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ABSTRACT  

Relevance vector machines (RVM) have recently attracted much interest in the 

research community because they provide a number of advantages. They are based on 

a Bayesian formulation of a linear model with an appropriate prior that results in a 

sparse representation. As a consequence, they can generalize well and provide 

inferences at low computational cost.  In this tutorial we first present the basic theory 

of RVM for regression and classification, followed by two examples illustrating the 

application of RVM for object detection and classification. The first example is target 

detection in images and RVM is used in a regression context. The second example is 

detection and classification of microcalcifications from mammograms and RVM is 

used in a classification framework. Both examples illustrate the application of the 

RVM methodology and demonstrate its advantages.  



 

1. INTRODUCTION 

Linear models are commonly used in a variety of regression problems, where the 

value * *( )t y x=  of a function ( )y x  needs to be predicted at some arbitrary point *x , 

given a set of (typically noisy) measurements of the function 1{ ,..., }Nt t t=  at some 

training points 1{ ,..., }NX x x= : 

 ( )i i it y x ε= + , (1) 

where iε  is the noise component of the measurement.  

Under a linear model assumption, the unknown function ( )y x  is a linear 

combination of some known basis functions ( )i xφ , i.e., 

 
1

( ) ( )
M

i i
i

y x w xφ
=

=∑ , (2) 

where 1( ,..., )Mw w w=  is a vector consisting of the linear combination weights. 

Equation (1) can then be written in vector form as: 

 t w ε= Φ + , (3) 

where Φ  is an N M× design matrix, whose i-th column is formed with the values of 

basis function ( )i xφ  at all the training points, and 1( ,..., )Nε ε ε=  is the noise vector.  

Assuming independent, zero-mean, Gaussian distribution for the noise term, 

i.e, 2~ (0, )i Nε σ , the maximum likelihood estimate for 1( ,..., )Mw w w=  is given by: 

 
2 1arg min( ) ( )T T

OLS
w

w t w t−= −Φ = Φ Φ Φ , (4) 

which is also known as the ordinary least square (OLS) estimate. In many 

applications, the matrix TΦ Φ  is often ill-conditioned, and the OLS estimate suffers 

from over-fitting, which is typical with maximum likelihood estimates. In order to 

overcome this problem, constraints are commonly introduced on the parameters 

1( ,..., )Mw w w= , which are used to imply specific desired properties of the estimated 

function. The Bayesian methodology provides an elegant approach to define such 

constraints by treating the parameters as random variables, to which suitable prior 

distributions are introduced. For example, preference for smaller weight values, which 

can lead to desirable smooth function estimates, can be specified by assigning a zero-

mean, Gaussian distribution to the weights: 



 ( ) ( | 0, )p w N w Iλ= . (5) 

Here, the variance parameter λ  is adjusted according to the learning problem in order 

to achieve good results. 

Another desirable property of the unknown function, developed more recently, 

is sparseness, in which the least number of basis functions are desired in the function 

representation, while all the other basis functions are pruned by setting their 

corresponding weight parameters to zero. Sparseness property is useful for several 

reasons. First, sparse models can generalize well and are fast to compute. Second, 

they also provide a feature selection mechanism which can be useful in some 

applications. 

There exist different methodologies for sparse linear regression, including 

least absolute shrinkage and selection operator (LASSO) [1],[2] and support vector 

machines (SVM) [3]. In a Bayesian approach such as RVM, sparseness is achieved by 

assuming a sparse distribution on the weights in a regression model. Specifically, 

RVM is based on a hierarchical prior, where an independent Gaussian prior is defined 

on the weight parameters in the first level, and an independent Gamma hyperprior is 

used for the variance parameters in the second level. This results in an overall student-

t prior on the weight parameters, which leads to model sparseness. A similar Bayesian 

methodology to achieve sparseness is to use a Laplacian prior [5], which can also be 

considered as a two-level hierarchical prior, consisting of an independent Gaussian 

prior on the weights and an independent exponential hyperprior on their variances. 

2. RVM THEORY 

2.1. Multi-kernel Relevance Vector Machine 

Relevance vector machine (RVM) is a special case of a sparse linear model, where the 

basis functions are formed by a kernel function φ  centred at the different training 

points: 
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While this model is similar in form to the support vector machines (SVM), the kernel 

function here does not need to satisfy the Mercer’s condition, which requires φ  to be 

a continuous symmetric kernel of a positive integral operator. 



Multi-kernel RVM is an extension of the simple RVM model. It consists of 

several different types of kernels mφ , given by: 
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The sparseness property enables automatic selection of the proper kernel at each 

location by pruning all irrelevant kernels, though it is possible that two different 

kernels remain on the same location. 

