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1 Introduction

Traditionally, image restoration algorithms have assum
exact knowledge of the blurring operator. In recent years
particular in the field of astronomical image restoration,1,2 a
significant effort has been devoted to solving the so-ca
blind deconvolution problem, in which it is assumed th
little or nothing is known about the underlying blurrin
process~see Refs. 3,4 and references therein!. In most prac-
tical applications, the point-spread function~PSF! is neither
unknown nor perfectly known,5 that is, usually some infor-
mation about the PSF is available, but this information
never exact.

The use of a PSF modeled by a known mean and
additive random error component has been addressed i
past ~see, for instance, Refs. 6–8!. However, in all these
works the needed model parameters were assumed kn
More recently, attempts were made to address the par
eter estimation problem: in Refs. 9,10 and 11~Chapter III!
the expectation-maximization algorithm was used, and
Refs. 11~Chapter IV! and 12–14 the estimation was a
dressed within the hierarchical Bayesian15 framework.
However, in Refs. 9,10, and 11~Chapters III and IV!, and
12–14 we observed that it was not possible to reliably
timatesimultaneouslythe hyperparameters that capture t
Opt. Eng. 41(8) 1845–1854 (August 2002) 0091-3286/2002/$15.00
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variances of the PSF error and the additive noise.
In this paper we ameliorate the difficulties of estimati

all the necessary hyperparameters by introducing gam
hyperpriors within the hierarchical Bayesian framewo
We derive two iterative algorithms that simultaneously e
timate all the necessary hyperparameters and restore
image.

The rest of this paper is organized as follows: In Sec
the image model, two models for the fidelity to the da
and the hyperparameter model are discussed. In Sec. 3
basic philosophy behind evidence analysis~EA! is briefly
presented and its application to the restoration prob
from partially known blur is discussed. Section IV presen
two EA algorithms using the different proposed models.
Sec. 5 we present numerical experiments that compare
proposed approaches. Section 6 concludes the paper.

2 Components of the Hierarchical Model

Let us now examine the components of the hierarch
model used for the restoration problem with partia
known blur, that is, the image model, the observati
model, and the model for the unknown hyperparameter

A commonly used model for the image prior in imag
restoration problems is the simultaneously autoregres
1845© 2002 Society of Photo-Optical Instrumentation Engineers
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~SAR! model.16 This model can be described by the follow
ing conditional PDF:

P~ fua!5const•aN/2 expH 2
a

2
iQfi2J , ~1!

wherefPR N represents the source image anda is an un-
known positive parameter that controls the smoothnes
the image. For simplicity, but without loss of generality, w
shall use a circulant Laplacian high-pass operator forQ
throughout the rest of this paper.

The space-invariant PSF is represented as the sum
deterministic component and a stochastic componen
zero mean, i.e.,

h5h̄1Dh, ~2!

where h̄PR N is the deterministic~known! component of
the PSF andDhPR N is the random~unknown error! com-
ponent modeled as zero-mean white noise with covaria
matrix RDh5(1/b) IN3N . For our problem, the image deg
radation can be described, in lexicographical form, by
model6–8

g5Hf1Dg, ~3!

in which

H5H̄1DH, ~4!

whereg,DgPR N represent, respectively, the observed d
graded image and the additive zero-mean white noise in
observed image, with covariance matrixRDg

5(1/g) IN3N . The matrixH̄ is the known~assumed, esti-
mated, or measured! component of theN3N PSF matrix
H; DH is the unknown component ofH, generated byDh
defined in Eq.~2!.

From Eqs.~2!–~4! it is clear that the form of the condi
tional distribution ofg is not simple. In fact we are going t
propose two different models forP(guf,a,b,g).

For the fixed-f covariance modelwe assume that both
the PSF noiseDh and the additive noiseDg are Gaussian
Then, since the vectorf is not a random quantity but rathe
a fixed one, it is straightforward to see from Eq.~3! that
P(gzf,a,b,g) is given by

P~guf,a,b,g!}@det~Rgu f !#
2 1/2

3exp@2 1
2 ~gÀH̄f ! tRgu f

21~gÀH̄f !#. ~5!

