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variances of the PSF error and the additive noise.

In this paper we ameliorate the difficulties of estimating
all the necessary hyperparameters by introducing gamma
hyperpriors within the hierarchical Bayesian framework.
We derive two iterative algorithms that simultaneously es-
timate all the necessary hyperparameters and restore the
image.

The rest of this paper is organized as follows: In Sec. 2
the image model, two models for the fidelity to the data,
and the hyperparameter model are discussed. In Sec. 3 the
basic philosophy behind evidence analyd®\) is briefly

1 Introduction

Traditionally, image restoration algorithms have assumed
exact knowledge of the blurring operator. In recent years, in
particular in the field of astronomical image restoraticm
significant effort has been devoted to solving the so-called
blind deconvolution problem, in which it is assumed that
little or nothing is known about the underlying blurring
procesgsee Refs. 3,4 and references therdim most prac-
tical applications, the point-spread functi@®SH is neither
unknown nor perfectly knownthat is, usually some infor-

mation about the PSF is available, but this information is presented and its application to the restoration problem

never exact. from partially known blur is discussed. Section IV presents
The use of a PSF modeled by a known mean and anyq EA algorithms using the different proposed models. In

additive random error component has been addressed in thesg:. 5 we present numerical experiments that compare the

works the needed model parameters were assumed known.

More recently, attempts were made to address the param- ) )

eter estimation problem: in Refs. 9,10 and(Chapter 11 2 Components of the Hierarchical Model

the expectation-maximization algorithm was used, and in Let us now examine the components of the hierarchical
Refs. 11(Chapter I\Vj and 12—-14 the estimation was ad- model used for the restoration problem with partially
dressed within the hierarchical Bayesiarframework. known blur, that is, the image model, the observation
However, in Refs. 9,10, and IChapters Il and IV, and model, and the model for the unknown hyperparameters.
12-14 we observed that it was not possible to reliably es- A commonly used model for the image prior in image
timate simultaneouslyhe hyperparameters that capture the restoration problems is the simultaneously autoregressive
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(SAR) model® This model can be described by the follow- For theaveragedf covariance modelve assume that the
ing conditional PDF: observationg are Gaussian, and instead of uskfg in the
expression for the covariance we use its mean value from

a the prior. Thus, for this model we get
P(f|a)=const " expl’ - §||Qf||2] , (1)

P(g|f1a1B!7)x[de(Bg\f)]7 12
wherefe RN represents the source image anis an un- . — 4 _
known positive parameter that controls the smoothness of ~ Xexp{— 3(9—Hf)'Ry7(g—Hf)}. @)
the image. For simplicity, but without loss of generality, we
shall use a circulant Laplacian high-pass operator Qor
throughout the rest of this paper.
The space-invariant PSF is represented as the sum of a

where

deterministic component and a stochastic component of N o, 1
zero mean, i.e., Bg|f:E(aQtQ) + ;I. (8)
h=h+Ah, )

Note that by using this approximation we have incorporated
. the uncertainty of the image prior model, in the condi-
wherehe RN is the deterministidknown) component of tional distribution, which made the Id®(g|f,a,3,7y) func-

the PSF and\he RN is the randon{unknown error com- tion quadratic with respect tb This yields a linear estima-
ponent modeled as zero-mean white noise with covariancetor for f, as will be shown in the following section.
matrix Ry, = (1/8) Iyxn - FOr our problem, the image deg- The Bayesian formulation allows the introduction of in-
radation can be described, in lexicographical form, by the formation about parameters that have to be estimated by
modef -8 using prior distributions over thef.To do so we use, as
hyperprior, the gamma distribution defined by
g=Hf+Ag, (3
P(x)ocxx= 22 expf — m(1,— 2)x}, 9
in which
H=H+ AH, @ wherexe{a,B,y} denotes a hyperparameter, and the pa

rameterd, andm, are explained below. The mean and the

) variance of a random variabbe with PDF in Eq.(9) are
whereg,Age RN represent, respectively, the observed de- given by

graded image and the additive zero-mean white noise in the
observed image, with covariance matrixR,g

=(1/y) Iyxn- The matrixH is the known(assumed, esti-
mated, or measure¢adomponent of theNX N PSF matrix
H; AH is the unknown component ¢f, generated byAh
defined in Eq(2).

