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Abstract 

Conventional radiography produces a single image of an object by measuring the 

attenuation of an x-ray beam passing through it.  When imaging weakly absorbing 

tissues, x-ray attenuation may be a suboptimal signature of disease-related information.  

In this paper we describe a new phase-sensitive imaging method, called multiple-image 

radiography (MIR), which is an improvement on a prior technique called diffraction-

enhanced imaging (DEI).  This paper elaborates on our initial presentation of the idea in 

[1].  MIR simultaneously produces several images from a set of measurements made with 

a single x-ray beam.  Specifically, MIR yields three images depicting separately the 

effects of refraction, ultra-small-angle scatter, and attenuation by the object. All three 

images have good contrast, in part because they are virtually immune from degradation 

due to scatter at higher angles.  MIR also yields a very comprehensive object description, 

consisting of the angular intensity spectrum of a transmitted x-ray beam at every image 

pixel, within a narrow angular range.  Our experiments are based on data acquired using a 

synchrotron light source; however, in preparation for more-practical implementations 

using conventional x-ray sources, we develop and evaluate algorithms designed for 

Poisson noise, which is characteristic of photon-limited imaging.  The results suggest that 

MIR is capable of operating at low photon count levels, therefore the method shows 

promise for use with conventional x-ray sources. The results also show that, in addition to 

producing new types of object descriptions, MIR produces substantially more-accurate 

images than its predecessor, DEI.  MIR results are shown in the form of planar images of 

a phantom and a biological specimen.  A preliminary demonstration of the use of MIR for 

computed tomography is also presented. 
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Introduction 

Conventional radiography depicts only one object parameter—x-ray attenuation—

neglecting other potentially informative effects of an object on the transmitted x-ray 

beam.  In addition, conventional radiographs are degraded by the effect of scatter, which 

can significantly obscure image details. 

 Herein we present an x-ray imaging approach that produces a more-

comprehensive description of the object, while rejecting virtually all undesired scatter.  

The images are obtained using a system of diffractive optical elements that allows the 

angular content of the beam to be analyzed.  We refer to the method as multiple-image 

radiography (MIR), because it is based on computation of multiple parametric images of 

the object from multiple acquired images obtained using the crystal system.  This paper 

elaborates on the initial presentation of the MIR technique given in [1].   

 MIR begins with computation of a relatively comprehensive object description in 

the form of an angular intensity spectrum of the transmitted beam, within a narrow 

angular range, for every image pixel.  This is accomplished by applying a deconvolution 

step to the data obtained at every pixel.  Next, the MIR method produces three parametric 

images—attenuation, refraction, and ultra-small-angle scatter—which are virtually 

immune to the undesired scatter that degrades conventional radiographs.  Examples of 

these images are shown in Figure 1, along with a conventional radiograph of the same 

object for comparison.  (Note that the radiograph shown in Figure 1 was obtained using a 

synchrotron light source, so it shows somewhat better image quality than one would 

expect from a clinical radiography system.) 
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 The MIR parametric images in Figure 1 can be interpreted as follows.  The MIR 

attenuation image (Figure 1, second image) is similar to a conventional radiograph, but 

exhibits much greater contrast owing to scatter rejection.  The MIR refraction image 

(Figure 1, third image) depicts the effect of small beam deflections due to slowly varying 

refractive index variations in the object.  The MIR ultra-small-angle scatter image 

(Figure 1, bottom image) quantifies angular divergence of the beam caused by the 

presence of textural structure within the object at a scale smaller than a pixel, but much 

larger than the x-ray wavelength.  Paper fibers are a good example of such structure. 

 MIR is an improvement on a well-known previous technique called diffraction-

enhanced imaging (DEI) [2].  The main advantages of MIR over DEI are: 1) MIR 

produces an ultra-small-angle scatter image, which DEI does not; 2) MIR corrects 

substantial errors inherent in DEI; and 3) MIR is more robust to noise than DEI. 

 Like DEI, MIR is expected initially to be best suited for applications involving 

small field-of-view imaging of soft tissue, such mammography and imaging of joints.  

DEI has already demonstrated a certain degree of success in both of these applications 

(e.g., [3],[4]), and we anticipate that MIR will enhance the results obtained by DEI while 

producing new information in the form of a scatter image. 

 The experiments reported in this paper are based on data acquired using a 

synchrotron light source.  An aim of our research group is to produce a system, based on 

a small, conventional x-ray source, which can be used for clinical diagnostic purposes.  

Such a system is currently under development at the Illinois Institute of Technology.  

Because of the intensity limitations of conventional x-ray sources, we expect that this 

system will be photon-limited.  Therefore, we assume in this paper that the acquired data 
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will be corrupted by Poisson noise, and we plan our algorithmic approaches accordingly.  

Specifically, we use iterative statistical methods (maximum-likelihood and Bayesian 

estimation), based on a Poisson linear model, to solve the required deconvolution 

problem. 

 In this paper, we concentrate on a planar-imaging mode, which we call MIR.  

However, we also show preliminary results in a computed-tomography mode, which we 

call MICT.  Both sets of results show similar characteristics of the technique.   

