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Least Squares Restoration of Multichannel Images
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and Allen D. Hillery, Member, IEEE

Abstract—In this paper we consider the problem of multi-
channel restoration using both within- and between-channel de-
terministic information. A multichannel image is a set of image
planes that exhibit cross-plane similarity. Existing optimal res-
toration filters for single-plane images will yield suboptimal re-
sults when applied to multichannel images, since between-
channel information is not utilized. Multichannel least squares
restoration filters are developed using two approaches, a set
theoretic and a constrained optimization. A geometric inter-
pretation of the estimates of both filters is given. Color images,
that is, three-channel imagery with red, green, and blue com-
ponents, are considered. Constraints that capture the within-
and between-channel properties of color images are developed.
Issues associated with the computation of the two estimates are
addressed. A spatially adaptive, multichannel least squares fil-
ter that utilizes local within- and between-channel image prop-
erties is proposed. Finally, experiments using color images are
shown.

I. INTRODUCTION

HE use of image data from multiple frequency bands,

multiple time frames, or multiple sensors can be of
tremendous value in a number of applications, such as
multispectral satellite remote sensing, multisensor robot
guidance, and multimedium medical diagnosis. Of special
interest are color images, due to their wide range of ap-
plications. Color can be regarded as a set of three images
in their primary color components. In this paper, we shall
use the general term of multichannel images to indicate
that we are dealing with multiple image channels (planes)
obtained by an imaging system that measures the same
scene using more than one type of sensor. :

In most applications, the multichannel images are dis-
torted, due to, for example, motion, out-of-focus blur,
channel crosstalk, registration error, quantization error,
and device noise. Therefore, restoration of multichannel
images is required before further possible human or ma-
chine analysis. More specifically, the following degra-
dation model is considered:

g=Hf +n (1.1
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where g, f, and n represent the observed image, the orig-
inal image, and the noise, respectively. For N channels
M X M pixels each, they are given by

81 fi n
82 b ny
g=1 f=1 n=|" (1.2)
8i fi n;
_8N_ _fN | v

where each of the M? vectors g;, f;, n; results from the
lexicographic ordering of the two-dimensional signals in
each channel [2]. The NM? x M*N multichannel degra-
dation matrix H is equal to

Hy,, Hyp © Hyy
g | e B 1.3)
Hy, Hy, *-- Hyy

Submatrices H;; and H;;, for i # j are of dimension M’
x M? and represent the within-channel and the cross-
channel degradation, respectively. Throughout this paper
we assume only within-channel shift-invariant imaging
systems. This assumption yields H;; block Toeplitz ma-
trices. However, H is not Toeplitz, since no shift invari-
ance across channels is assumed, that is, H;; # H; ;¢ ; +«-
Although there is a large amount of work in the litera-
ture on digital restoration of single-channel images [2],
[33], there has been little investigation of multichannel
restoration. Processing of multichannel images is sub-
stantially different from that of single-channel images. The
extension of existing single-channel images restoration
techniques to multichannel restoration is a nontrivial and
difficult task. Filters that are optimal for single-channel
images may be suboptimal when applied individually to
the separate channels of a multichannel image. For ex-
ample, in the detection of a signal, the signature of the
signal that appears only weakly in individual image chan-
nels, and may therefore go undetected using conventional
single-channel processing, may appear strong in a multi-
channel processing scheme because of its presence in all
channels, and therefore may be easily detected.
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The first reported research on multichannel restoration
is by Hunt and Kubler [12]. They derived a minimum
MSE multichannel restoration filter based on the assump-
tion that the multichannel correlation, describing the
cross-channel and spatial (within-channel) relationship, is
separable. This enables the decorrelation of the channels
based on the Karhunen-Loeve transformation. Therefore,
subsequent filtering of individual channels can be done by
conventional single-channel image restoration algo-
rithms. However, the separability assumption is too lim-
iting, and this method cannot handle the case when cross-
channel degradation is present, that is, H;; # 0 for
i #J.