2.2.  Sparse Bayesian Prior 

A sparse weight prior distribution can be obtained by modifying the commonly used 

Gaussian prior in (5), such that a different variance parameter is assigned for each 

weight: 

 ( ) ( )1

1
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i

p w N wα α −

=

=∏ . (8) 

where 1 )( ,..., Mα α α=  is a vector consisting of M hyperparameters, which are treated 

as independent random variables. A Gamma prior distribution is assigned on these 

hyperparameters:  

 ( ) ( ),ip Gamma a bα = , (9) 

where a  and b  are constants and are usually set to zero, which results in a flat 

Gamma distribution. By integrating over the hyperparameters, we can obtain the 

‘true’ weight prior ( ) ( ) ( )|p w p w a p a da= ∫ . The above integral gives a student-t 

prior, which is known to enforce sparse representations, owing to the fact that its mass 

is mostly concentrated near the origin and the axes of definition. 

2.3.  Bayesian Inference 

Assuming independent, zero-mean, Gaussian noise with variance 1β − , i.e., 

 1~ (0, )Nε β − Ι , (10) 

we have the likelihood of the observed data as: 

 1( | , , ) ( | , )p t w N t w Iα β β −= Φ , (11) 

where Φ  is either an N N×  or an ( * )N N M×  ‘design’ matrix for the single and 

multikernel cases respectively. This matrix is formed by all the basis functions 



evaluated at all the training points, i.e., 1[ ( ),..., ( )]T
Nx xφ φΦ =  with 

1 1 1( ) [ ( ),..., ( ),..., ( )]T
i i i N M i Nx x x x x x xφ φ φ φ= − − − . 

In order to make predictions using the Bayesian model, the parameter 

posterior distribution ( , | )p w tα  needs to be computed. Unfortunately, it cannot be 

computed analytically owing to its complexity, and approximations have to be made. 

Following the procedure described in [4], we decompose the parameter posterior as: 

 ( , , | ) ( | , , ) ( , | )p w t p w t p tα β α β α β= . (12) 

Then, the posterior distribution of the weights can be computed as 
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α β μ
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where 
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Σ = Φ Φ +

= ΣΦ
 (14) 

and 1( ,..., )MA diag α α= . 

The posterior of the hyperparameters ( ), |p tα β  cannot be computed 

analytically and is approximated by a delta function at its mode: 

 ( ) ( ), | ,MP MPp tα β δ α β≈ . (15) 

We can find MPα and MPβ  by maximizing ( ) ( ) ( ) ( ), | | ,p t p t p pα β α β α β∝  as: 

 ( ) ( )( )arg max | ,MP p t p
α

α β αα = , (16) 

and 

 ( ) ( )( )arg max | ,MP p t p
β

β α β β= . (17) 

The term ( )| ,p t α β  is known as the marginal likelihood or type-II likelihood [5] and 

is computed by marginalizing the weights:  

 ( ) ( ) ( )| , | |p t p t w p w dwα β α= ∫ , (18) 

which yields  

 ( ) ( )1| , 0, Tp t a N Aβ β −= Ι +Φ Φ . (19) 

An alternative approach is to follow the variational Bayesian methodology to 

obtain an approximation to the posterior parameter distribution ( , | )p w tα . This is 



demonstrated in [5], but it is concluded that the method achieves only slightly 

improved results at significant additional computations. 

2.4. Marginal Likelihood Optimisation 

The optimisation problem in (16) for MPα  cannot be solved analytically and an 

iterative method has to be used. Instead of maximizing the hyperparameter posterior, 

it is equivalent, and more convenient, to minimize its negative log likelihood [4] 

which for the multikernel case is: 
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where 1 TC Aβ −= Ι +Φ Φ . This equation when 1M =  gives the single kernel case. 

Setting the derivative of ( )L α  to zero gives the following iterative formula: 
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where miμ  is the mi-th element of the posterior mean weight and ( )( )mi miΣ is the mi-th 

diagonal element of the posterior weight covariance. At each iteration, both miμ and  

( )( )mi miΣ  are evaluated from (14) using the current estimate of MPα . Similarly, the 

following formula can be obtained for the variance parameter: 
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Computation of Σ  requires ( )3( )O NM  computations, which can be very 

demanding for models with many basis functions. During the training process, basis 

functions whose corresponding weights are estimated to be zero may be pruned. This 

will make matrix Σ  smaller after a few iterations, and its inversion will be easier. 

However, there are M basis functions initially at each point, and computation of Σ  is 

time consuming. 

It is interesting to note that the iterative updates for the hyperparameters in 

(21) and (22) can also be derived using an expectation-maximization (EM) algorithm 

by treating the weights w  as hidden variables and the observations t  and the 

hyperparameters α  and β  as observed variables. 