 Because MIR can produce multiple images of the same object, MIR offers the 

possibility of segmenting the images into various tissue types by classifying the 

multivariate signature of each pixel.  To illustrate this potential feature, we show 

preliminary image-segmentation results that capitalize on the multiple images produced 

by MIR. 

 In recent years, there has been increasing interest in x-ray imaging methods that 

derive contrast from the phase properties of the object [2,5-11].  The DEI method of 

Chapman et al. [2], precursor of the proposed MIR technique, is able to separate the 

effects of absorption and refraction by using two acquired images.  Our research group 

has explored a curve-fitting method for determining fundamental beam parameters from 

x-ray images [12].  The contribution of MIR as compared with its predecessor, DEI, is 

that it produces ultra-small-angle scatter images, angular intensity spectra, more-accurate 

refraction and absorption images, and good noise performance from photon-limited data.   

 The rest of the paper is organized as follows.  The following section explains the 

imaging model on which MIR is based, showing that the desired object information can 

be recovered from the measured data by deconvolution.  Section 2 explains the 
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deconvolution algorithms, based on a Poisson-noise assumption, which we employed in 

our experiments.  Parametric images derived from the deconvolved angular intensity 

spectra are defined in Section 3.  We describe our experimental results in Sections 4 and 

5, and provide a concluding discussion in Section 6. 

1. MIR imaging model 

 To aid in the following discussion, let us first introduce spatial and angular 

coordinate systems as shown in Figure 2.  We assume the beam is traveling along the z-

axis. 

 In the proposed MIR method, data are acquired by illuminating the object with a 

collimated, monochromated x-ray beam and measuring the transmitted radiation.  In 

MIR, we focus our attention on transmitted beam components traveling at angles 

described by extremely small values of θ ′  (on the order of microradians) with respect to 

the optical axis of the imaging system. 

 To measure refraction and ultra-small-angle scatter, it is necessary to detect very 

small variations in the directionality of the transmitted beam.  This is accomplished in the 

MIR method by using the same imaging system as DEI, which is shown in Figure 3.  The 

first two crystals in the imaging system serve principally to collimate and monochromate 

the beam.  After passing through the object, the transmitted beam is incident on a third 

crystal, called the analyzer, which reflects only those components of the beam traveling 

at or near the analyzer’s Bragg angle Bθ , thus rejecting all components outside a narrow 

angular range.  By rotating the analyzer, and acquiring multiple images along the way, it 

is possible to gain the information needed to compute the intensity and directionality 
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characteristics of the transmitted beam.  The details of this computation are explained 

later in the paper. 

 MIR involves illuminating the object with an x-ray beam of significant spatial 

extent (ideally covering the entire region of interest of the object).  However, because the 

crystal optics reject angular components of the beam that are outside a narrow range, the 

imaging process can be viewed as essentially a pixel-by-pixel operation, with little or no 

crosstalk between adjacent pixels.  The issue of crosstalk is further discussed in Appendix 

A. 

 Let us consider the portion of the beam destined for a particular pixel.  The object 

will influence this portion of the beam by attenuating it (by absorption and scatter 

rejection), deflecting it (by refraction), and increasing its angular divergence (by ultra-

small-angle scatter).   These effects are all captured by the input-output relationship 

between the angular intensity spectrum of the illuminating beam and that of the 

transmitted beam.   

 Because the analyzer crystal is insensitive to intensity variations in the φ  

direction, we will simplify the notation by suppressing the φ -dependence of the angular 

intensity spectra.  We will also assume for notational simplicity that the initial beam is 

spatially uniform within the region of interest. 

1.1 Measurements with object absent 

 To understand the relationship between the input and output angular intensity 

spectra, let us develop a model of the measured intensity.  When no object is present in 

the beam, the total intensity at the detector plane as a function of analyzer setting θ  is 

given by 
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 0 1 2( ; , ) ( ) ( ) ( ) ( ) ( )Ag x y I R R R d Rθ θ θ θ θ θ θ θ
∞

−∞
′ ′ ′ ′ ′= −∫ � , (1) 

where 0 ( )I θ  represents the angular spectrum of the initial beam; 1( )R θ , 2 ( )R θ , and 

( )AR θ  denote the intensity reflectivity functions of the two monochromator crystals and 

the analyzer crystal, respectively.  The integration over θ ′  describes the action of the 

detector, which is insensitive to angle.  Equation (1) is based on a well-known 

geometrical-optics approximation of the interaction of the beam with the crystals [13]. 

 The function ( )R θ  defined in equation (1) is known as the intrinsic rocking 

curve, because it is an intrinsic property of the imaging system, representing the intensity 

measured at the detector when the analyzer crystal is “rocked” (rotated in angle θ ) when 

no object is present.  The intrinsic rocking curve is assumed to be known, because it is 

easily measured. 

 Equation (1) has the simple form of a convolution, and can be written more 

compactly as  

 0( ) ( ) ( )AR I Rθ θ θ′= ∗ , (2) 

where ∗  denotes convolution and  

 0 0 1 2( ) ( ) ( ) ( )I I R Rθ θ θ θ′ =  (3) 

represents the angular intensity spectrum of the beam that illuminates the object (after 

preparation by the monochromator). 