A restoration filter for color images based on the idea
of [12] is reported in [23]. Additional results on the res-
toration of color images are reported in [3], [16], and [28].
In [9], [15], and [18] an imaging model consisting of
identical images in all channels blurred by different blurs
was used to compute a least squares solution. This solu-
tion was computed without explicitly using any cross-
channel information. '

We believe there is much to be gained by incorporating
the interdependency between the cross-channel and spa-
tial correlations in multichannel restoration. Such mini-
mum MSE filters have been developed, and their results
are reported in [5]-[8]. These filters utilize the cross-
channel correlations without using the separability as-
sumption. Also, they can handle the case H;; # 0 for
i#j.

A significant amount of prior knowledge is required for
the multichannel minimum MSE filter. Although the filter
is optimally derived, its true success in restoring real-
world images depends on accurate statistical knowledge
of the signal and noise as random variables. To be more
specific, the minimum MSE filter requires accurate esti-
mation of the image and noise power spectra.

Another serious drawback of multichannel minimum
MSE filtering is the fact that it is extremely sensitive to
the estimate of the cross-channel spectra, see [5] and [27].
It was shown in [27] that traditional single-channel spec-
tral estimation methods (e.g., periodogram estimates of
windowed prototype images) fail in multichannel resto-
ration because cross-channel spectra contain phase infor-
mation.

Other criteria may be used for the development of op-
timal restoration filters. A number of them have been in-
vestigated by various researchers for single-channel res-
toration, including the minimization of the Laplacian for
spatial smoothness and the minimization of entropy for
global smoothness. The application of constrained least
squares approaches to single-channel image restoration
was first proposed in [11] and later investigated by other
researchers. See, for example, [14], [171, [20], and [32].

In this paper the least squares approach is used to solve
the multichannel restoration problem. Deterministic a
priori information of between- and within-channel is used.
This alleviates some of the problems associated with the
minimum MSE filter. Two approaches, a set theoretic and

a constrained optimization, were used to derive restora-
tion filters. Both methods yield solutions of the same form.
Geometric interpretations and properties of these solu-
tions are examined. Regularization theory of ill-posed
problems [30] is used to justify and explain our results.

The multichannel problem is formulated and discussed
in detail in Section II. In Section III we consider the im-
plementation of our multichannel restoration filters. A
spatially adaptive least squares multichannel filter is pro-
posed in Section IV. Experimental results using color im-
ages and a comparative study are presented in Section V
and in Section VI we present our conclusions.

II. MULTICHANNEL CONSTRAINED LEAST SQUARES
RESTORATION

A. Set Theoretic Approach

Let us first denote the degradation function associated

with the ith channel by the M> X NM? matrix
ﬁi = [Hy, Hyp, - -+, Hpl

where H;; represents the cross-channel degradation be-
tween channels i and j and H;; the within-channel spatial
degradation. The linear space-invariant degradation model
defined by (1.1) can then be rewritten as

g=Hf+n i=12 - N

2.1

2.2)

In this section, a set theoretic approach [25], which has
been applied to single-channel restoration [19], and to the
restoration of an image when multiple distorted versions
of it are available [18], is used to estimate a solution to
(2.2). More specifically, a priori knowledge about f is
assumed which restricts the solution to lie in a set, that
is,

where Sy is an NM*-dimensional space. Similarly, the
noise n; is assumed to belong to a set S,,. Since n; must
lie in a set, it follows that a given observation g; combines
with the set S, to define a new set which must contain f.
Thus the observation g, specifies a set Sy/,, which must
contain f, i.e.,

€Sy =1f: (Hf - g)eS,]. @.4)