 



2.5.  Incremental Optimization 

A more efficient approach is the incremental algorithm proposed in [8]. The model is 

initially assumed to contain only one basis function, and basis functions are 

incrementally added or deleted subsequently. For the case of a flat prior on 

hyperparameter a , maximization of the marginal likelihood is equivalent to 

maximizing: 

 11( ) log ( | ) log 2 log
2

TL p t N C t C tα α π −⎡ ⎤= = − + +⎣ ⎦ . (23) 

Given a single hyperparameter iα  we can decompose ( )L α  into two 

terms:
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( ) ( )i iL lα α− += , 

where ( )iL α− is independent of iα  and 

 ( )
21( ) log log

2
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ql s
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α
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with 1T
i i i is Cφ φ−−= , 1T

i i iq C tφ −
−=  while iC−  is matrix C  with the contribution of basis 

function iφ  removed, i.e., 1 T
i i i iC C α φφ−

− = − . Analysis of ( )il α  shows that ( )L α  has a 

unique maximum with respect to iα : 

 

2
2

2

2

     

             

i
i i i

i i

i i i

s if q s
q s

if q s

α

α

= >
−

= ∞ ≤

 (25) 

Thus, we can find MPa  by iteratively: 

• adding a basis function iφ  with 2
i iq s> , 

• re-estimating hyperparameter iα  for a basis function already in the model, or 

• deleting a basis function iφ  with 2
i iq s≤ . 

When adding a basis function or re-estimating the value of its hyperparameter, 

we set 
2

2
i

i
i i

s
q s

α =
−

, which maximizes ( )L α . Thus at each step the marginal 

likelihood increases. Vectors s  and q are calculated using an iterative algorithm that 



utilizes their value from the previous iteration, details of these calculations can be 

found in [8].    

This incremental algorithm successfully overcomes the major difficulty of 

inverting the full matrix Σ . However, since at each iteration only one basis function 

can be modified, significantly more iterations are required to reach convergence. 

Convergence could be faster by choosing at each step to modify the basis function 

that leads to the largest increase of the marginal likelihood. However, this requires 

evaluating the marginal likelihood increase for all the basis functions at each step and 

is computationally expensive. Overall, the incremental algorithm is a major 

improvement over the initial non incremental algorithm. However, it is still 

computationally demanding for very large datasets. 

2.6. RVM for Classification 

Similar to regression, RVM has also been used for classification. Consider a two-class 

problem with training points 1{ ,..., }NX x x=  and corresponding class labels 

1{ ,..., }Nt t t=  with {0,1}it ∈ . Based on the Bernoulli distribution, the likelihood (the 

target conditional distribution) is expressed as: 

 1

=1

( | w)= {( ( ))} [1 {( ( ))}]i i

N
t t

i i
i

p t y x y xσ σ −−∏ , (26) 

 
where ( )yσ  is the logistic sigmoid function: 
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+ −
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x
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Unlike the regression case, however, the marginal likelihood ( | )p t α  can no longer be 

obtained analytically by integrating the weights from (26), and an iterative procedure 

has to be used. 

Let *
iα  denotes the maximum a posteriori (MAP) estimate of the hyper-

parameter iα . The MAP estimate for the weights, denoted by wMAP , can be obtained 

by maximizing the posterior distribution of the class labels given the input vectors. 

This is equivalent to maximizing the following objective function: 

 *
1 2

1 1

( , , , ) log ( ) log ( )
N N

N i i i i
i i

J w w w p t w p w α
= =

= +∑ ∑ , (28) 

where the first summation term corresponds to the likelihood of the class labels, and 

the second term corresponds to the prior on the parameters iw . In the resulting 



solution, only those samples associated with nonzero coefficients iw  (called relevance 

vectors) will contribute to the decision function.  

 

The gradient of the objective function J  with respect to w  is: 

Tw - ( - )J A f t∗∇ = − Φ                                          (29) 

where 1=[ ( ( ))... ( ( ))]T
Nf y x y xσ σ , matrix Φ  has elements , ( , )i j i jK x xφ = . The 

Hessian of J  is 

2 ( ) ( )TH J B A∗= ∇ = − Φ Φ +                                     (30) 

where 1( ,..., )NB diag β β=  is a diagonal matrix with ( ( ))[1 ( ( ))]i i iy x y xβ σ σ= − .  

The posterior is approximated around wMAP  by a Gaussian approximation with 

covariance 

 1( | )
MAPwH −Σ = −  (31) 

and mean  

 T Btμ = ΣΦ . (32) 
These results are identical to the regression case (14) and the hyperparameters iα  are 

updated iteratively in the same manner as for the regression case.  

2.7. Comparison to SVM Learning 

SVM is another methodology for regression and classification that has attracted 

considerable interest [3]. It is a constructive learning procedure rooted in statistical 

learning theory [3], which is based on the principle of structural risk minimization. It 

aims to minimizing the bound on the generalization error (i.e., the error made by the 

learning machine on data unseen during training) rather than minimizing the empirical 

error such as the mean square error over the data set [3]. This results in good 

generalization capability and an SVM tends to perform well when applied to data 

outside the training set.  

In the context of classification, an SVM classifier in concept first maps an 

input data vector x  into a higher dimensional space H  through an underlying 

nonlinear mapping ( )Φ x , then applies linear classification in this mapped space. 