From Egs.(2)—(4) it is clear that the form of the condi-  According to Eq.(10), for I, large, the mean oX is ap-
tional distribution ofg is not simple. In fact we are going to  proximately equal to 12, and its variance decreases
propose two different models fd*(g|f, e, 8, 7). whenl, increases. Thus, 12, specifies the mean of the

For thefixedf covariance modelve assume that both gamma distributed random variable while I, can be used

the PSF nois&h and the additive noisAg are Gaussian.  as 3 measure of the certainty in the knowledge about this
Then, since the vectdris not a random quantity but rather mean.

a fixed one, it is straightforward to see from E§) that
P(dlf,a,B,7) is given by

X
and Vafx}= 221, —2)"

(10

B = om1,—2)

3 Hierarchical Bayesian Analysis
P(df,a.8,y)[delRy)] 2 In this work, the joint distribution we use is defined by

xexf — 5(g—HH)'Ryf(g—Hf)]. (5

P(g.f,a.B,7)
The conditional covariancBy in Eg. (5) is given by —P(g|f,a,B,7)P(fla, B,7)P(a)P(B)P(v). (11)
Ry = FR,,F'+ RAgziFF‘Jr El, (6) To estimate the unknovyn hyperparameters and the origi-
Y nal image, we apply evidence analysis, since we have

found that it provides good results for restoration-
where we have used the commutative property of the con-reconstruction problem$. According to the EA approach
volution andF denotes the circulant matrix generated by the simultaneous estimation §fa, 8, andy is performed
the imagef; see Ref. 11,14 for details. as follows:
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» Parameter estimation step:

&,B,y=arg maxP(a,8,9)}

B,y
=arg ma{JP(g,f,a,,B,y)df]. (12
apy 7t
» Restoration step:
f<a,B,“y>=argn:axp(flg,a,i“w}
=argrr;aXP(f|az,Z%,&>P<g|f,a,“,“w}, (13)

The estimatesy, 3, and ¥ from the parameter estima-
tion step depend on the current estimate of the image. Like-

wise, the estimatéfrom the restoration step will depend on

VIif,a,8,9)|im=0 (19

if (" is chosen to be the minimizer d{f,«,3,7) in Eq.
(15), and that the Hessian matrix can be approximated by

Va(f,a,B,)fn=2G"=2(aQQ+HRjwH), (19

where we have not taken into account the derivatives of
R&fl(n) with respect tof. 111417

Finally, substituting Eq(17) into (16), and using the fact
that the factor [detRgy)] Y2 can be replaced by
[detRy1m)]~ Y because it depends weakly bnompared
to the exponential term under the integhat! Eq. (16) be-
comes

P(a,B8,719)=P(a)P(B)P(y)aV?defRyim]™ 12
xdefGM]™ Y2exd — 33(f™,a,8,7)].

the current estimates of the parameters. Therefore, the

above two-step procedure is repeated until convergence oc-

curs.

Using the two different choices fd?(g|f, «,8,v) given
in Egs.(5) and(7), we will now proceed with the evidence
analysis.

4 Proposed Algorithms

4.1 Evidence Analysis Based on the Fixed-f
Covariance Model

Substituting Eqs(1) and(5) into (11), we obtain
P(g.f,a,B,7)~a"de(Ry)]™ 1

xexd — 3J3(f,a,B8,7)IP(a)P(B)P(y),
(14)

where

J(f, @, B, ) = ol|Qf|>+ (g— HF)'Ryjf (g— Hf). (15)

4.1.1 Parameter estimation step

To estimatei, B8, ¥, we first have to integrate(g,f, a, 3, )
in Eq. (14) overf, that is,

P(a,B,7|9)=P(a)P(B)P(y)a? ff[dethn)]* 12

xexp{— 3J(f,a,B,y)}df. (16

To perform the integration in Eq(16), we expand
J(f,a,B,7y) in Taylor series around a knowif™, where
(n) denotes the iteration index, i.e.,