The conditional covarianceRgu f in Eq. ~5! is given by11,17

Rgu f5FRDhFt1RDg5
1

b
FFt1

1

g
I , ~6!

where we have used the commutative property of the c
volution andF denotes the circulant matrix generated
the imagef; see Ref. 11,14 for details.
1846 Optical Engineering, Vol. 41 No. 8, August 2002
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For theaveraged-f covariance modelwe assume that the
observationsg are Gaussian, and instead of usingFFt in the
expression for the covariance we use its mean value f
the prior. Thus, for this model we get

P~guf,a,b,g!}@det~RO gu f !#
2 1/2

3exp$2 1
2 ~g2H̄f ! tRO gu f

21~g2H̄f !%. ~7!

where

RO gu f5
N

b
~aQtQ!211

1

g
I . ~8!

Note that by using this approximation we have incorpora
the uncertainty of the image prior model,a, in the condi-
tional distribution, which made the logP(guf,a,b,g) func-
tion quadratic with respect tof. This yields a linear estima
tor for f, as will be shown in the following section.

The Bayesian formulation allows the introduction of i
formation about parameters that have to be estimated
using prior distributions over them.15 To do so we use, as
hyperprior, the gamma distribution defined by

P~x!}x~ l x22!/2 exp$2mx~ l x22!x%, ~9!

wherexP$a,b,g% denotes a hyperparameter, and the p
rametersl x andmx are explained below. The mean and t
variance of a random variablex with PDF in Eq.~9! are
given by

E$x%5
l x

2mx~ l x22!
and Var$x%5

l x

2mx
2~ l x22!2 .

~10!

According to Eq.~10!, for l x large, the mean ofx is ap-
proximately equal to 1/2mx , and its variance decrease
when l x increases. Thus, 1/2mx specifies the mean of th
gamma distributed random variablex, while l x can be used
as a measure of the certainty in the knowledge about
mean.

3 Hierarchical Bayesian Analysis

In this work, the joint distribution we use is defined by

P~g,f,a,b,g!

5P~guf,a,b,g!P~ fua,b,g!P~a!P~b!P~g!. ~11!

To estimate the unknown hyperparameters and the o
nal image, we apply evidence analysis, since we h
found that it provides good results for restoratio
reconstruction problems.18 According to the EA approach
the simultaneous estimation off, a, b, andg is performed
as follows:
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• Parameter estimation step:

â,b̂,ĝ5arg max
a,b,g

$P~a,b,gug!%

5arg max
a,b,g

HE
f
P~g,f,a,b,g!dfJ . ~12!

• Restoration step:

f̂~ â,b̂,ĝ !5arg max
f

$P~ fug,â,b̂,ĝ !%

5arg max
f

$P~ fuâ,b̂,ĝ !P~guf,â,b̂,ĝ !%, ~13!

The estimatesâ, b̂, and ĝ from the parameter estima
tion step depend on the current estimate of the image. L
wise, the estimatef̂ from the restoration step will depend o
the current estimates of the parameters. Therefore,
above two-step procedure is repeated until convergence
curs.

Using the two different choices forP(guf,a,b,g) given
in Eqs.~5! and~7!, we will now proceed with the evidenc
analysis.

4 Proposed Algorithms

4.1 Evidence Analysis Based on the Fixed-f
Covariance Model

Substituting Eqs.~1! and ~5! into ~11!, we obtain

P~g,f,a,b,g!'aN/2@det~Rgu f !#
2 1/2

3exp@2 1
2 J~ f,a,b,g!#P~a!P~b!P~g!,

~14!

where

J~ f,a,b,g!5aiQfi21~g2H̄f …tRgu f
21~g2H̄f …. ~15!

4.1.1 Parameter estimation step

To estimateâ,b̂,ĝ, we first have to integrateP(g,f,a,b,g)
in Eq. ~14! over f, that is,

P~a,b,gug!}P~a!P~b!P~g!aN/2E
f
@det~Rgu f !#

2 1/2

3exp$2 1
2 J~ f,a,b,g!%df. ~16!

To perform the integration in Eq.~16!, we expand
J(f,a,b,g) in Taylor series around a knownf (n), where
(n) denotes the iteration index, i.e.,

J~ f,a,b,g!'J~ f (n),a,b,g!1~ f2f (n)! t¹J~ f,a,b,g!u f (n)

1 1
2 ~ f2f (n)! t¹2J~ f,a,b,g!u f (n)~ f2f (n)!.

~17!