Introducing a kernel function ( , ) ( ) ( )TK ≡ Φ Φx y x y , we can write an SVM classifier 

( )SVMf x  as follows: 



 
1

( ) ( , )
sN

SVM i i
i

f K bα
=

= +∑x x s  (33) 

where , 1, 2, ,i si N=s  are a subset of the training samples{ }, 1, 2, ,i i N=x  (called 

support vectors).  The SVM classifier in (33) resembles in form the RVM classifier in 

(6), yet the two classifiers are derived from different principles. As will be 

demonstrated later by the application results (Section 3.3), for SVM the support 

vectors are typically formed by “borderline”, difficult-to-classify samples in the 

training set, which are located near the decision boundary of the classifier; in contrast, 

for RVM the relevance vectors are formed by samples appearing to be more 

representative of the two classes, which are located away from the decision boundary 

of the classifier.  

Compared to SVM, RVM is found to be advantageous on several aspects 

including: 1) The RVM decision function can be much sparser than the SVM 

classifier, i.e., the number of relevance vectors can be much smaller than that of 

support vectors; 2) RVM does not need the tuning of a regularization parameter (C ) 

as in SVM during the training phase. As a drawback, however, the training phase of 

RVM typically involves a highly nonlinear optimization process.  

3. APPLICATIONS 

The relevance vector machine (RVM) technique has been applied in many 

different areas of pattern recognition, including communication channel equalization 

[22], head model retrieval [23], feature optimization [24], functional neuroimages 

analysis [25] and facial expressions recognition [26]. In this paper we describe two 

applications: the first concerns the application of large scale multikernel RVM for 

object detection in large scale images, while the second deals with computer-aided 

diagnosis of microcalcifications in digitized mammograms. 

3.1. RVM for Images: Optimization in the Fourier Domain  

As previously noted one of the main difficulties of RVM when applied to large data 

sets (such as images) is that the computations required for the posterior statistics in 

equation (14) can be prohibitive. In what follows we first introduce a methodology to 

ameliorate this problem.  



When the training points are uniform samples of a signal (e.g., the pixels of an 

image) and the kernel is symmetric, the RVM for the single kernel case can be written 

using a convolution as: 

 y w φ= ∗ , (34) 

where 1 1 2 1 1( ( , ), ( , ),..., ( , ))NK x x K x x K x xϕ =  is the kernel vector, containing the 

kernel function centred at 1x , evaluated each training point. This convolution can be 

expressed in matrix form as: 

 y w= Φ , (35) 

where Φ  is a circulant matrix whose first row is vector φ . Such convolution can be 

easily computed using DFT as: 

 k k kWϒ = Ψ , (36) 

where kϒ  is the k-th DFT coefficient of y, kW  is the k-th DFT coefficient of w, and 

kΨ is the k-th DFT coefficient of φ . This observation allows very efficient 

computation of the output of an RVM model.  

More importantly, the same idea can be utilized to compute the posterior 

statistics of the weights μ  and Σ . Starting from (14), we can compute these 

quantities by solving the following linear system: 

 ( )T TA tβ μ βΦ Φ+ = Φ . (37) 

The solution involves inversion of the matrix 1T
nC A−Φ Φ + , which is computationally 

expensive. Instead, we can employ an optimization method, such as conjugate 

gradient, to solve this linear system by solving the following optimization problem: 

 arg min( ( ) ( ) )T T T T

w
w A w t wμ β β= Φ Φ + − Φ , (38) 

which is equivalent, since the derivative of the minimized quantity will be zero at the 

minimum. The quantities ( )T Tw wβΦ Φ  and ( )T Tt wβΦ  can be efficiently computed in 

the DFT domain, since the matrixΦ  is circulant, while computation of Tw Aw  is 

straightforward since A  is diagonal. Assuming we could perform arithmetic 

operations with infinite precision, the conjugate gradient algorithm is guaranteed to 

converge after a finite number of iterations. In practice, a very good estimate can be 

obtained after only a few iterations. 

However, in order to compute the posterior weight covariance we have to 

invert the matrix 1T
nC A−Φ Φ + , which is computationally demanding. Instead, observe 



that we only need to compute the diagonal of Σ , which can be approximated by 

assuming TΦ Φ  to be diagonal as: 

 1/( )T
ii iiAβΣ = Φ Φ+ . (39) 

Although this approximation is not generally valid, it has been proven effective in 

experiments, because the matrix A  has commonly very large values and is the 

dominant term in the expression T AβΦ Φ + . 

 This approach can be extended easily for the multikernel case in such case 

instead of equation (35) we have 
1

M

m m
m

y w
=

= Φ∑ where mΦ and mw are the circulant 

matrix and weights, respectively,  that correspond to the m-th kernel. Thus we can 

write in the DFT domain 
1

M
m m

k k k
m

Y w
=

= Ψ∑ where kϒ  is the k-th DFT coefficient of y, 

m
kW  is the k-th DFT coefficient of mw , and m

kΨ is the k-th DFT coefficient of mφ . 