Consider now the sets Sf, Sy/,,, * * * , Sg/,,. Each set con-
tains f and, therefore, f must lie in their intersection. Let
Sz denote this intersection. Then

where N denotes set intersection. According to (2.5), the
restored image is not defined as a single vector but instead
as a set. This set is the smallest set which must contain f
and which can be calculated from the available informa-
tion. We note here that the formulation of this set theo-
retic approach to restoration is quite straightforward and
holds true for any kind of sets. However, the difficulty of
the approach arises when the intersection of these sets de-
fined in (2.5), is to be calculated. To make the problem
more tractable, ellipsoids are used for the sets S; and S,,.
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The equation for an ellipsoid is given by

S=1f:(f- )G\ (f-cp=1] 2.6)
where ¢y is the center of the ellipsoid and Gy a positive
matrix, whose eigenvalues and eigenvectors determine,
respectively, the orientation and the lengths of the axis of
S;.
A usual form of the ellipsoids Syand S, is

lorl® < E? (2.7

and
lnl* < ¢, i=1,2,---,N 2.8)
where || - || represents the Euclidean norm. Details about

the role and the selection of the regularization operator Q
are given in Section II-D. However, the intersection of
ellipsoids is not necessarily an ellipsoid. Therefore, one
approach to geometrically describe the intersection is to
consider an ellipsoid which bounds the intersection [26].
Then we choose the center of this bounding ellipsoid to
represent the restored image. For the ellipsoids of (2.7)
and (2.8) it is shown in Appendix A that the center of the
bounding ellipsoid is given by

. & BE 01" 1Y &

f= [ia Pi —2 + P+ Qfg} : {Z Pie—g'gz}

i=1

(2.9)

where Z/_, p; < 1 and p; = 0. For each choice of the
values of p; a different bounding ellipsoid is defined whose
center corresponds to a different estimate of the original
image. If all the p,’s are chosen to be equal then (2.9)
yields

N N
[-é NHiH; + Q’Q}f = AZ} NHig  (2.10)

where \; = (E/ ). Equation (2.10) can also be derived
[18] by considering Miller’s regularization approach [22],
which was applied to the restoration of single channel im-
ages in [14]. As is clear from the above formulation, an
estimate of the parameters E2 and ¢/ must be obtained
before this method can be used. Estimating ¢; the power
of the additive white noise from the observed images, is
a well-researched problem and a number of approaches
have been proposed [2], [21]. We will discuss ways for
obtaining an estimate for E later in this paper.

B. Constrained Optimization Approach

If E is not available a priori, or no satisfactory estimate
can be obtained, a constrained optimization approach to
multichannel restoration is followed next. Such an ap-

proach also results in (2.10) although the N\’s are now un- -

known. According to this approach, an f is sought which
Minimizes || Qf ||?
subject | H.f — gl* = lIn|* = ¢

fori =1,2, ---,N. (2.11b)

@.11a)

Using the method of Lagrange multipliers, the solution f
is obtained by minimizing

N
(LN = X NIES = &l = Inl?) + 10f 1P

(2.12)

where A = (A, Ny, * * + , Ay) is the Lagrange multiplier
vector. The Lagrangian method is based on the possibility
of solving a system of equations which constitute neces-
sary conditions of optimality. For the problem described
by (2.11a) and (2.11b) these conditions are

Ve (f, N =0
We(f,N =0

where V, denotes the gradient of a function with respect
to vector z. The Lagrange multiplier method consists of
solving a sequence of unconstrained problems of (2.13a).
The solution f(\) is examined if it satisfies (2.13b) and
\ is adjusted appropriately. The condition in (2.13b) re-
sults in (2.10) while condition (2.13b) results in (2.11b).
The above optimization approach with the use of weighted
norms was also followed in [15] when multiple distorted
versions of the same image are available.
Using the multichannel notation, (2.10) yields

[AH'H + Q'Qlf = AH'g

where H is the multichannel degradation as defined in
(1.3) and A is defined as

(2.13a)
(2.13b)

(2.14)

NI o0oo--- 0

o NI - 0

A= . . .
0 0 - N

where the identity matrices [1] are of size M 2 x M?. Fi-
nally, solving for fin (2.14) yields
f=IHH+A"'Q'QI"'Hg

which is the solution of the constrained least squares res-
toration with respect to chosen values of the parameters
inQ.