If,a,8,7)=3(f™,a,B,7)+(f= T ™)VI(f,a,B,7)|t
+ 3(F=fM)V23(f, e, B,7) s (f— ™).
17
Note that, in Eq(17),

(20)
Taking 2 log on both sides of E¢20), and differentiat-

ing with respect tow,,y, we obtain the following itera-
tions:

1 1 )12
an+li:2maﬂa+(l_ﬂa)ﬁ[”Qf ||

+tr(GM 71 Q'Q)], (21)
1 1
D = 2Merpt (1= mp)

X

— 1
(9= HE )Ry gz F R

X Rglg-(n)(g— ﬁf (n)) +1tr

1 -1
B Ryl

1 1 _
1 -1 t . —1
GO HRy gz F R Rg|f<n>H”,

+tr
(22
1 1 T (Mt 1 2
WN:Zmyuﬁ(l—ﬂy) (g—Hf )WRQH(”)

X (g—Hf (M) +tr

1 —
g Ryl

(n) -1t 1 -2
+tr| G H WRQHWH . (23
where the normalized confidence parametgr, X
e{a,B,v}, is defined as
=1 —N 24
Mx= _N+|X_2' ( )

4.1.2 Restoration step
According to Eq.(13),
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(&,B,%)=arg rr:aP(flg,&, B,%)

=arg mif{(Hf - 9)'Ry;f(Hf—g) + &| Qf||2
f

+log[ det( Ry 1}, (25

where Ry¢=(1/8) FF'+ (1/%)1. The functional in Eq.
(25) is nonconvex and may have several local minima. In
general, a closed-form solution to E@®5) does not exist
and numerical optimization algorithms must be used. A
practical computation of Ed25) can be obtained by trans-
forming it to the DFT domairt!**

4.2 Evidence Analysis Based on the Averaged-f
Covariance Model

Using Eq.(7) as the likelihood equation, we derive another
iterative parameter-estimation—image-restoration algorithm
for this problem. We follow identical steps as in the previ-
ous section with

N 1 1
Bg\f:E(a’QQ) +;|- (26)

4.2.1 Parameter estimation step

To find the estimates of the parameteP§q, 3, v|g) must
be maximized. Taking the derivatives with respeciqs,
v gives the following iterations:

1 1 )12
D) = 2Mapat (1= pa) | 1QF

-1 1 ty—1
—tr Bg|f(n>W(Q Q)

+1tr

-2 1 ty)—1 f ()
Bglf(n)W(QQ) (g—Hf™)

X (g— AT )| +trf g0 -1

X

Q'+ HFR, Zo 2 (Q‘Q)‘lﬂ)
_g\f(n)’B DNG !
27)

1
BT = 2Mppt (1= pp)

Xytr

-2 1 t)—1 s (n)
BWww(Q Q) “(g—Hf)

X (g—Hf ™M)

1 -1
+ NG, tr(Rg5m)

+1tr

e 1
G™ HtHRgfz(n)W(QtQ)_lH, (28)
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1 1
SEFD) = 2Myy F (1)

S — R 1 (a™Q'Q) 1]
B, Mg

1 S
~ Sz (G HHR o)

L —2 Hf (n) Hf (M)t
—Wtr[Bgmm(g—Hf )(g—HE™)Tr, (29
where u, was defined in Eq(24) and
G =aMQ'Q+HRywH. (30

4.2.2 Image restoration step

For the image estimation step, similar to EB5), we can
write

—h)

(a,/‘%,“w:argnfwir{(ﬁf—g)‘ég%(m‘—gw&lleHZ]. (31)

since R

Note that, gif does not depend onf,
P(g|f,&,,f3,3/) is quadratic with respect tb As a result, the
image restoration step gives the linear estimatef for
f(a&.8.%)=(H'RgtH+aQ'Q) *H'Ryjfg. (32)

4.3 Comments on the Normalized Confidence
Parameters

There is a very interesting and intuitive interpretation of the
use of the normalized confidence parameters, X
e{a,B,y} [see Eq(24)] in the hyperparameter estimation
procedures in Secs. 4.1.1 and 4.2.1. We are estimating the
unknown hyperparameters by linearly weighting their
maximum likelihood(ML ) estimates with the prior knowl-
edge we have on their means and variances. So, if we
know, let us say from previous experience, the noise or
image variances with some degree of certainty, we can use
this knowledge to guide the convergence of the iterative
procedures.