3.2.  Object Detection 

In an object detection problem, the goal is to determine the locations of a given 

`target' image in an `observed' image in the presence of noise. The 'target' may appear 

significantly different in the observed image, as a result of being scaled, rotated, 

occluded by other objects, of different illumination conditions, etc. 

A commonly used approach to object detection is matched filter and its 

variants, such as the phase-only [9] and the symmetric phase-only [10] matched 

filters. These are based on computing the correlation image between the “observed” 

and “target” images, which is thresholded to determine the locations where the `target' 

object is present. Alternatively, the problem can be formulated as image restoration, 

where the image to be restored is considered as an impulse function at the location of 

the “target” object. This technique allows explicit modeling of the background to be 

incorporated in the detection process, such as autoregressive models, and has been 

shown to be superior to the different versions of the “matched filter” [11]. 

Below we describe a methodology for object detection based on training a 

multikernel DFT-RVM model on the “observation” image. This RVM model consists 

of two sets of basis functions: basis functions that are used to model the `target' image 

and basis functions that are used to model the background. After training the model, 

each “target” basis function that survives in the model can be considered as a detected 



“target” object. However, if the background basis functions are not flexible enough, 

“target” functions may also be used to model areas of the background. Thus, we 

should consider only “target” basis functions whose corresponding weight is larger 

than a specified threshold. 

Let 1( ,..., )Nt t t=  be a vector consisting of the intensity values of the pixels of 

the `observed' image. We model this image using the RVM model, as: 

 
1 1

( ) ( )
N N

ti t i bi b i
i i

t w x x w x xφ φ ε
= =

= − + − +∑ ∑ , (40) 

where tφ  is the `target' basis function which is a vector consisting of the intensity 

values of the pixels of the `target' image, and bφ  is the background basis function 

which we choose to be a Gaussian function. After training the RVM model, we obtain 

the vectors tμ  and bμ  which are the posterior mean weights for the kernel and 

background, respectively. Ideally, `target' kernel functions would only be used to 

model occurrences of the `target' object. However, because the background basis 

functions are often not flexible enough to model the background accurately, some 

`target' basis functions have been used to model the background as well. In order to 

decide which `target' basis functions actually correspond to `target' occurrences, the 

posterior `target' weight mean values are thresholded, and only those that exceed a 

specified threshold are considered significant: 

 Target exists at location i  | |ti Tμ⇔ > . (41) 

Choosing a low threshold may generate false alarms, indicating that the object 

is present in locations where it actually doesn't exist. On the other hand, choosing a 

high threshold may result in failing to detect an existing object. There is no universal 

optimal value for the threshold, but instead it should be chosen depending on the 

characteristics of each application.  

3.2.1. Numerical Experiments 

In this section we present experiments that demonstrate the improved performance of 

the DFT-RVM algorithm compared to autoregressive impulse restoration (ARIR), 

Figure 1. Object detection example. The `target' image is a tank located at pixel (100,50). LEFT: The noisy `observed' image. 
CENTER: Area around target of the result of the ARIR algorithm. RIGHT: Area around target of the result of the DFT-RVM 
algorithm. 



which is found to be superior to most existing object detection methods [11]. We first 

demonstrate an example in which the `observed' image is constructed by adding the 

`target' object to a background image and then adding white Gaussian noise. An 

image consisting of the values of the target kernel weights computed with the DFT-

RVM algorithm is shown in Fig. 1. Note that because of the RVM sparseness 

property, only few weights have non-zero values. The `target' object is the tank 

located at pixel (100, 50), where the bright white spot on the kernel weight image 

exists.  

When evaluating a detection algorithm it is important to consider the detection 

probability PD, which is the probability that an existing `target' is detected and the 

probability of false alarm PFA, which is the probability that a `target' is incorrectly 

detected. Any of these probabilities can be set to an arbitrary value by selecting an 

appropriate value for the threshold T. A receiver operating characteristics (ROC) 

curve is a plot of the probability of detection PD versus the probability of false alarm 

PFA, which provides a comprehensive way to demonstrate the performance of a 

detection algorithm. However, an ROC curve is not suitable for evaluating object 

detection algorithms because it only considers if an algorithm has detected an object 

or not; it does not consider if the object was detected in the correct location. Instead, 

we can use the localized ROC (LROC) curve, which is a plot of the probability of 

detection and correct localization PDL versus the probability of false alarm and 

considers also the location where a `target' has been detected. 