Note that, in Eq.~17!,
-

e
-

¹J~ f,a,b,g!u f (n)50 ~18!

if f (n) is chosen to be the minimizer ofJ(f,a,b,g) in Eq.
~15!, and that the Hessian matrix can be approximated

¹2J~ f,a,b,g!u f (n)52G(n)52~aQtQ1H̄tRgu f (n)
21 H̄!, ~19!

where we have not taken into account the derivatives
Rgu f (n)

21 with respect tof.11,14,17

Finally, substituting Eq.~17! into ~16!, and using the fact
that the factor @det(Rgu f)#21/2 can be replaced by
@det(Rgu f (n))#21/2 because it depends weakly onf compared
to the exponential term under the integral,11,17 Eq. ~16! be-
comes

P~a,b,gug!}P~a!P~b!P~g!aN/2 det@Rgu f (n)#2 1/2

3det@G(n)#2 1/2exp@2 1
2 J~ f (n),a,b,g!#.

~20!

Taking 2 log on both sides of Eq.~20!, and differentiat-
ing with respect toa,b,g, we obtain the following itera-
tions:

1

a (n11) 52mama1~12ma!
1

N
@ iQf (n)i2

1tr~G(n) 21 QtQ!#, ~21!

1

b (n11) 52mbmb1~12mb!
1

N

3F ~g2H̄f (n)! tRgu f (n)
21 1

b (n)2 F(n)F(n) t

3Rgu f (n)
21

~g2H̄f (n)!1trS 1

b (n)g (n) Rgu f (n)
21 D

1trS G(n)21
H̄tRgu f (n)

21 1

b (n)2 F(n)F(n) t
Rgu f (n)

21 H̄D G ,
~22!

1

g (n11)

1

N
52mgmg1~12mg!F ~g2H̄f (n)! t

1

g (n)2 Rgu f (n)
22

3~g2H̄f (n)!1trS 1

b (n)g (n) F(n)F(n) t
Rgu f (n)

21 D
1trS G(n) 21H̄t

1

g (n)2 Rgu f (n)
22 H̄D G . ~23!

where the normalized confidence parametermx , x
P$a,b,g%, is defined as

mx512
N

N1 l x22
. ~24!

4.1.2 Restoration step

According to Eq.~13!,
1847Optical Engineering, Vol. 41 No. 8, August 2002
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f̂~ â,b̂,ĝ !5arg max
f

P~ fug,â,b̂,ĝ !

5arg min
f

$~H̄f2g! tR̂gu f
21~H̄f2g!1âiQfi2

1 log@det~R̂gu f !#%, ~25!

where R̂gu f5(1/b̂) FFt1 (1/ĝ) I . The functional in Eq.
~25! is nonconvex and may have several local minima.
general, a closed-form solution to Eq.~25! does not exist
and numerical optimization algorithms must be used
practical computation of Eq.~25! can be obtained by trans
forming it to the DFT domain.11,14

4.2 Evidence Analysis Based on the Averaged-f
Covariance Model

Using Eq.~7! as the likelihood equation, we derive anoth
iterative parameter-estimation–image-restoration algori
for this problem. We follow identical steps as in the pre
ous section with

RO gu f5
N

b
~aQtQ!211

1

g
I . ~26!

4.2.1 Parameter estimation step

To find the estimates of the parameters,P(a,b,gug) must
be maximized. Taking the derivatives with respect toa, b,
g gives the following iterations:

1

a (n11) 52mama1~12ma!S 1

N
iQf (n)i2

2trFRO gu f (n)
21 1

b (n)a (n) 2 ~QtQ!21G
1trFRO gu f (n)

22 1

b (n)a (n) 2 ~QtQ!21~g2H̄f (n)!

3~g2H̄f (n)! tG1trH GO (n) 21

3FQtQ1H̄tH̄RO gu f (n)
22 1

b (n)a (n) 2 ~QtQ!21G J D ,

~27!

1

b (n11) 52mbmb1~12mb!

3H trFRO gu f (n)
22 1

b (n) 2 a (n) ~QtQ!21~g2H̄f (n)!

3~g2H̄f (n)! tG1
1

Nb (n)g (n) tr~RO gu f (n)
21

!

1trFGO (n)21
H̄tH̄RO gu f (n)

22 1

b (n) 2a (n) ~QtQ!21G J , ~28!
1848 Optical Engineering, Vol. 41 No. 8, August 2002
1

g (n11) 52mgmg1~12mg!
1

N

3H 1

b (n)g (n) tr@RO gu f (n)
21

~a (n)QtQ!21#

2
1

g (n) 2 tr~GO (n)21
H̄tH̄RO gu f (n)

22
!