The solution f(\;, Ay, - * * , Ay) in (2.15) must satisfy
the constraint (2.11b), which can be written as .

(2.15)

ZOw, Ny o o M) = (HHF = gl = Inad®
fori=1,2,--+,N.
(2.16)
Finding the roots of the functions Z;(Xj, Ay, * * * , Ay)

simultaneously yields the desired \;. The functions Z; (),
N2, * **, Ay) are nonlinear, therefore Newton’s method
is used to find the \; numerically. The details of the com-
putation of the Jacobian of this system are given in Ap-
pendix B. The main drawback of this approach is the high
computational cost of the Newton iterations. '
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If we assume there is only spatial blur and no cross-
channel constraints, that is, both H and Q are block di-
agonal matrices (a block diagonal matrix H of dimension
NM? x M2N is a matrix with submatrices H;; of dimen-
sion M2 x M?, where H; = 0 for i # j), then (2.10)
degenerates into independent single-channel least squares
filtering given by

-1
. 1
fi= \:HﬁiHii + X giQii] Hjg;

fori=1,2,--+,N. 2.17)

C. Geometric Interpretation

Let us now compare and geometrically characterize the
solutions obtained by both approaches. These solutions
are, respectively, denoted by f;, and fcLs- They are shown
in Fig. 1 for a two-dimensional example, with N = 2.
With the constrained optimization approach, the prior
knowledge defines only the ellipsoids Sy/,, and Sy/g,- Then
the restored image fos is the point of intersection of the
two ellipsoids to which the center f = 0 of the ellipsoid
Sy is closest.

With the set theoretic approach, the ellipsoid Sy is de-
fined together with the ellipsoids. Sy/,, and Sy/g,. The re-
stored image f, is the center of the bounding ellipsoid
which encloses the intersection of the three ellipsoids, de-
noted by S, in Fig. 1. Provided that such an [, belongs to
S,, f» is cleatly inside both ellipsoids Sy/g, and Sy/g,- As
compared to fcs., f» is closer to both centers, denoted,
respectively, by f; and f, of the two ellipsoids. These
centers represent the generalized inverse solutions of the
individual image channels given by (A.9) in Appendix A.
In the case of ill-conditioned degradation matrices H
noise amplification results in noisy solutions fiandf 5.

By examining Fig. 1, it is clear that by reducing the
value of E, the size of the ellipsoid Sy reduces, and the
solution f, moves closer to fcis. Small values of E result
in small values of \; in (2.10). Since 1/X; are the regu-
larization coefficients of (2.10) that tradeoff smoothness
and data fidelity [30], we expect that a small E produces
a smooth solution. In other words, the solution obtained
by (2.10) is noisier than that obtained by (2.15) with E
unknown, because the coefficients 1/\; are smaller in the
former case. These properties of the solutions f, and fcrs
have been verified experimentally in Section V.

D. Selecting the Regularization Operator Q

It is well known that the solution of (1.1) represents an
ill-posed problem, which means that matrix H is ill con-
ditioned [2]. Thus the estimate f in (2.15) represents the
regularized solution of the imaging equation (1.1). In that
context operator |Qf |l plays the role of a regularizing
functional. The role of this @ is twofold [17], [19]: a) O
should be selected to leave the large singular values of H
unchanged while moving the small singular values away
from zero without introducing new small singular values
in the inverse of (2.15). b) Q incorporates a priori knowl-

Fig. 1. The geometric interpretation using ellipsoids of the set theoretic f;
and the constrained optimization fcis solutions given by (2.10). The signal
is a two-channel image.

edge in the restoration process about f. In restoring im-
ages with random noise, smoothly varying images are
usually desired, thus smoothness is the a priori knowl-
edge on which the selection of @ is usually based upon.

