hypothesis 0H  (that the object is not present at a given location) and 1H  

(that the object is present at a given location).  Let us define ig  as a vector containing the photon counts 

in a small 1 2 ( )WK K N× =  image window iW  centered at the current test pixel i .  Using this definition, 

we model the competing hypotheses as: 

 0

1

: ~ ( )

: ~ ( )
i i

i i i

H Poisson b

H Poisson a

g 1

g f
. (20) 

where 1 is a vector representation of a 1 2K K×  image window filled with ones, ib  is the unknown scalar 

value of the background in the vicinity of test location i , and ia  is an unknown intensity scaling factor 

for the template object if .  

In Eq. (20), we are posing the task as one of deciding whether the image mean within the test 

window iW  is the known signal if  (within an intensity scaling factor ia ) or a locally uniform 

background with an unknown amplitude ib .  Clearly, we do not expect the image to be truly uniform, 

even locally, when the object is not present.  However, given our lack of information about the null 

hypothesis, the local-uniformity assumption is a suitably neutral statement about the background 

intensity.  While local uniformity would seem to be a very simplistic assumption, our results show that it 

is surprisingly effective. 
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Now we derive the specifics of the GLRT algorithm.  The likelihood functions for the hypotheses 

in Eq. (20) are: 

 
,

0
,

( ; )
!

i j i

i

g b
i

i i
j W i j

b e
p H b

g

−

∈

= ∏g  (21) 

and 

 
, ,

,
1

,

( )
( ; )

!

i j i i j

i

g a f

i i j
i i

j W i j

a f e
p H a

g

−

∈

= ∏g , (22) 

where ,i jf  and ,i jg  denote the value of pixel j  in test window iW  for the template if  and observations 

ig , respectively.   Substituting (21) and (22) into (18), it is easy to show that 

 
,

,, ˆˆˆ

ˆ
( )

i j

i i j i

i

i i j

i

g

a f b

j W

a f

b
e− +

∈

⎛ ⎞
Λ = ⎜ ⎟

⎝ ⎠
∏g . (23) 

where ˆia  and îb  are ML estimates of ia  and ib , respectively.  Taking the natural logarithm of (23) 

yields: 

 ,

, ,

ˆ

ˆ
ˆˆln ( ) ln

i

i i j

i

i j i i j i
j W

a f

b
g a f b

∈

⎡ ⎤⎛ ⎞
Λ = − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑g . (24) 

Now the ML estimates ˆia  and îb  are obtained simply by solving the following equations: 

 1( ; ) 0i i
i

p H a
a

∂ =
∂

g  (25) 

 0( ; ) 0i i
i

p H b
b

∂ =
∂

g . (26) 

It is easy to show that these equations yield the following solutions: 
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,

,

ˆ i

i

i j
j W

i
i j

j W

g

a
f

∈

∈

=
∑

∑
. (27) 

 ,

1ˆ
i

i i j
j WW

b g
N ∈

= ∑ . (28) 

Substituting Eqs. (24), (27), and (28) into Eq. (19), we obtain the following decision rule for the GLRT: 

 
1

0

, ,ln( )
i

d

i j W i j
j W d

g N f T
∈

><∑ � , (29) 

where , , ,/
i

i j i j i jj W
f f f

∈
= ∑� is a normalized version of the template. 

 Note that the GLRT decision rule in Eq. (29) can be computed simply by a cross correlation of 

the observed image ,i jg with the kernel ,ln( )W i jN f� .  This can be computed rapidly as a convolution 

using fast Fourier transforms, so it is a much faster technique than the IR methods described earlier. 

 In the following section, we compare the performance of our GLRT and IR methods with a 

more-traditional method, which we call the “exact LRT”, which has been proposed before [4].  This 

“exact LRT” makes the simplistic assumption that the template intensity is known exactly (there is no 

scaling factor ia  as in our GLRT) and that the background is zero.  These assumptions lead to the 

following decision rule: 

 ( )
1

0

, ,ln
d

i j i j
j W d

g f T
∈

><∑ . (30) 

Note that this method cannot be implemented in most practical applications, because it requires exact 

knowledge of the template.  In our experiments, we provided this “exact” method with the true template 
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intensity to determine its best-case performance.  In spite of this, it substantially underperformed the 

GLRT, which had no such information available to it.  Note also that the “exact LRT” in Eq. (30) is 

almost identical in form to the GLRT in Eq. (29).  The GLRT owes its performance advantage to the 

correct template normalization.  Specifically, the argument of the logarithm must sum to WN . 

4. Experimental results 

To evaluate our results we use a variation of the receiver operating characteristic (ROC) curve, a well 

known and comprehensive way to describe the detection performance of a human or machine observer 

[1].  The ROC curve is a plot of the probability of correct detection versus the probability of false alarm 

for the continuum of possible decision thresholds. Thus, it summarizes the range of trade-offs between 

missed detections and false alarms. The limitation of the ROC curve in characterizing a template-

matching algorithm is that it only captures the ability of the algorithm to decide the presence of the 

object, but does not test whether the perceived location of the object is correct.  

The localization ROC (LROC) curve [23] remedies this shortcoming by taking into account 

localization performance as well as detection performance. An LROC curve is a plot of the probability 

of detection and correct localization DLP versus the probability of false alarm FAP .  Thus, a decision is 

said to be correct only if the object is both detected and located correctly by the object-recognition 

algorithm. Whereas the ROC curve has the property that 1DP →  as 1FAP → , the LROC has DLP K→  

where 1K ≤  as 1FAP → .  