1.2 Measurements with object present 

Using the same assumptions as transport theory [14], we will treat beam propagation 

through the object as linear in intensity; therefore, the effect of the object on the beam 

can be regarded as a linear system in terms of the angle θ .   Thus, the angular intensity 
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spectrum of the beam after passing through the object (but before diffracting from the 

analyzer) can be described by: 

 0( ; , ) ( ) ( , ; , )I x y I f x y dθ θ θ θ θ
∞

−∞
′ ′ ′ ′= ∫ , (4) 

where the function ( , '; , )f x yθ θ  is the impulse response of the object.   Physically,  

( , ; , )f x yθ θ ′  represents the angular intensity spectrum of the transmitted beam that 

would be measured if the object were illuminated with a perfectly collimated beam, i.e., a 

beam having angular intensity spectrum 0 0( ) ( )I Iθ δ θ′ = . 

 We will also assume that, within the ultra-small-angle regime in which the 

measurements are taken, the angular intensity pattern caused by sub-pixel object 

structures is nearly invariant to θ .  In other words, we assume that the shape (but not the 

direction) of the angular pattern is unchanged by reorienting the illuminating beam by an 

angle on the order of microradians.   

 Under this assumption of angle-invariance, the effect of the object on the beam’s 

angular intensity spectrum (equation (4)) reduces simply to the following convolution: 

 0 0( ) ( ) ( ; , ) ( ) ( ; , )I I f x y d I f x yθ θ θ θ θ θ θ
∞

−∞
′ ′ ′ ′ ′= − = ∗∫ . (5) 

Thus, when the object is placed in the imaging system, the measured angular intensity 

spectrum becomes 

 0( ; , ) ( ) ( ; , ) ( )Ag x y I f x y Rθ θ θ θ′= ∗ ∗ . (6) 

Commuting the convolutions, grouping terms, and using equation (2) we obtain: 

 ( ; , ) ( ) ( ; , )g x y R f x yθ θ θ= ∗ . (7) 

In practice, the image is sampled on a pixel grid, in which case equation (7) can be 

approximated in discrete form as: 
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 , ,( ) ( ) ( )m n m ng R fθ θ θ= ∗ , (8) 

where ( , )m n  are discrete pixel indices.  Equation (8) expresses a convolutional 

relationship between the measured intensities , ( )m ng θ  and the impulse response , ( )m nf θ .  

Within the limitations of the chosen imaging setup, the function , ( )m nf θ  provides a rich 

description of the object’s effect on the beam.  This function will form the basis of the 

remainder of the analyses in this paper. 

 The desired angular intensity spectrum , ( )m nf θ  can be recovered from the 

observed intensity , ( )m ng θ  by performing a deconvolution (inversion of equation (8)) at 

every spatial location ( , )m n .  The following section explains the details of the 

deconvolution procedure. 

2. Deconvolution of the angular intensity spectra 

In practice, measurements of , ( )m ng θ  are made at discrete rotational settings of the 

analyzer crystal, and the values thus obtained are represented using a grid of discrete 

pixels.  We will enumerate the discrete analyzer settings by index 1, ,k K= … , and the 

pixels by discrete spatial indices 1, ,m M= … , 1, ,n N= …     Thus, the desired function 

, ( )m nf θ  that describes the object is replaced in the following discussion by the discrete 

quantity , [ ]m nf k , ( )R θ  is replaced by [ ]R k , and the observed intensities , ( )m ng θ  become 

, [ ]m ng k . 

 In each of the deconvolution methods described below, we assume the data to be 

photon-limited, so that Poisson noise is the dominant noise source.  Thus, our observation 

model is as follows: 
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 ( ), ,[ ] ~ [ ] [ ]m n m ng k Poisson R k f k∗ . (9) 

The aim of the following methods is to invert this model to estimate , [ ]m nf k ; the 

differences among the methods lie in the way in which they aim to lessen the effect of 

noise. 

 In the following sections, to simplify notation, we will sometimes represent 

images as vectors (indicated by bold letters).  For example, ,m nf  will denote the discrete 

angular intensity spectrum at an individual pixel ( , )m n , and f  will denote a one-

dimensional (vector) representation of the three-dimensional function , [ ]m nf k  obtained 

by lexicographic ordering of the pixel values. 

2.1 Maximum-likelihood (ML) solutions 

The maximum-likelihood (ML) solution of the deconvolution problem is the value of ,m nf  

that maximizes the Poisson likelihood function for each pixel, i.e., 

 
,

, ,
ˆ arg max ( ; ), 1, , , 1, ,

m n
m n m np m M n N= = =

f
f g f … …  , (10) 

where  

 
( ) , ,

[ ] [ ] [ ]
,

,
,

[ ] [ ]
( ; )

[ ]!

m n m n
g k R k f k

m n
m n

m n

R k f k e
p

g k

− ∗∗
= ∏g f  . (11) 

A constrained solution of equations (10) and (11) can be obtained by using the well-

known expectation-maximization (EM) algorithm [15].  The EM algorithm for this 

deconvolution problem produces a solution that is guaranteed to be non-negative if the 

initial estimate is non-negative.  The iteration, which is widely used in nuclear-medicine 

imaging [16], is described by the following expression: 
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  =  
∗  ∑

 ,  (12) 

where ( )
,

ˆ [ ]i
m nf k  denotes the ith estimate of , [ ]m nf k , and  denotes cross correlation.  Note 

that the iterative deconvolution in equation (12) is performed separately at each pixel 

because the likelihood functions are not coupled in any way.  Also note that, since the 

rocking curve is even, the cross correlation in equation (12) can be replaced by 

convolution.   