Note that, for a given hyperparametee {«, 8, v}, uy
=0 means having no confidence on the mean of its hyperp-
rior, so that the estimate afis identical to the ML estimate
in Ref. 14. In contrast, when,=1, xe{a, 3, v}, the value
of x is fixed to the mean of its hyperprior.

As will become evident in the following section, an im-
portant observation is that neither of the two algorithms can
reliably estimate the PSF and additive noise variarges
andy~ ! simultaneously when no prior knowledge is intro-
duced, that is, whenu,=uz=w,=0.0. This was ex-
pected, since the sum of these noises appears in the data.
However, introducing soméven very little prior knowl-
edge about one of the parameter aids both methods to ac-
curately estimate botjg and y while restoring the image.

Notice that if we do not have any prior knowledge about
the values of the hyperparameters, we can first assume that
there is no random component in the blur, that s,
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Table 1 Comparison between EA1 and EA2 algorithms. PSF and of the original image, respectively. The perfor-
mance of the restoration algorithms was evaluated by mea-
. Parameter Computational suring the improvement in SNR, denoted by ISNR and
Restoration estimation complexity ) n ~
Algorithm step step (sfiteration) given by ISNR=||f—g||?/||f—f|?, wheref, g, andf are the
original, observed, and estimated images, respectively.
EAL I?tzgautii(/ees Corrggtiicofed 124 According to Eq.(2), the PSF defined in Eq33) was

degraded by additive noise in order to obtain a PSF with

optimization with f -
EA2 Linear Quadratic 0.07 SNR,=10, 2_0, and 30 dB_. Using these degraded PSFs,
closed-form dependence both synthetic and “Lena” images were blurred, and then
solution on f Gaussian noise was added to obtain gNRO, 20, and 30

dB, which produced a set of 18 test images. In all the ex-
periments we assigned to the normalized confidence param-
etersuy, xe{a,B,y}, the values 0.0,0.1,,1.0, and we

=0, and estimater and « by any classical method, such as plotted the ISNR as a function of two of the parameters
MLE. Once an estimate of is obtained(which is in gen-  x, Xe{a,B,7v}, while keeping the other constant.

eral a good one, since the noise model is usually accurate, )
while the prior image model is an approximation and the Experiment . To compare the ISNR of the EA1 and EA2

PSF variance is typically very smallit is used with a  @lgorithms assuming the means of the hyperpriors are the

medium to high confidence parameter to guide the estima-true values of the noise and image parameters, we used a
tion of the partially known PSF witf,= uz=0.0. Alter- synthetic image generated from a SAR distribution with

natively, we can run the algorithms with no prior knowl- at=2733. ) ]
edge of the parameters, that js,=uz=u,=0.0, Using We have found that the EA1 and EA2 algorithms give

then a high confidence for the obtained * value (x very similar results in terms of ISNR on this image, sifice

Y s .
=0.7) and letting the algorithms to estimate the other two follows a SAR distribution and hence the two models are
parameters withs,= 1 ;= 0.0. Note that the two described themselves very similar. Furthermore, we also found that
methods to estimate all the parameters start by using goodWhen gamma hyperpriors are used, both methods always

estimates ofy. gave accurate parameter estimates and the improvement in
ISNR is always almost identical. We also noticed that when
5 Numerical Experiments o= mg=m,=0.0, the estimated value g8 was unreli-

In all experiments presented in this section, the known part able: it was always very close to zerg (vas between two

of the PSF was modeled by the Gaussian-shaped PSF deand three orders of magnitude lower than the true value

fined as and furthermore, for most of the values of SNRnd
SNR,, both algorithms stopped after reaching the maxi-

. i2+2 mum number of iteration&50). The evolution of the ISNR
h(i,j)xexp{—m for i,j=—15,-14,..., for SNR,=10dB (8 1=5.6x10"°) and SNR=10dB
(y 1=270.85), for constant.=0.0, is shown in Fig. 1.
-1,0,1,..,14,15, (33 Similar plots are obtained for experiments with the other
SNR, and SNR.