In this paper LROC curves were computed using Monte Carlo simulations. In each experimental 

trial, an image of a target object (either a tank, truck, or car (Figure 2)) was artificially embedded at a 
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random location within one of five different 256 ×  256 background scenes.  An example of a noise-free 

scene is shown in Figure 3.  The other background images that were used are shown in Figure 4.   

Poisson noise was added to each test scene to simulate photon-limited imaging.  In this type of 

imaging, the signal-to-noise ratio (SNR) increases in proportion to the mean image intensity (because 

the variance of a Poisson random variable is equal to its mean) [6],[24]. Therefore, images with lower 

average numbers of photons have poorer SNR.  In Fig. 5 we show noisy versions of the test scene in Fig. 

3 at total mean photon counts of 25,000, 50,000 and 100,000.  

For each image, all the algorithms were applied three times, once for each of the candidate signals 

(tank, truck, and car).  The peak of the output was taken to be the algorithm’s decision as to the location 

of the object, and the output value of the algorithm (the likelihood ratio in the GLRT or the estimate 

delta signal in the IR methods) was used as a decision variable t . If t  exceeded a decision threshold T , 

then the object was said to be present at the location of the peak; otherwise, the object was said to be 

absent. 

In order to obtain the LROC, DLP  and FAP  must be computed as functions of the decision threshold 

T . These probabilities were obtained by numerical evaluation of the following integrals: 

1

0

( )

( )

DL

T

FA

T

P p t H dt

P p t H dt

∞

∞

=

=

∫

∫

     (31) 

where ( )jp t H  is the conditional probability density function (PDF) of t  given hypothesis jH . The 

conditional PDFs 1( )p t H  and 0( )p t H  were obtained by generating sets of 50 images, each with a 

different noise realization and with different random object location. In one set of images, the signal was 
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present in each scene; in the other set, the signal was absent. In the case where the object was present, 

each algorithm was applied to every image, and the magnitude t  of the peak value of the decision 

function was recorded, provided that the peak correctly indicated the template location. The normalized 

histogram of these values was then used as 1( )p t H . To find 0( )p t H  the set of images in which the 

object is absent was used. Again, the algorithms were applied to each image, but the magnitude of the 

peak value of the decision function was used regardless of its location. The normalized histogram of the 

recorded peak values of the decision function obtained was used as 0( )p t H . The LROC curves were 

obtained by varying the decision threshold T  and computing the integrals in Eq. (31). 

Examples of the outputs of the algorithms tested are shown in Fig. 6.  The overall LROC curves are 

shown in Fig. 7. The GLRT performed best overall in this experiment, in all cases producing by far the 

highest detection/correct-localization probability at any given false-alarm probability.  As expected, the 

performance of the GLRT decreased with decreasing photon counts (decreasing SNR), but maintained 

excellent performance even at only 25,000 counts.  Even though the “exact LRT” was provided with 

exact information as to the intensity of the template, it was unable to come close to matching the 

performance of the more-realistic GLRT method (which did not have access to this information).   

The IR methods also require exact knowledge of the template intensity.  To make these methods 

realistic, each method estimated the template intensity by assuming it to be equal to the average intensity 

of the scene, as measured from the observed data. The IR algorithms could be modified to incorporate 

local intensity estimation at every pixel (like the GLRT does), but unlike the GLRT, the result would be 

an iterative space-variant calculation, which would be far too computationally intensive for most 

practical applications. 
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From the example output images in Fig. 6, one gets the impression that the MAP method produces 

the sharpest output; however, this impression not meaningful, because the LROC curves show that the 

MAP method does not perform as well as the GLRT. 

5. Conclusions and future work 

We have studied three algorithms for object detection in Poisson noise: an EM IR method, a MAP IR 

method, and a GLRT.  The GLRT is based on a seemingly simplistic model that the image is locally 

uniform when the signal is absent.  In spite of this, the GLRT performed extremely well in our 

experiments, even at very low photon counts. 

In our prior work in Gaussian noise applications (e.g., [14]), we have found the impulse 

restoration (IR) approach to work well, but it did not perform well in the Poisson-noise setting studied in 

this paper.  

In this experiment, we did not consider geometrical distortions of the object (e.g., rotation and 

scale); however, these can be incorporated in the GLRT framework by considering them as additional 

parameters to be estimated within the parameter vector jθ (in a manner similar to our inclusion of 

intensity parameters ia  and ib ).  We will study this extension of the GLRT method in future work. 
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FIGURE CAPTIONS 

Figure 1. Plot of the derivative of the clique energy V as a function of r for several values of λ. 

Figure 2. Target objects that were embedded within the simulated test scenes. 

Figure 3.  Example noise-free scene from which noisy test images were generated. 

Figure 4.  Additional background images used in the simulations.  Test scenes were generated in equal 

numbers using these four backgrounds and the one shown in Fig. 3. 

Figure 5.  Examples of simulated photon-limited test scenes for mean total photon counts of 25,000 

(left), 50,000 (center) and 100,000 (right).  The object is virtually impossible to detect visually; 

however, the GLRT finds it easily. 

Figure 6.  Examples of the output of tested algorithms for the 50,000 photon-count case: EM (upper 

left), MAP (upper right), exact LRT (lower left), GLRT (lower right).  Arrows point to the target 

location. 

Figure 7.  LROC curves for mean total photon counts of 25,000 (left), 50,000 (center) and 100,000 

(right).  The proposed GLRT performed best among the methods tested, and its performance improves 

consistently with increasing number of photons.  



21

 

 

0 20 40 60 80 100 120 140 160 180 200
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

r

∂ 
V

/∂
 r

λ = 10 
λ = 100
λ = 200

 



22

 



23

TANK AT LOCATION (133,28)

50 100 150 200 250

50

100

150

200

250

 



24

 



25

 



26

 



27

 

 