2
1

g (n) 2 tr@RO gu f (n)
22

~g2H̄f (n)!~g2H̄f (n)! t#J , ~29!

wheremx was defined in Eq.~24! and

GO (n)5a (n)QtQ1H̄tRO gu f (n)
21 H̄. ~30!

4.2.2 Image restoration step

For the image estimation step, similar to Eq.~25!, we can
write

f̂~ â,b̂,ĝ !5arg min
f

@„H̄f2g! tRÔ gu f
21~H̄f2g!1âiQfi2]. ~31!

Note that, since RÔ gu f does not depend onf,
P(guf,â,b̂,ĝ) is quadratic with respect tof. As a result, the
image restoration step gives the linear estimate forf

f̂~ â,b̂,ĝ !5~H̄tRÔ gu f
21H̄1âQtQ!21H̄tRÔ gu f

21g. ~32!

4.3 Comments on the Normalized Confidence
Parameters

There is a very interesting and intuitive interpretation of t
use of the normalized confidence parametersmx , x
P$a,b,g% @see Eq.~24!# in the hyperparameter estimatio
procedures in Secs. 4.1.1 and 4.2.1. We are estimating
unknown hyperparameters by linearly weighting th
maximum likelihood~ML ! estimates with the prior knowl-
edge we have on their means and variances. So, if
know, let us say from previous experience, the noise
image variances with some degree of certainty, we can
this knowledge to guide the convergence of the iterat
procedures.

Note that, for a given hyperparameterxP$a,b,g%, mx

50 means having no confidence on the mean of its hype
rior, so that the estimate ofx is identical to the ML estimate
in Ref. 14. In contrast, whenmx51, xP$a,b,g%, the value
of x is fixed to the mean of its hyperprior.

As will become evident in the following section, an im
portant observation is that neither of the two algorithms c
reliably estimate the PSF and additive noise variancesb21

andg21 simultaneously when no prior knowledge is intr
duced, that is, whenma5mb5mg50.0. This was ex-
pected, since the sum of these noises appears in the
However, introducing some~even very little! prior knowl-
edge about one of the parameter aids both methods to
curately estimate bothb andg while restoring the image.

Notice that if we do not have any prior knowledge abo
the values of the hyperparameters, we can first assume
there is no random component in the blur, that is,b21
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50, and estimateg anda by any classical method, such a
MLE. Once an estimate ofg is obtained~which is in gen-
eral a good one, since the noise model is usually accu
while the prior image model is an approximation and t
PSF variance is typically very small!, it is used with a
medium to high confidence parameter to guide the esti
tion of the partially known PSF withma5mb50.0. Alter-
natively, we can run the algorithms with no prior know
edge of the parameters, that is,ma5mb5mg50.0, using
then a high confidence for the obtainedg21 value (mg

>0.7) and letting the algorithms to estimate the other t
parameters withma5mb50.0. Note that the two describe
methods to estimate all the parameters start by using g
estimates ofg.

5 Numerical Experiments

In all experiments presented in this section, the known p
of the PSF was modeled by the Gaussian-shaped PSF
fined as

h̄~ i , j !}expS 2
i 21 j 2

2332D for i , j 5215,214,...,

21,0,1,...,14,15, ~33!

The first of the two algorithms that simultaneously r
store the image and estimate the associated hyperparam
uses the fixed-f covariance model@Eqs.~21!–~23! and~25!#
and is named EA1. The second one, using the averagf
covariance model@Eqs.~27!–~29! and~31!#, is named EA2.
In Table 1 some general comments on complexity a
speed of the EA1 and EA2 algorithms are shown. Note a
that since EA2 approximatesFFt by aQtQ, EA1 will, in
general, outperform EA2 unless the real underlying ima
is a ‘‘true’’ realization from the prior model~see Experi-
ment I below!.

A number of experiments were performed with the p
posed algorithms using a synthetic image obtained from
prior distribution, the ‘‘Lena’’ image, and a real astronom
cal image to demonstrate their performance. For both a
rithms, the criteria ux(n11)2x(n)u/x(n)<1023, x
P$a,b,g%, or n5250, whichever was met first, were use
to terminate the iterative process. The levels of the PSF
additive noise are measured using the signal-to-noise r
~SNR!, i.e., SNRh5i h̄i2/N b21 and SNRg5i fi2/N g21,

wherei h̄i2 andi fi2 are the energy of the known part of th

Table 1 Comparison between EA1 and EA2 algorithms.