 In practice, if the noise level is high, this algorithm is usually stopped prematurely 

to stabilize the solution in the presence of noise.  Early stopping of the EM algorithm 

amounts to an implicit method of regularization.   

2.2 Maximum a posteriori (MAP) solution 

When there is an appreciable amount of noise in the data, an explicit regularization 

approach may be preferred.  In this study, we employed a Bayesian approach based on 

the maximum a posteriori (MAP) criterion, i.e., 

 
,

, ,
ˆ arg max ( ; ), 1, , , 1, ,

m n
m n m np m M n N= = =

f
f f g … …  , (13) 

where ( )p f  represents a prior probability law on f  that reflects known properties of the 

actual signal, and ,( ; )m np g f  has the same form as the likelihood function in equation (11)

.  In the present context, the prior informs the algorithm that we expect the angular 

intensity spectrum to be a smooth function.  

 In our studies, we represent this knowledge by way of a Gibbs prior, which has 

the following form: 
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 1( ) exp )l
l

p V
Z

β = − ( 
 

∑f f  , (14) 

in which the potential functions ( )kV f  are defined so that smoother functions are favored 

over less-smooth ones, β  controls the strength of the prior, Z  is a normalizing constant, 

and the summation is over sets of pixels called cliques.  Adoption of a Gibbs prior is 

equivalent to an assumption that f  is a Markov random field [17].   

 A modified EM algorithm [18] can be used to find the MAP solution.  The 

general form of the iterative procedure is: 

 
( )
,( 1) ,

, ( )
,

1 ,

ˆ [ ] [ ]ˆ [ ] [ ] ˆ( ) [ ] [ ][ ]
[ ]

i
m ni m n

m n K i
m n

k m n

f k g kf k R k
V R k f kR k

f k
β

+

=

 
 
 
  

  =  ∂ ∗ +  
∂∑ f

 (15) 

wherein the derivative term in the denominator depends on the specific choice of the 

prior.   

 In the following we describe two ways to define the prior, and thus two specific 

choices for the derivative term.  Specifically, we can choose to impose smoothness only 

along the k -axis of the discretized angular intensity spectrum, thus encouraging each 

pixel’s angular intensity spectrum to be a smooth function.  Alternatively, we can impose 

smoothness spatially as well, thus utilizing the knowledge that, because of their close 

proximity, neighboring pixels will tend to have similar angular intensity spectra.  

Following nomenclature from the image-processing field [19], we describe each pixel’s 

angular intensity spectrum as a channel; thus, we describe the former approach as a 

single-channel method, and the latter as a multichannel method. 
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2.2.1 Single-channel MAP solution.        In a single-channel solution, we impose 

smoothness only along the k -axis of each angular intensity spectrum; thus the 

deconvolution procedure for each pixel is performed independently of all the others, just 

as in the ML approach.   In this case, the potential functions are as follows: 

 [ ]( ) [ ] [ ] [ ]{ }2

, , , ,
1

2 1 1
K

n m n m n m n m
i

V f k f i f i f i
=

 = − − − + ∑ . (16) 

This has the effect of penalizing large variations in values along the k -axis of the angular 

intensity spectrum at each pixel. 

2.2.2 Multichannel MAP solution     In the multichannel solution, we assume 

additionally that the images are spatially smooth.  This assumption is reflected in the 

following potential function: 

 V f k
f i f i f i

f i f i f i f i f i
n m

n m n m n m

n m n m n m n m n m
i

K

,
, , ,

, , , , ,

c h = − − − +

+ − − − −

R
S|
T|

U
V|
W|− − + +

=
∑

2 1 1

4

2

1 1 1 1
2

1

, (17) 

which penalizes large variations among immediate spatial and angular neighbors in the 

function , [ ]m nf k , with neighborhoods defined as shown in Figure 4. 

3. Computation of parametric images 

The angular intensity spectrum , [ ]m nf k  is a three-dimensional image, with two spatial 

dimensions and one angular dimension. The function , [ ]m nf k  is a rich source of 

information about the object, but can be made easier to interpret by distilling it into a 

small number of two-dimensional parametric images for visualization purposes. 

  In our experiments, we summarize the angular intensity spectrum at each pixel by 

three values, representing attenuation, refraction, and ultra-small-angle scatter. Thus, we 
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obtain three images of any given object.  In Appendix B we show that each of the three 

parametric images we propose can be expressed as a property that is either exactly linear 

or nearly linear with object thickness.  This property is important both for image 

interpretation and to enable computed tomography (CT) reconstruction by conventional 

methods. 

 The computed parametric images are specified in the definitions that follow.  

These definitions are stated in terms of the following quantities: the total intensity at a 

given pixel ( , )m n , 

 , ,
1

ˆ [ ]
K

m n m n
k

T f k
=

= ∑ ; (18) 

the angular intensity spectrum at this pixel normalized by its total intensity, 

 ,
,

,

ˆ [ ]
[ ] m n

m n
m n

f k
F k

T
= ; (19) 

the total intensity at each pixel in the absence of the object,  

 0
1

[ ]
K

k

I R k
=

= ∑ ; 

and the angular spacing θ∆ of the samples in , [ ]m nf k . 