A class of well-known regularization operators are the
Tikhonov stabilizers [29], [30]. They are defined for a
function y(x) by

oy = £ 5w (22 o

r=

2.18)

. where B, (x) are nonnegative continuous weighting func-

tions, R is the region of support, and 9"y /dx" denotes the
rth partial derivative of y in terms of x.

For two-dimensional signals, the discrete version of a
Tikhonov stabilizer with p = 2 and weights Byx) = 0,
B(x) = 0, and By(x) = 1 is the discrete 2-D 3 X 3 La-
placian operator Ohpy.. This operator has been used suc-
cessfully in single-channel restoration problems [11]. It
thus appears that regularization offers a theoretical basis
for the smoothness constraint.

In a certain imaging situations, cross-channel smooth-
ness is an important property of the multichannel images.
Such examples are motion compensation of video frames
and restoration of identical images observed through op-
tical systems with different point-spread functions. In such
cases, it is obvious that using a 3-D 3 X 3 X 3 Laplacian
Q;py, visualized in Fig. 2 is advantageous over the two-
dimensional Laplacian.

However, there exist applications that the channels ex-
hibit strong cross-channel correlations but correlation var-
ies from channel to channel. For those cases the 3-D La-
placian is not appropriate. Other regularization operators
must be found that satisfy requirements a) and b) for the
particular application of interest.

Color imagery is a special example of multichannel im-
agery. Different color planes contain registered versions
of the same scene. Thus regions in the same spatial lo-
cation appear to be similar across channels. However, be-
cause reflectivity properties depend on the light wave-
length, these regions do not maintain the same magnitude
across all color planes. Thus, it is expected that using the
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Fig. 2. The visualization of the three-dimensional Laplacian. Qsp,
operator.

3-D 3 x 3 X 3 Laplacian of Fig. 2 will result in undesir-
able color smoothing. On the other hand, color planes are
highly correlated and the 2-D Laplacian fails to capture
between-channel similarities. It thus appears that for color
images the selection between the 2-D and 3-D Laplacian
is an issue of tradeoff between spatial detail and color
smoothing.

However, we can get the best of both worlds by intro-
ducing a weighted 3-D operator Q.. This operator is
defined by a 3 X 3 X 3 convolutional mask gy, . Assum-
ing that the center of the mask is at location (/, i, j ) where
! specifies the channel and i, j the spatial location, then

[Gwi f1, i, )
-1

= 2 gk m nfd = ki=mj~n

(2.19)
where the weights of the mask are given by
[#A] £l
¢wL(1, 0, 0) = ) -1,0,0 = ——
e [T Rl A T
w0, 0, —1) = g3w.(0, 0, 1) = g3w1.(0, —1, 0)

Il

23wL (0, 1,0) = 1
2w (0, 0, 0) = —6. (2.20)

The cross-channel weights of this operator capture the
changes of reflectivity across channels. Using this oper-
ator, color smoothing across channels can be avoided.

III. CoMPUTATIONAL ISSUES

The solution f in (2.15) requires the inversion of a
NM? x NM? matrix. For modest applications, forexample,
M = 128 and N = 3, the matrix inversion, if computed
directly, requires the inversion of a 49 152 X 49 152 ma-
trix.

In the case of single-channel images, the least squares
estimate can be computed efficiently in the Fourier do-
main [11]. For multichannel images, the matrix

A=[HH+ A'QQl 3.1

of (2.15) cannot be diagonalized via the DFT for the com-
putation of the inverse. The degradation function H has
submatrices H,; which are M 2 x M? block Toeplitz for
linear spatially invariant imaging systems. However, H;;
# H; v+« hence H is not a block-Toeplitz matrix.

The submatrices of @, denoted as Q;;, which describe
the spatial properties of the image as well as the relation-
ship across channels, are assumed to be block Toeplitz.
However, @ itself is not block Toeplitz because Q;; #
Qi+« j+« This can be explained by the fact that different
channels embody different properties of the scene being
imaged, and these differences can lead to substantial dif-
ferences between the cross-channel property of the (i, j)
image pair and that of the (i + k, j + k) pair; therefore,
there is no justification to assume that the pairwise cross-
channel properties are invariant across all channels. In
other words, different cross-channel constraints may be
applied to different image pairs. Even in the special case
when the same cross-channel constraints are applied to
different channel pairs, that is, when Q;; = Q; 4+, the
term A™'Q’ in A is not block Toeplitz. This can be seen
by examining

1 ! 1 t ] !