Algorithm
Restoration

step

Parameter
estimation

step

Computational
complexity
(s/iteration)

EA1 Requires
iterative

optimization

Complicated
relation
with f

1.24

EA2 Linear
closed-form

solution

Quadratic
dependence

on f

0.07
,

-

d

e-

er

-

-

PSF and of the original image, respectively. The perf
mance of the restoration algorithms was evaluated by m
suring the improvement in SNR, denoted by ISNR a

given by ISNR5i f2gi2/i f2 f̂i2, wheref, g, and f̂ are the
original, observed, and estimated images, respectively.

According to Eq.~2!, the PSF defined in Eq.~33! was
degraded by additive noise in order to obtain a PSF w
SNRh510, 20, and 30 dB. Using these degraded PS
both synthetic and ‘‘Lena’’ images were blurred, and th
Gaussian noise was added to obtain SNRg510, 20, and 30
dB, which produced a set of 18 test images. In all the
periments we assigned to the normalized confidence par
etersmx , xP$a,b,g%, the values 0.0,0.1,...,1.0, and we
plotted the ISNR as a function of two of the paramete
mx , xP$a,b,g%, while keeping the other constant.

Experiment I. To compare the ISNR of the EA1 and EA
algorithms assuming the means of the hyperpriors are
true values of the noise and image parameters, we us
synthetic image generated from a SAR distribution w
a2152733.

We have found that the EA1 and EA2 algorithms gi
very similar results in terms of ISNR on this image, sincf
follows a SAR distribution and hence the two models a
themselves very similar. Furthermore, we also found t
when gamma hyperpriors are used, both methods alw
gave accurate parameter estimates and the improveme
ISNR is always almost identical. We also noticed that wh
ma5mb5mg50.0, the estimated value ofb was unreli-

able: it was always very close to zero (b̂ was between two
and three orders of magnitude lower than the true valu!,
and furthermore, for most of the values of SNRg and
SNRh , both algorithms stopped after reaching the ma
mum number of iterations~250!. The evolution of the ISNR
for SNRh510 dB (b2155.631029) and SNRg510 dB
(g215270.85), for constantmb50.0, is shown in Fig. 1.
Similar plots are obtained for experiments with the oth
SNRh and SNRg .

Experiment II. In this experiment both the ‘‘Lena’’ and
the SAR image were used. Note that exact knowledge
the parametera is not possible for the ‘‘Lena’’ image. In
order to include some prior knowledge abouta andg, we
used the ML estimates18 for the known PSF problem, as
suming that the blurring function was the known part of t
PSF. The ML estimates for the ‘‘Lena’’ image with SNRh

510 dB and SNRg510 dB were a21533.1 and g21

5272.77, and for the SAR image~SNRh510 dB and
SNRg510 dB! were a215165.97 andg215270.0; their
corresponding ISNR’s were 3.12 and 3.92 dB, respectiv

We observed that including the previously obtained M
estimate as prior knowledge aboutg slightly increases the
quality of the resulting restoration. However, including t
corresponding estimate of the value ofa decreases it. This
is due to the fact that this ML estimate is accurate for
image noise parameterg, while it underestimates the vari
ance valuea, as shown in Fig. 2.

We also found that, in most cases, EA1 performs a
better than EA2 algorithm for the ‘‘Lena’’ image. Her
1849Optical Engineering, Vol. 41 No. 8, August 2002
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1850 Optical
Fig. 1 ISNR evolution with ma and mg for mb50.0, using the real values of a and g for the SAR image
with SNRh510 dB and SNRg510 dB, (a) for EA1 algorithm, (b) for EA2 algorithm.
d
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again, whenma5mb5mg50.0, both algorithms result in
an estimate ofb very close to zero (b̂ was between one an
three orders of magnitude less than the real value!.