3.1.1 Attenuation image.       In the ultra-small-angle regime, attenuation of the x-ray 

beam is caused both by absorption and by scattering into angles outside the measured 

range.  These sources of beam attenuation are collectively summarized by the following 

parameter: 

 , ,ln [ ]m n m na T k= − , (20) 
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which is simply a discrete inversion of an exponential loss law.  This image conveys the 

same information as a conventional radiograph or DEI absorption image aims to convey; 

however, it produces a much more accurate result than either of these methods, as we will 

show later. 

3.1.2 Refraction image.        Refraction induces an overall deflection of the beam, which 

we measure as the angular shift of the beam centroid (as compared to its position when 

no object is present), i.e., 

 , ,
1

[ ]
K

m n m n
k

r kF k θ
=

 = ∆ 
 
∑ . (21) 

The angle ,m nr  is the same as that denoted by Zθ∆  in the original reference on DEI [2]; 

however, as we will see later, the values of this parameter can be computed much more 

accurately by MIR than by DEI.   

3.1.3 Ultra-small-angle scatter  image.       Ultra-small-angle scatter by sub-pixel object 

structures causes angular broadening of the beam.  We characterize this broadening by 

the beam’s angular divergence about the angle ,m nr , as measured by the second central 

moment of the normalized angular intensity spectrum, i.e., 

 2
, , ,

1

( ) [ ]
K

m n m n m n
k

s k r F kθ
=

= ∆ −∑ . (22) 

This quantity is simply the variance of the net random deflection angle of individual 

photons. 
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4. Experiment 1: MIR projection imaging of a phantom 

4.1 Phantom and data collection 

A physical phantom was constructed (Figure 5), which exhibits various 

combinations of refraction, absorption, and scattering effects.  Staggered sheets of paper 

were arranged so that the number of layers of paper ranged from one to eight.  A 

cylindrical Lucite rod (radius 6 mm, length 51mm) was placed in front of the paper.  The 

paper in the phantom is expected to produce ultra-small-angle scattering, but little 

refraction; the converse is true for Lucite.  The entire phantom was in contact with a sheet 

of Lucite (6.35 mm thickness).  A steel ball used for alignment appears in the corner. 

 The phantom was imaged using 18keV x-rays at the National Synchrotron Light 

Source X15A imaging beamline.  A total of 24 images of the phantom were acquired at 

0.8 µradian increments from –9.6 to +8.8 µradians.  The photon flux incident on the 

object was approximately 5.3 ×  106 ph/mm2 (1.1 mGy absorbed surface dose in water).  

Each image consisted of 1256× 444 pixels of dimension 50 µm × 50 µm.  The detector 

was an x-ray photostimulable image plate (Fuji HR-V image plate, Fuji BAS-2500 reader 

with 50 µm ×50 µm pixel size).  Background and scattered radiation on the image plate 

were reduced by slits. The remaining background was subtracted from every pixel in each 

image. 

4.2 Simulation of photon-limited data 

A clinical MIR imaging device under development will most likely be photon-

limited; therefore, we investigated the effect of Poisson noise on the results of our 

deconvolution methods.  As a basis for simulating the effect of a photon-limited imaging 
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environment, we considered the acquired synchrotron data to be approximately noise-free 

in comparison to the noise level we envision will prevail in a clinical device.  Thus, we 

simulated the effect of photon noise by generating Poisson-distributed image values in 

software based on the “noise-free” acquired data.  In this experiment, we quantify the 

noise level by the highest mean photon count per pixel in the image.   

We created simulated data sets for two cases: 300 ph/pixel and 50 ph/pixel.  

Assuming the pixel size to be 50 µm × 50 µm, these photon counts correspond to 25 µGy 

and 4.2 µGy, respectively (surface dose absorbed in water).  In our simulation, we 

assumed the quantum efficiency of the detectors to be unity, which is reasonable at 

18keV.  Therefore, at 50 ph/pixel, the dose would be roughly equivalent to that of a 

typical diagnostic mammogram (40µGy) if images were acquired at 10 analyzer 

positions.    

Phase contrast persists at high energies, therefore similar refraction and scatter 

images can be obtained at x-ray energy of 60keV, with the water-equivalent dose being 

reduced by a factor of about 7.     

4.3 Experimental results 

We found that the synchrotron data were best deconvolved using the EM algorithm 

(Section 2.1); the simulated, photon-limited data with a maximum of 300 ph/pixel were 

best processed with the single-channel MAP method (Section 2.2.1); and the data with a 

maximum of 50 ph/pixel were best analyzed using the multichannel MAP method 

(Section 2.2.2).  This is not surprising since these methods are progressively more 

aggressive in their smoothing approach. 



 19

 Examples of the deconvolved angular intensity spectra are shown in Figure 6.  