In order to evaluate the performance of the algorithm, we created 50 

`observed' images by adding a `target' image to a random location of a background 

image, and another 50 `observed' images without the `target' object. White Gaussian 

noise was then added to each `observed' image. The DFT-RVM algorithm was then 

used to estimate the parameters of an RVM model with a `target' kernel and a 

Gaussian background kernel for each `observed' image, generating 100 kernel weight 

images. These kernel weight images were then thresholded for many different 

threshold values and estimates of the probabilities PDL and PFA were computed for 

each threshold value. Similar experiments were performed for the ARIR algorithm 

also. An LROC curve was then plotted for each algorithm, see Fig. 2. The area under 

the LROC curve, which is a common measure of the performance of a detection 

algorithm, is significantly larger for the DFT-RVM algorithm. It is important that the 



LROC curve is high for small values of PFA, since usually the threshold is chosen so 

that only a small fraction of false detections are allowed [11]. 

 

 

3.3.  Applications on Computer-aided Diagnosis 

3.3.1. Background 

Breast cancer is a common form of cancer diagnosed in women. One of the important 

early signs of breast cancer in mammograms is the appearance of microcalcification 

(MC) clusters, which appear in 30-50% of mammographically diagnosed cases [12]. 

MCs are calcium deposits of very small dimension and appear as a group of granular 

bright spots in a mammogram. As an example, Fig. 3 shows a mammogram image 

with a cluster of MCs. Individual MCs are sometimes difficult to detect because of the 

surrounding breast tissue, their variation in shape and small dimension. Because of its 

importance in breast cancer diagnosis, accurate detection and classification of MC 

clusters are very important problems.   

                                                                                  

                                                    (a)                                                                                            (b) 

                           Figure 3. (a) Mammogram in craniocaudal view. (b) Expanded view showing MCs. 

 
Figure 2. LROC curves for the ARIR (left) and DFT-RVM (right) algorithms.



 

3.3.2. Automatic detection of microcalcification clusters 

In recent years, there has been a great deal of research in development of 

computerized methods for automatic and accurate detection of MC clusters, which 

could potentially assist radiologists in diagnosis of breast cancer. A thorough review 

of various methods for MC detection reported in the literature can be found in [13]. In 

[14], we developed a support vector machine (SVM) approach for detection of 

clustered MCs in mammograms, and demonstrated that such an approach could 

outperform several well-known methods in the literature.  

While the SVM approach achieves the best detection performance, the 

computational complexity of the SVM classifier may prove to be burdensome in real-

time or near real-time applications. In an SVM classifier, the decision function is 

determined by a subset of training samples (called support vectors); the computational 

complexity of the decision function is linearly proportional to the number of support 

vectors. As a consequence, too many a support vector can lead to a classifier (SVM) 

that is computationally expensive. This issue is especially important for MC 

detection, as modern digital mammography scanners can produce images at high 

resolutions, which may require significant computation time to process. To address 

this issue, in [15] we proposed to improve the computational efficiency of our 

previously developed SVM detection by using an alternative – relevance vector 

machine (RVM) – for MC detection. The advantage is that the RVM classifier can 

yield a decision function that is much sparser than the SVM while maintaining its 

detection accuracy. This can lead to significant reduction in the computational 

complexity of the decision function, thereby making it more suitable for real-time 

applications.  

Here MC detection is formulated as a binary classification problem. 

Specifically, at each location of a mammogram image, we apply an RVM classifier to 

determine whether an MC object is present or not. That is, for a given mammogram 

image, the MC detection process consists of the following two steps: 1) at each pixel 

location in the image, extract an input vector x  to describe its surrounding image 

feature; 2) apply the RVM classifier ( )RVMf x  to decide whether x  belongs to “MC 

present” class or “MC absent” class. 



We define the input vector x  to the RVM classifier to be formed by a small 

window of M M×  pixels centered at the location of interest in a mammogram image. 

The choice of M should be large enough to cover an MC and yet small enough to 

avoid any interference from neighboring MCs. In the dataset used in this study, the 

mammograms were digitized at 0.05 mm/pixel, and M =15 was chosen empirically in 

our experiments.  

To suppress the background and thereby restrict the intra-class variations 

among the input samples, a high-pass filter with a narrow stop-band was applied to 

each mammogram image. The high-pass filter was designed to be a finite impulse 

response (FIR) filter with cutoff frequency wc=0.05 cycles/pixel and length 10. In 

summary, the input vector x  is obtained at each pixel location as follows: 

 [ ]W H=x f  (42) 

where f denotes the entire mammogram image, H denotes the filtering operator, and 

W is the windowing operator. Note that for 15M = , the dimension of x  is 225.   

The training of the RVM classifier function consists of the following two 

steps: 1) collect training samples { }( , ), 1, 2, ,i id i N=x  from the existing 

mammograms, 2) optimize the model parameters of the RVM classifier for best 

performance. 