—Q0n T 0 = 0wm

A A A

1 1 1

X 0 X ot ~ M

AT'Q =" ? 3.2)

1 1 1

- Q’ —_ Qr e Q'

_)\N IN )\N 2N )\N NN-J

since \; can be different for each submatrix.

The inverse term A in (3.1) is a block NM? x NM?
matrix containing submatrices 4;; which are products and
sums of M? X M? block Toeplitz matrices. The Toeplitz
property is not maintained under multiplication; there-
fore, the submatrices 4;; are not Toeplitz and A itself is
not Toeplitz.

However, using the block-Toeplitz to block-circulant
approximation [10], submatrices H;; and @;; become cir-
culant. Furthermore, it is noted that the circulant property
is maintained under multiplication; therefore 4,; are also
block circulant, that is, although A is not block circulant,
it is partitioned into block circulant submatrices.

This approximation has been theoretically justified. In
[4] it was shown that the eigenstructure of non-Toeplitz
block matrices that contain Toeplitz submatrices con-
verges asymptotically as the size of the block increases
(in our case M 2) to the eigenstructure of block matrices
that contain the circulant approximations of the Toeplitz
submatrices.

Based on the above observations and following identi-
cal steps as in [8], the computation of f in (2.15) can be
implemented in the Fourier domain using block matrices
with diagonal submatrices. The structure of those matri-
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ces is given by

(1 t1---11
(1 01---11
S (Form D)
(r1r1---11

where [ ] are M2 x M? diagonal submatrices. Operations
on matrices of this form are computationally efficient be-
cause they contain only a few nonzero elements. Using
the inversion procedure in [8] or the alternative method
presentéd in Appendix C, f can be computed efficiently
even when NM? is large.

IV. SPATIALLY ADAPTIVE LEAST SQUARES
RESTORATION

In Section II-D it was noted that images with smooth
transitions are in general desired by human viewers. This
argument justifies the selection of the Tikhonov stabiliz-
ers as regularizing functionals for the formulation of the
restoration problem. However, spatially localized physi-
cal transitions, such as abrupt changes in surface geome-
try, surface composition, surface reflectance characteris-
tics, etc., give rise to discontinuities. Standard Tikhonov
regularization with a constant regularizing coefficient over
the entire image is not appropriate for these abrupt tran-
sitions [29]. '

In the least squares formulation of the restoration prob-
lem, this inherent limitation of standard Tikhonov stabi-
lizers can be seen in the selection of the coefficients ;.
The value of these coefficients is dependent on the aver-
age noise over the entire image. The values of \; express
the desired tradeoff between fidelity to the observed data
and smoothness of the solution. Using fixed values of \;
over the entire image results in an averaging effect that
blurs edges and enhances noise in smooth regions of the
image.

For single-channel restoration a number of researchers
have addressed this problem [13], [15]-[20]. A weighted
norm formulation is used in [15], [16], [18], [20], in
which the weights of the norm are based on the local prop-
erties of the image [13].

A similar approach could be used for the design of mul-
tichannel data-dependent least squares filters. Using the
weighted norm approach of [31] (2.7) and (2.8) can be
rewritten as

lcofli® = E? @.1)

IA

and
I Zn |12

A

¢, i=12-"",N “4.2)

where matrices Z; and C are diagonal matrices of dimen-
sion M2 x M?* and NM? X M*N, respectively. The di-
agonal elements of Z; are equal to a measure of the spatial
activity, while the diagonal elements of C are equal to the
values of the visibility function [1], [13]. Using these
weighted norms, the solution f is

f=I[H'Z'ZH + AQ'C'CQI"'H'Z'g 4.3

where Z is a NM? x M?N block diagonal matrix with M*
x M? submatrices Z; as diagonal elements. However, such
a filter has a major drawback. It is impractical because of
its computational cost. The diagonal matrices Z and C
have different elements down the diagonal so they ruin the
circulant structure of the submatrices in the inverse of
4.3).