Each graph shows the angular intensity spectrum computed at one pixel in the image.  At 

a pixel in the background, the deconvolved curve is a delta function (to within the 

smoothness imposed by the algorithm).  Thus, in the background, the object’s impulse 

response is itself an impulse function, meaning that the object has no refraction or 

scattering effect on the beam in background regions.  At a pixel which lies off-center in 

the rod, the corresponding curve shows that the beam is deflected to the right by 

refraction, as expected.  At a pixel where the rod and paper overlap, the curve shows that 

the beam is deflected by the rod, but also broadened by the paper.  At a pixel where there 

is only paper, the associated curve shows that the beam is substantially broadened by 

ultra-small-angle scattering.  In every pixel in the object, the beam is also attenuated.   

 Although the curves shown in Figure 6 are clearly informative, the results are 

easier to interpret in the form of parametric images. Figure 7 shows the results of 

parametric image computed at three noise levels: (a) “noise-free” image computed from 

the acquired synchrotron data; (b) maximum of 300 counts/pixel; and (c) maximum of 50 

counts/pixel.  The results show that, although image quality deteriorates somewhat with 

increasing noise level, the images are very informative even in the noisiest case. 

 The images shown exhibit expected characteristics of the object’s effect on the 

beam.  For example, the Lucite rod shows strong attenuation and refraction of the beam, 

but virtually no scattering.  Also, predictably, the paper shows significant attenuation and 

very strong scattering, but only small refraction effects.  Notably, the scatter produced by 

even one sheet of paper is clearly visible in the scatter image. 
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 Noticeable scattering is also depicted at the edge of the rod; however, this is 

actually an artifact caused by partial volume effect (finite detector size).  At these edge 

pixels, the rod occupies only a portion of these pixels; therefore, these pixels see a 

mixture of a highly refracted beam, and a beam that misses the rod entirely.  The 

resulting bimodal angular intensity spectrum leads to a large value of the computed beam 

divergence.  This artifact can be eliminated by an algorithm designed to detect such 

anomalous angular spectra; but, we did not investigate the issue further in this 

preliminary study, and we do not expect this effect to be so pronounced in biological 

specimens. 

4.4 Comparison with DEI 

The DEI method is based on a model that includes only attenuation and refraction effects 

(no scatter effects); thus, DEI produces highly erroneous results when ultra-small-angle 

scatter is present (which is virtually always the case in biological tissue).  In addition, 

DEI uses a first-order Taylor-series approximation of the rocking curve, which in essence 

models the rocking curve as a triangular function.  This approximation fails to utilize 

subtle features of the actual rocking curve, limits the range of refraction angles that can 

be measured, and can lead to sizeable errors in the images.  These model assumptions 

would be expected to lead to significant inaccuracies in the results, and indeed they do.   

 Figure 8 shows that substantial errors can arise in the attenuation images 

produced by DEI, and that these are corrected by MIR.  The plot in Figure 8 shows the 

theoretical curve for attenuation by a rod, along with the experimental MIR and DEI 

results.  MIR produces a close match, while DEI produces a significant distortion. 
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 Figure 9 shows that substantial errors also exist in the refraction images obtained 

by DEI.  One would expect the refraction image of the Lucite rod to be constant along the 

long axis of the rod.  While this is roughly true of the MIR refraction image, the DEI 

refraction image exhibits a staircase profile, caused by contamination of the rod’s 

refraction signal by the paper’s scattering effect.  Because MIR explicitly accounts for 

scatter, it produces an additional scatter image, and thus removes this contamination from 

the refraction image.   

 Figure 10 shows a comparison of DEI and MIR images computed from noisy 

data (maximum 50 ph/pixel).  The MIR and DEI attenuation images appear comparable 

in their noise levels, but the DEI refraction image appears to have a substantially higher 

noise level than the corresponding MIR image.  Further studies of noise performance will 

be performed as part of the effort to develop a compact MIR imaging system. 

5. Experiment 2: MICT imaging 

In the planar-imaging mode, the three MIR images can be expressed as line integrals of 

the absorption, refraction, and scatter properties, as explained in Appendix B.  Thus, MIR 

data can be used to obtain computed tomography (CT) images by conventional linear 

reconstruction methods.   

 To demonstrate MIR in its computed tomography mode (MICT), we prepared a 

second phantom (Figure 11), consisting of a Lucite jar containing a Lucite rod and a 

sheet of paper rolled into a cylinder.  The phantom was imaged using 40 keV x-rays at 

the National Synchrotron Light Source X15A imaging beamline.  The object was rotated 

in 1-degree increments to obtain 360 projection images at each of 11 analyzer positions.  

The analyzer positions ranged from from –4 to +4 µradians with 0.8-microradian 
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increment.  An exposure time of 0.5 second was used for each image.  The photon flux 

rate incident on the object was approximately 5.3× 106 ph/s/mm2.  Each image consisted 

of 1256× 444 pixels of dimension 50 µm × 50 µm.  For each projection, 20 images were 

taken without the object in the beam.  The average of these images was used for 

normalization of the sample images to account for non-uniformity of the incident beam, 

which does not change with analyzer setting, or that introduced by the crystal optics, 

which does change with analyzer setting.  In addition, 20 dark-current images were 

acquired and their average was subtracted from all images on a pixel-by-pixel basis 

before further processing.  The detector was stationary during the imaging process, so an 

area of only 3 mm ×  100 mm of the two-dimensional detector (RAD-ICON 2048) was 

used to acquire the images.   