To demonstrate the RVM classifier, we used a set of 141 mammograms from 

66 clinical cases collected by the Department of Radiology at the University of 

Chicago. Each mammogram had one or more clusters of MCs which were 

histologically proven. These mammograms were digitized with a spatial resolution of 

0.05 mm/pixel and 10-bit grayscale with a dimension of 3000 5000 × pixels. The 

MCs in each mammogram were manually identified by a group of experienced 

radiologists. To save computation time, a section of 900 1000 × pixels, containing all 

the identified MCs, was cropped from each mammogram such that it was free of non-

tissue areas. These section images were used in our subsequent experiments.  

In our study, we divided the dataset in a random fashion into two separate 

subsets, each containing 33 cases. Subsequently, mammograms in one subset were 

used for training the classifiers, and mammograms in the other subset were used 

exclusively for testing the classifiers. Thus, mammograms from the same case were 

used either for training or testing, but never for both.  



The mammograms in the training subset were found to have a total of 1291 

individual MCs. For each of these MCs, a window of M M×  image pixels centered at 

its center was extracted; the vector formed by this window of pixels, denoted by ix , 

was then treated as an input pattern to the classifier for the “MC present” class 

( 1id = + ). This yielded a total of 1291 samples for the “MC present” class. Similarly, 

nearly twice as many (2232, to be exact) “MC absent” samples were collected 

( 1id = − ), except that their locations were selected randomly from the set of all “MC 

absent” locations in the training mammograms. In this procedure no sample window 

was allowed to overlap with any other sample window. For demonstration purpose, 

we show in Fig. 4 some examples of sample image windows for “MC present” and 

“MC absent” classes in the resulting training data set.  

To determine the fine-tuning parameters of the RVM classifier model for 

optimal performance, we apply a ten-fold cross validation in the training set. The best 

error level (4.89%) was obtained by an order-2 polynomial kernel. For the RVM 

classifier, the number of relevance vectors (produced during training) was found to be 

65 (1.85% of the number of training samples). 

For comparison, we also trained an SVM classifier using the same data set. 

The number of support vectors was found to be 521 (14.79% of the number of 

training samples). Indeed, the RVM classifier is much sparser than the SVM.  

To gain further insight on the RVM classifier, we show in Fig. 5 the 

corresponding image windows for some relevance vectors from both “MC present” 

and “MC absent” classes; for comparison, we show in Fig. 6 the image windows for 

some support vectors of the SVM classifier. As can be seen, for the RVM the 

relevance vectors from the two classes are distinctly different. The “MC present” 

relevance vectors consist of MCs that are clearly visible, and the “MC absent” 

relevance vectors consist of image windows that do not show MC-like features at all. 

In a sense, the relevance vectors are formed by “easy-to-classify” samples from both 

classes. In contrast, for the SVM the support vectors from the two classes do not seem 

to be distinctly different, that is, the “MC present” support vectors could be mistaken 

for “MC absent” image regions, and vice versa. These support vectors are samples 

that appear to be “borderline”, “difficult-to-classify”. These results demonstrate that 

the two classifiers are quite different from each other.   



           
“MC present” samples    “MC absent” samples  

Figure 4. Examples of 15 15×  image windows of training samples from the “MC present” and “MC absent” classes. These 

are randomly selected from the training set. 

                
“MC present” relevance vectors                          “MC absent” relevance vectors 

Figure 5. Examples of 15 15×  image windows of the relevance vectors (RVs) from the “MC present” and “MC absent” 

classes. All the 19 “MC present” RVs are shown and only 25 of the 46 “MC absent” RVs are shown.  

                 
“MC present” support vectors                                   “MC absent” support vectors 

Figure 6. Examples of 15 15×  image windows of the support vectors (SVs) from the “MC present” and “MC absent” classes.  

 



The performance of the RVM classifier for detection of clustered MCs is 

summarized using free-response receiver operating characteristic (FROC) curves. An 

FROC curve [16] plots the correct detection rate (i.e. true positive fraction (TPF)) 

versus the average number of false-positives (FPs) per image varied over the 

continuum of the decision threshold. It provides a comprehensive summary of the 

trade-off between detection sensitivity and specificity. The trained classifiers were 

evaluated using all the mammograms in the test subset. The test results are 

summarized using FROC curves in Fig. 7. In particular, the RVM achieved a 

sensitivity of approximately 90% when the false positive rate is at one FP cluster on 

average per image. Interestingly, this sensitivity level is also similar to that achieved 

by the SVM. Compared to SVM, the RVM classifier has reduced the detection time 

from nearly 250 s to about 30 s per image, nearly an order of magnitude reduction. 

Experimental results showed that the RVM technique could greatly reduce the 

computational complexity of the SVM while maintaining its detection accuracy. This 

makes RVM more feasible for real-time processing of MC clusters in mammograms.   

                               
                           Figure 7. FROC curves of the different methods.  