The first of the two algorithms that simultaneously re-
store the image and estimate the associated hyperparamet .
uses the fixed-covariance moddEgs.(21)—(23) and(25)] e SAR image were used. Note that exact knowledge of
and is named EAL. The second one, using the averhged- (N€ Parametet is not possible for the “Lena” image. In
covariance moddEqs.(27)—(29) and(31)], is named EA2. orde(zjr tr? include _somggp}nor rl:nokvvledge abeuangly, we
In Table 1 some general comments on complexity and YS€d the ML estimateSfor the known PSF problem, as-

speed of the EAL and EA2 algorithms are shown. Note also SUMing that the blurring function‘yvas tt‘? known part of the
that since EA2 approximatesF' by «Q'Q, EAL will, in PSF. The ML estimates for the Lerjall image with %i}IR
general, outperform EA2 unless the real underlying image =10 dB and SNR=10dB were a~"=33.1 and y
is a “true” realization from the prior mode(see Experi- ~ =272.77, and for the SAR imagéSNR,=10dB and
ment | below. SNR,=10 dB) were a '=165.97 andy '=270.0; their

A number of experiments were performed with the pro- corresponding ISNR'’s were 3.12 and 3.92 dB, respectively.
posed algorithms using a synthetic image obtained from a  We observed that including the previously obtained ML
prior distribution, the “Lena” image, and a real astronomi- estimate as prior knowledge aboutslightly increases the
cal image to demonstrate their performance. For both algo- quality of the resulting restoration. However, including the
rithms,  the criteria  [x(""V—x(W|/xM<10"%,  x corresponding estimate of the value@flecreases it. This

e{a,B,}, orn=250, whichever was met first, were used s due to the fact that this ML estimate is accurate for the
to terminate the iterative process. The levels of the PSF andimage noise parameter, while it underestimates the vari-

additive noise are measured using the signal-to-noise ratiog o valuer, as shown in Fig. 2.

(SNR), i.e., SNR=[h[2/Ng~* and SNR=|f|/Ny™*, We also found that, in most cases, EA1 performs a bit
wherel||h||? and|f||2 are the energy of the known part of the better than EA2 algorithm for the “Lena” image. Here

xperiment II. In this experiment both the “Lena” and

Optical Engineering, Vol. 41 No. 8, August 2002 1849
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Fig. 1 ISNR evolution with u, and ., for uz=0.0, using the real values of a and y for the SAR image
with SNR,=10 dB and SNR,=10 dB, (a) for EAL algorithm, (b) for EA2 algorithm.

again, whenu,=ug=un,=0.0, both algorithms result in =10 dB (y 1=273.46), for constani,= 0.0 for the EA1
an estimate oB very close to zeroi@ was between one and and EAZ2 algorithms. Note that incorporating accurate infor-
three orders of magnitude less than the real value mation about the value g8 improves more the ISNR than
including information about, especially for the EAL algo-
Experiment lll. In order to demonstrate that including rithm. This is due to the fact that the estimated value &f
accurate information about the value of the hyperpa_ram- quite close to the real one even jif,=0.0, while if no
eters improves the results, we have tested both algor'thmsknowledge about the value ¢ is inclyuded both methods
on the “Lena” image, assuming that the means of the hy- . '
perpriors forB andy are the true noise parameters. Since it give poorg estimates g was between one and three orders

is not possible to know the real value affor this image, of magnitude lower than the real vajughen the algorithm
we usedu,=0.0, letting the algorithms estimatewithout stopped, and in most cases the imposed iteration limit was
prior information. Figure 3 shows the evolution of the reached. Including knowledge about the real valueBof
ISNR for SNR,=10dB (8 !=5.6x10"% and SNR leads to more accurate estimations, since we are forcing