 MIR projection images were computed from the data as in Experiment 1, and 

MICT images were reconstructed by conventional filtered backprojection (FBP) with a 

ramp filter. 

 The results, shown in Figure 12, exhibit the expected behavior in some ways, but 

not in others, suggesting that further theoretical developments will be needed to perfect 

the MICT method.  As expected, the paper is represented by large values in the scatter 

image, and low values in the refraction image.   Also expected is the strong refraction at 

the edges of the Lucite rod, and the constant attenuation within all the Lucite regions (jar 

and rod).  However, unexpectedly, the paper roll exhibits high attenuation.  We have not 

yet determined the cause of this apparent loss.  In future studies, we plan to undertake a 

fully quantitative comparison of the results to theoretical predictions from scattering 
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theory.   However, the results obtained to date are very encouraging that the subtle beam 

effects of refraction and scatter are clearly evident. 

 Figure 13 shows surface renderings of the paper and rod in the phantom, which 

were obtained by image segmentation.  Because the paper and rod have different scatter 

and refraction properties, they are easily discriminated.  This is a crude demonstration of 

the potential MIR has for characterization of materials and tissues. 

6. Experiment 3: MIR imaging of a foot 

To ensure that MIR performs as well in a realistic setting as in a simple phantom, we 

imaged an intact human foot.  Data were acquired using 40 keV x-rays at five analyzer 

positions.  The photon flux rate incident on the object was approximately 

6 25.3 10 ph/s/mm× .  A skin dose of 0.12 mGy was delivered at each analyzer position. 

 Figure 14 shows attenuation, refraction, and ultra-small-angle scatter images of 

the foot specimen.  Whereas conventional radiography shows only calcified tissue and, at 

low energies, shadows of soft tissue, MIR appears capable of depicting soft tissue detail 

such as tendons, connective tissue, and skin.  Unfortunately, the clear depiction of 

cartilage, which has been reported for DEI [4], is not evident in these images because of 

the orientation of joint spaces with respect to the x-ray beam.  However, many specific 

anatomical structures are evident in the refraction and scatter images, which are not 

normally visible in a conventional radiograph. For instance, although the two tendons on 

the dorsum of the foot consist of the same tissue type, they can easily be distinguished 

from one another in the refraction image due to refraction at their edges.   The scatter 

image highlights the dense tissue on the heel of the foot and produces good image 

contrast the surface of the tendons.  
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 The same images are shown in Figure 15 in a color composite display, which 

suggests the potential of this technique for tissue characterization based on the 

multichannel nature of the images. 

7. Conclusion 

We have presented a method of imaging with x-rays that measures attenuation, refraction, 

and ultra-small-angle scatter of the beam, and can be performed in either planar-imaging 

or CT mode.  We have developed a set of algorithms that perform well in the presence of 

Poisson noise, which will be needed for clinical imaging with a conventional x-ray 

source.  In future work, we will describe our ongoing investigations of medical 

applications of the MIR technique, and we will validate the images quantitatively against 

predictions of wave propagation theory. 

8. Appendix A: Magnitude of beam deflections in tissue 

The MIR method assumes that the beam deflections due to refraction and scatter are too 

small to cause significant crosstalk between adjacent pixels.  The DEI method makes the 

same assumption, but additionally assumes that there is no ultra-small-angle scatter is 

present at all. 

 Experimental evidence suggests that crosstalk is generally a small effect.  Hasnah, 

et al., [3] found experimentally that the refraction angle caused by a 1-cm thick slice of 

breast tissue was on the order of 0.001 to 0.01 µradians.  Assuming the distance from the 

object to the detector to be 1m, this implies a spatial deflection on the detector face on the 

order of 0.001 to 0.01 µm.  Thus, assuming 50-µm pixels, the beam deflection per 
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centimeter of breast tissue is expected to be about 1/5000 to 1/50000 of the width of a 

pixel. 

 In imaging an entire foot (Figure 14), we found the maximum refraction angle in 

the image to be 0.1 µradians (implying a deflection of 1/500 the width of a pixel).  The 

standard deviation of the scatter-induced deflection for the pixel with the greatest scatter 

divergence was about 1.7 µradians (or 1/30 the width of a pixel). 

9. Appendix B: Linearity of MIR object properties 

If one is to employ linear CT reconstruction techniques, it is important that the MIR 

projection images behave linearly with object thickness.  The linearity of the x-ray 

attenuation (extinction) coefficient is well-known [13], and the linearity of the refraction 

angle has been explained and demonstrated empirically in [20].   

 The MIR scatter parameter ,m ns  is not guaranteed theoretically to be linear in the 

most general circumstances, however it appears to be very nearly so in the proposed 

imaging situation.  In this Appendix, we describe two cases in which linearity holds in 

theory, and we provide experimental evidence that linearity holds in practice based on a 

simple phantom. 

 First, according to transport theory, linearity of the angular divergence of the 

intensity spectrum holds if the scatterers in the material have Gaussian phase functions on 

average [14].  Although biological tissue contains a variety of scatterers, the MIR scatter 

image can be viewed as that of an equivalent object composed of Gaussian scatterers. 