Experiment III. In order to demonstrate that includin
accurate information about the value of the hyperpara
eters improves the results, we have tested both algorit
on the ‘‘Lena’’ image, assuming that the means of the h
perpriors forb andg are the true noise parameters. Since
is not possible to know the real value ofa for this image,
we usedma50.0, letting the algorithms estimatea without
prior information. Figure 3 shows the evolution of th
ISNR for SNRh510 dB (b2155.631029) and SNRg
Engineering, Vol. 41 No. 8, August 2002
s

510 dB (g215273.46), for constantma50.0 for the EA1
and EA2 algorithms. Note that incorporating accurate inf
mation about the value ofb improves more the ISNR than
including information aboutg, especially for the EA1 algo-
rithm. This is due to the fact that the estimated value ofg is
quite close to the real one even ifmg50.0, while if no
knowledge about the value ofb is included, both methods

give poorb estimates (b̂ was between one and three orde
of magnitude lower than the real value! when the algorithm
stopped, and in most cases the imposed iteration limit w
reached. Including knowledge about the real value ob
leads to more accurate estimations, since we are forc
Fig. 2 ISNR evolution with ma and mg for mb50.0: for (a) EA1 and (b) EA2 algorithms, using the MLE
estimated values of a and g for the ‘‘Lena’’ image with SNRh510 dB and SNRg510 dB; and for (c)
EA1 and (d) EA2 algorithms, using the MLE estimated values of a and g for the SAR image with
SNRh510 dB and SNRg510 dB.
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Fig. 3 ISNR evolution with mb and mg for ma50.0, using the real values of b and g for the ‘‘Lena’’
image with SNRh510 dB and SNRg510 dB, (a) for EA1 algorithm, (b) for EA2 algorithm.

Fig. 4 (a) Degraded ‘‘Lena’’ image with SNRh510 dB and SNRg510 dB; (b) restoration with EA1
algorithm, ISNR53.26 dB; (c) restoration with EA2 algorithm, ISNR53.21 dB.
1851Optical Engineering, Vol. 41 No. 8, August 2002
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1852 Optical
Fig. 5 (a) Observed Jupiter image; (b) restoration with EA1 algorithm; (c) restoration with EA2 algo-
rithm.
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both algorithms to provide ab estimate greater than zero
In most cases, also, EA1 performs better than EA2 for
image.

An example of the restoration of the degraded ‘‘Len
image @Fig. 4~a!, SNRh510 dB, SNRg510 dB# by the
EA1 and EA2 algorithms withma50.0 andmb5mg51.0
is presented in Figs. 4~b! and 4~c!, respectively.

Experiment IV. We also tested the methods on real im
ages. Results are reported on a Jupiter image@depicted in
Fig. 5~a!# obtained at Calar Alto Observatory~Spain!, using
a ground-based telescope, in August 1992. For this kind
images there is no exact expression describing the shap
the PSF, although previous studies19 have suggested th
following radially symmetric approximation for the PSF:

h~ i , j !}S 11
i 21 j 2

R2 D 2B

, ~34!
Engineering, Vol. 41 No. 8, August 2002
f
f

where the parametersB and R were estimated from the
image to beB'3 andR'5.20 However, the estimate of the
PSF is not exact, since factors such as atmospheric tu
lence introduce noise into it.

Since the proposed methods do not provide reliable
timates simultaneously for both the PSF and additive no
variances, they were estimated in two steps. The algorith
were first run with no prior knowledge about any of th
hyperparameters, that is,ma5mb5mg50.0 was used, in
order to obtain an estimate of the noise variance. A h
confidence was then given to the estimate ofg21, viz.,
mg50.8, and estimates of the other two parameters w
obtained. The EA1 and EA2 algorithms were terminat
after 46 and 44 iterations, respectively, with the followin
estimates:a523077.7,b51.27310210, and g547.6 for
the EA1 algorithm, anda522710.1,b51.2431027, and
g547.5 for the EA2 algorithm. The resulting images a
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shown respectively in Figs. 5~b! and 5~c!. It is clear that
both algorithms provide good restorations, although the
toration provided by the EA1 algorithm seems to be be
resolved.

Alternatively, it is possible to estimate the additive noi
varianceg21 using the ML approach as described in R
18, assuming that the PSF is known, as described by
~34!. This value is in turn used in the algorithms for th
estimation of the remaining parameters. The experime
results provided very similar restorations in the two cas

6 Conclusions

In this paper we have extended the EA1 and EA2 algorit
and the EM algorithm from our previous work in Refs. 1
and 10, respectively, to include prior knowledge about
unknown parameters. The resulting parameter update
both EA1 and EA2 approaches, combine the available p
knowledge with the ML estimates in a simple and intuiti
manner. Both algorithms showed the capability to ac
rately estimate all three parameters simultaneously w
restoring the image, even with very low confidence in t
prior knowledge. We have also shown that the image no
parameter obtained by the ML estimate for the exac
known PSF problem can be used to guide the estimate
the noise parameter for the partially known PSF proble
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