To circumvent this problem, a measure of the local spa-
tial activity was first applied to segment each image plane
into a small number of regions of approximately equal
spatial activity, as was done in [19] for single-channel
images. Then, for each region, regularizing coefficients
that match the spatial and cross-channel characteristics of
that region are determined. This may be conceptualized
as partitioning the image by a series of bandpass filters
into regions based on their spatial frequency content.
From the partitioned image it is possible to construct a set
of restoration filters, each using a different \; and a dif-
ferent Q.

The local spatial activity measure used was defined in
[1] as

x+m  y+n

Z Z B”(X._\') - (.l

p=x—mqg=y-n

. [‘SH(p’ q)' + ‘SV(p7 Q)]

where Sy and Sy are the horizontal and vertical slopes,
lx, y) — (p, @)ll is the Euclidean distance between lo-
cations (x, y) and (p, g), B is a constant controling the
relative importance between the pixel at (x, y) and its
neighbors, and (m, n) controls the size of the neighbor-
hood around location (x, y). This measure A(x, y) in-
creases monotonically with the amount of the spatial ac-
tivity in the two-dimensional neighborhood of the pixel at
(x, y). The local variance has been used in [13] as a mea-
sure of the local spatial activity. In Section V we provide
experimental results for this spatially adaptive approach.

Ax, y) =

4.4)

V. EXPERIMENTS

Experiments where performed to test the multichannel
least squares filter.

To test the set theoretic formulation of Section II-A an
estimate of the bound E? is required. Since g is usually a
low-pass version of f, and Q is a high-pass operator, for
large SNR’s [|@gll*> < l|@f ||>. Thus the ellipsoid defined
by ||Qgll? as the bound is contained in the ellipsoid de-
fined by ||Qf |I%. In addition, the intersection of the el-
lipsoids Sy/, and [|Qgll> = E? is contained in the inter-
section of Sy/, and |Qf > = E 2 Thus the solution using
llQgll> = E? satisfies all the constraints imposed by the
available a priori information. In our experiments || Qgll*
was used as an estimate for E2 in (2.7). It can be easily
seen from the geometric interpretation of the set theoretic
approach in Section II-A that this E-estimate yields
smoother restoration results than using [|Qf II*.

To test the constrained optimization approach the La-
grange multipliers were computed using Newton’s method
as described in Section II-B. The uniqueness of the solu-
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tion was confirmed by using a number of different initial
conditions.

In order to quantify the between-channel similarity of
multichannel images a measure S; ;1 used given by

£k >
S, = (4, 5.1y
<||f,-|| (FA
where (,) is the inner product, || || the L, norm, and i, j

the channel indices. As pointed out in [24], this measure
in contrast to the L, norm is insensitive to scaling.

Experiment One: This experiment was designed to test
the two regularization operators, the 2-D Laplacian Q,;,
and the 3-D Laplacian @sp, . Operator OooL constrains}
to be spatially smooth within each channel, whereas OspL
constrains f to have strong between-channel similarity,
therefore a test image constructed by a set of identical
images was used.