 Second, linearity of the scatter parameter is a direct consequence of equation (5) 

(as is linearity of attenuation and refraction angle).  To see this, let us suppose that the 

beam passes through two objects, one after the other, and let the impulse response 
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functions of these objects at a given ( , )x y  position be denoted by 1( )f θ  and 2 ( )f θ .  By 

equation (5), the net impulse response of the two objects is 1 2( ) ( ) ( )f f fθ θ θ= ∗ .  It is 

well known that the second central moment of the convolution of two functions is equal 

to the sum of the second central moments of the individual functions.  This is the basis 

for the additivity of variances for independent random variables, and, indeed, the MIR 

scatter parameter can be viewed as the variance of the deflection angle of individual 

photons.  Thus, the scatter parameter is a linear parameter under the convolutional model. 

 To test the linearity of the MIR scatter parameter, we performed a simple 

experiment using a phantom.  A wedge-shaped Lucite container was filled with a 

suspension of polymethylmethacrylate (PMMA) microspheres in glycerine and imaged at 

at 18 keV.  The mean diameter of the microspheres was 6.5 µm with standard deviation 

in the range of 3-10 µm.  The volume density of the scatterers was 91.0 10×  cm-3.  Figure 

16 shows empirical values of the scatter parameter ,m ns  as a function of sample thickness, 

along with a linear fit to the data.  A least-squares fit to the data showed the relationship 

is linear at a significance level of 410p −< .  These results suggest that a linear model for 

the MIR scatter parameter is a reasonable one, thus justifying the use of linear CT image 

reconstruction for MICT. 
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Figures 

 

Figure 1.  Examples of MIR projection images, along with conventional radiograph for 

comparison. 
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Figure 2.  Definition of coordinate systems.  Note that the figure is drawn out of 
proportion extremely for illustration purposes (in reality, all angles shown are on the 
order of microradians).  Indicated in the figure are: angles θ  and φ  , which define the 
direction of a ray within the transmitted x-ray beam (describing refraction or ultra-small-
angle scatter effects); the Bragg angle of the analyzer crystal Bθ ; the angular setting of the 
analyzer Aθ ; and the spatial coordinates ( , , )x y z . 

 

 

Figure 3.  Schematic diagram of imaging system used in MIR.  This is a well-known 
imaging configuration used commonly in phase-sensitive imaging.  In MIR, the analyzer 
crystal is rotated (rocked) to make multiple measurements, from which the angular 
intensity spectrum of the beam is computed at each pixel. 
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Figure 4.  Neighborhood structure used in multichannel deconvolution method.  Pixel 
values of the true angular intensity spectrum , [ ]m nf k  are assumed correlated with values 
of pixels that are immediate spatial and angular neighbors. 
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Figure 5.  Phantom used in MIR projection-imaging study, consisting of a Lucite rod and 

layers of paper ranging from one to eight sheets in thickness. 
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Figure 6.  Examples of the deconvolved angular intensity spectrum ( ; , )f x yθ  as a 
function of angle, at representative points in the phantom.  In the background, the 
deconvolved curve is a delta function (to within the smoothness imposed by the 
algorithm).  At a pixel off-center in the rod, the curve shows that the beam is deflected to 
the right, as expected.  At a pixel where the rod and paper overlap, the beam is deflected 
by the rod, and broadened by the paper.  At a pixel where there is only paper, the beam is 
broadened.  In every pixel in the object, the beam is also attenuated. 
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Figure 7.  Results of MIR planar-imaging study: (a) images computed from data acquired 

using a synchrotron; (b) images computed from simulated noisy data, with maximum of 

300 ph/pixel; and (c) same as (b), but with maximum counts of 50 ph/pixel.  The image 

quality remains good even at low photon counts. 

 

Figure 8.  Comparison of MIR and DEI attenuation images.  Profiles (left) of the 

attenuation images (right) show that the DEI image deviates substantially from the 

theoretical absorption profile of a cylindrical rod, whereas MIR produces a curve that 

closely approximates it. 
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Figure 9.  Comparison of MIR and DEI refraction images.  One would expect refraction 

to be constant along the long axis of the rod.  Profiles (right) of the refraction images 

(left) show that the DEI image deviates substantially from a constant, instead showing a 

staircase pattern caused by contamination from scattering by the paper.  The MIR image 

roughly captures the desired uniform refraction profile, though still exhibits some scatter-

induced error. 

 

Figure 10.  Comparison of MIR and DEI images computed from noisy data. 
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Figure 11.  Phantom used in MIR-CT study. 

 

Figure 12.  MIR-CT images.  As expected, the Lucite rod produces substantial refraction, 

but little scatter; the converse is true of the paper roll.   

 

Figure 13.  Surface renderings of rod and paper roll in CT phantom.  In this simple 

phantom, paper is easily distinguished by its high values in the scatter image; the surface 

of the rod is identified by high values at its surface in the refraction image. 
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Figure 14.  MIR images of a foot: attenuation (top), refraction (middle), and scatter 

(bottom).  Soft tissue features are better visualized in the refraction and scatter images 

than in the attenuation image.   
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Figure 15.  Color-composite MIR image of a foot.  Attenuation (red), refraction (green), 

and scatter (blue) images are shown together in a composite display.     
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Figure 16.  Linearity of MIR scatter parameter with sample thickness.  Test object was a 

wedge-shaped container filled with a suspension of PMMA microspheres in glycerine.     

 