3.3.3. Classification of Microcalcification Clusters 

Once MCs are detected, another issue is how to classify them. Since these lesions 

appear in benign breast tissues as well as in malignant ones. They are often very 

difficult to diagnose accurately. It is reported that among those with radiographically 

suspicious, nonpalpable lesions who are sent for biopsy, only 15% to 34% are found 

to actually have malignancies [17][18]. There has been a great deal of research in 

recent years to develop computerized methods that potentially could assist 

radiologists differentiate benign from malignant MCs. In particular, Jiang et al [19] 

developed an automated computer scheme that was demonstrated to classify clustered 



MCs more accurately than radiologists. This scheme made use of a feedforward 

artificial neural network (FFNN), which was trained to predict the likelihood of 

malignancy based on quantitative image features automatically extracted from the 

clustered MCs. It was subsequently demonstrated in [20] that when used as a 

diagnostic aid, this scheme could also lead to significant improvement in radiologists’ 

performance in distinguishing between malignant and benign clustered MCs. In [21] 

we investigated several state-of-the-art machine-learning methods including RVM, 

SVM, and Kernel Fisher’s discriminant for automated classification of clustered 

microcalcifications (MCs). 

In our study, classification of malignant from benign clustered MCs is treated 

as a two-class pattern classification problem, i.e., a microcalcification cluster (MCC) 

under consideration is either malignant or benign. The different classifier models were 

developed and tested using a data set collected by the Department of Radiology at the 

University of Chicago. This data set consisted of 697 mammograms from 386 clinical 

cases, of which all had lesions containing clustered microcalcifications which were 

histologically proven. Among them 75 were malignant, and the rest (311) were 

benign. Furthermore, most of these cases have two standard-view mammograms: 

mediolateral oblique (ML) and craniocaudal (CC) views. The clustered MCs were 

identified by a group of experienced researchers. For computer analysis, all the 

mammograms in the data set were digitized with a spatial resolution of 0.1 mm/pixel 

and 10-bit grayscale. The data set includes a wide spectrum of cases that are judged to 

be difficult to classify by radiologists. 

For automated classification, the following eight features [19][20], all 

computed from the mammogram images, were used to characterize an MCC: 1) the 

number of MCs in the cluster, 2) the mean effective volume (area times effective 

thickness) of individual MCs, 3) the area of the cluster, 4) the circularity of the 

cluster, 5) the relative standard deviation of the effective thickness, 6) the relative 

standard deviation of the effective volume, 7) the mean area of MCs, and 8) the 

second highest microcalcification-shape-irregularity measure. The numerical values 

of all these features were normalized to be within the range between 0 and 1.  These 

features were selected to have intuitive meanings that correlate qualitatively to 

features used by radiologists [19]. This provides an important common ground for the 

computer scheme to achieve high classification performance and for radiologists to 

interpret the computer results.  



For preparation of training and testing samples for the classifier models, the 

eight features are extracted for each MCC in the mammogram data set; the vector 

formed by the eight feature values, denoted by ix , is then treated as an input pattern, 

and is labeled as 1iy = +  for a malignant case, and 1iy = −  otherwise. Together, 

( ),i iyx forms an input-output pair. There are in total 697 such pairs obtained from the 

whole mammogram data set. These pairs are subsequently used for training and 

testing of the classifier models. 

To determine the fine-tuning parameters for each classifier model, we apply a 

leave-one-out cross validation procedure. To evaluate the performance of a classifier, 

we use the so-called receiver operating characteristic (ROC) analysis, which is now 

used routinely for many classification tasks. We list in Table I the estimate of zA and 

its standard deviation, obtained using the ROCKIT program [27], and the parametric 

settings resulted from the training procedure for the different classifier models. These 

results demonstrate that the kernel methods (RVM, SVM, and KFD) are similar in 

performance (in terms of zA ), significantly outperforming a well-established, 

clinically-proven CADx approach that is based on neural network.  

 

 TABLE I. CLASSIFICATION RESULTS OBTAINED WITH DIFFERENT CLASSIFIER MODELS. 

 SVM  KFD RVM  FFNN  

zA  0. 8545 0.8303 0.8421  0.8007  

Std. Dev. 0.0259  0.0254 0.0243 0.0266 
Parameters Order-2 

polynomial 

kernel, 

C=700 

Order-2 

polynomial 

kernel 

Order-2 

polynomial 

kernel 

 

3 layers, 

6 hidden 

neurons, 

100 seeds 

                               

 

4. CONCLUSIONS 

The relevance vector machine (RVM) constitutes a powerful methodology for 

regression and classification tasks. It achieves very good generalization performance 

and yields sparse models that provide inference at moderate computational cost. 

However, during the training phase the inversion of a large matrix is required. This 

makes this methodology inappropriate for large datasets. This problem can be 



partially overcome by a modified learning algorithm, based on building the desired 

model incrementally. For image data where a periodically sampled training set is 

available a methodology based on computations in the DFT domain has been 

described which can bypass these difficulties. Since RVM can be also used for 

classification tasks we present a successful example of RVM for microcalcification 

detection and classification. This example clearly demonstrates the advantages of 

RVM and illustrates its differences from SVM.  
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