Z
Z

DRI taws
[[S1 S e Yo SIUST NN
IO - LW
(ST SHiNe Yo IO N LN

<

IR Lottt
SNt NG

<

Fig. 2 ISNR evolution with u, and ., for u;=0.0: for (a) EAL and (b) EA2 algorithms, using the MLE
estimated values of a and vy for the “Lena” image with SNR,=10 dB and SNR,=10 dB; and for (c)
EAl and (d) EA2 algorithms, using the MLE estimated values of « and y for the SAR image with
SNR,=10 dB and SNR,=10 dB.
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(b)

Fig. 3 ISNR evolution with uz and u, for u,=0.0, using the real values of g and y for the “Lena”
image with SNR,=10 dB and SNR,=10 dB, (a) for EA1 algorithm, (b) for EA2 algorithm.

(b) (c)

Fig. 4 (a) Degraded “Lena” image with SNR,=10 dB and SNR,=10 dB; (b) restoration with EA1
algorithm, ISNR=3.26 dB; (c) restoration with EA2 algorithm, ISNR=3.21 dB.

Optical Engineering, Vol. 41 No. 8, August 2002 1851
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(b)

(©)

Fig. 5 (a) Observed Jupiter image; (b) restoration with EA1 algorithm; (c) restoration with EA2 algo-

rithm.

both algorithms to provide @ estimate greater than zero.
In most cases, also, EA1 performs better than EA2 for this
image.

An example of the restoration of the degraded “Lena”
image [Fig. 4@, SNR,=10dB, SNR=10dB] by the
EAL and EA2 algorithms withu,=0.0 andug=u,=1.0
is presented in Figs.(8) and 4c), respectively.

Experiment IV. We also tested the methods on real im-
ages. Results are reported on a Jupiter inagpicted in
Fig. 5(a)] obtained at Calar Alto Observato($pair, using

a ground-based telescope, in August 1992. For this kind of

where the paramete® and R were estimated from the
image to beB~3 andR~5.2° However, the estimate of the
PSF is not exact, since factors such as atmospheric turbu-
lence introduce noise into it.

Since the proposed methods do not provide reliable es-
timates simultaneously for both the PSF and additive noise
variances, they were estimated in two steps. The algorithms
were first run with no prior knowledge about any of the
hyperparameters, that ig,,=uz=un,=0.0 was used, in
order to obtain an estimate of the noise variance. A high
confidence was then given to the estimate)of', viz.,

images there is no exact expression describing the shape ot,=0.8, and estimates of the other two parameters were

the PSF, although previous studithave suggested the
following radially symmetric approximation for the PSF:

i2+j?

-B
R2> ’

1852 Optical Engineering, Vol. 41 No. 8, August 2002

hi,j)e| 1+ (34)

obtained. The EA1l and EA2 algorithms were terminated
after 46 and 44 iterations, respectively, with the following
estimatesa=23077.7,3=1.27x 10 1% and y=47.6 for
the EA1 algorithm, andv=22710.1,3=1.24x 107, and
v=47.5 for the EA2 algorithm. The resulting images are
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shown respectively in Figs.(B) and 5c). It is clear that
both algorithms provide good restorations, although the res-
toration provided by the EA1 algorithm seems to be better
resolved.

Alternatively, it is possible to estimate the additive noise
variancey ! using the ML approach as described in Ref.
18, assuming that the PSF is known, as described by Eq.
(34). This value is in turn used in the algorithms for the 15.
estimation of the remaining parameters. The experimental
results provided very similar restorations in the two cases.

14.

6 Conclusions

In this paper we have extended the EA1 and EA2 algorithm 18.
and the EM algorithm from our previous work in Refs. 14
and 10, respectively, to include prior knowledge about the ;4
unknown parameters. The resulting parameter updates, in
both EA1 and EA2 approaches, combine the available prior 20.
knowledge with the ML estimates in a simple and intuitive
manner. Both algorithms showed the capability to accu-
rately estimate all three parameters simultaneously while
restoring the image, even with very low confidence in the
prior knowledge. We have also shown that the image noise
parameter obtained by the ML estimate for the exactly
known PSF problem can be used to guide the estimates of
the noise parameter for the partially known PSF problem. |
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