The green color plane of the Lena 128 x 128 image
was used to construct a three-channel image. Known spa-
tial degradation H was applied, where H is given by

H, 0 0
H=|0 H, 0 (5.2)
0 0 Hy

and H;; are M> x M? block Toeplitz submatrices repre-
senting low-pass blurring filters implemented as convo-
lution masks. Submatrix H,, represents a 5 X 5 uniform
convolution operator with 1/25 weights; H,, a 7 X 7
mask with 1/49 weights; and H;; a 9 X 9 mask with
1/81 weights. Finally, independent white Gaussian noise
was added to each degraded image plane, resulting in 20,
30, and 40 dB SNR in channels 1, 2, and 3, respectively.
The SNR was defined by

WA

lln 12

Two filters based on Qyp,; and Qyp,; were applied. Since
no cross-channel degradation is used in this experiment,
H is block diagonal, therefore, the 2-D Laplacian opera-
tor is equivalent to restoring each channel separately by
(2.19). The regularization coefficients 1/N; in this exper-
iment were computed as Lagrange multipliers so f satis-
fies the constraints of (2.11a). Mean-square error (MSE)
was used to measure performance. The results of this ex-
periment are tabulated in Table I. As expected, the 3-D
Laplacian yielded superior results because it used cross-
channel information to restore the identical image in all
channels.

Experiment Two: This was designed to test both the set
theoretic and the constrained optimization approach.
Three regularization operators, Qp,, Ospr, and Qsw.
were used in each of the approaches. Operator Q3w con-
strains f according to the cross-channel information esti-
mated from the image, and real color images were used.

The three color components red, green, and blue of the
128 X 128 Lena image were blurred in the same way as

SNR =

(5.3)
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TABLE I
MULTICHANNEL LEAST SQUARES RESTORATION OF THREE IDENTICAL GREEN
PLANES OF THE LENA 128 X 128 IMAGE. THE SNR 1s 20, 30, AND 40 dB
FOR CHANNELS 1, 2, AND 3, RESPECTIVELY. UNIFORM 5 X S, 7 X 7, AND
9 X 9 BLURS WERE USED FOR THE RESPECTIVE CHANNELS.
REGULARIZATION PARAMETERS 1 /\; WERE COMPUTED AS LAGRANGE

MULTIPLIERS
Channel 1 Channel 2 Channel 3
Without restoration MSE  10.30 12.08 13.69
Using the two-dimensional Laplacian Q,p;
/N 4.47E-02 3.83E-03 4.10E-04
Restoration MSE 8.21 7.70
Using the three-dimensional Laplacian Qsp,.
1/N 3.74E-02 2.53E-03 2.20E-04
Restoration MSE 6.48 6.35 6.10
TABLE II

SIMILARITY MEASURE S;; GIVEN BY (3.24) FOoR THE R, G, AND B COLOR
PLANES OF THE LENA 128 X 128 IMAGE

Ser = 1.0 Sec = 0.88 Sen = 0.68

Sor = 0.88 So6 = 1.0 Sen = 0.91

Sar = 0.68 Sy = 0.91 Sas = 1.0
TABLE I1I

THE RATIOS OF THE NORMS OF THE R, G, AND B COLOR PLANES OF THE
ORIGINAL f LENA 128 X 128 IMAGE

Al Il Al _
Ml = |{f6’| 071 llllfBH '
I£l e %o

= 1. _— . = 1.57
A el = 10 Il
1l gl Ll _ o
sl = 028 Il = %63 sl ="

in experiment one. The similarity measures defined by
(5.1) for the three channels were computed and their val-
ues are tabulated in Table II. The values of the cross-
channel weights for the Qsy,; operator were computed
from both the original and the degraded image and are
tabulated in Tables III and IV, respectively. Each of the
three regularization operators was applied to both the set
theoretic and constrained optimization filters. The results
from this experiment are tabulated in Table V. From the
results we see that Qsp; yields better restoration than Q,p; .
This can be explained by the fact that the three color com-
ponents share some similarity which was verified by the
measures in Table II. Thus, the 3-D in contrast to the
2-D Laplacian captured, even though not accurately, these

. cross-channel similarities. Operator Qs yielded as ex-

pected even better MSE results than the two others. The
resulting images are shown in Fig. 2.

From Table V we see that 1,/\; when computed as La-
grange multipliers are larger than the ones computed by
the set theoretic approach. This has been explained in
Section II-D by the geometric interpretation of the two
solutions. The constrained optimization method yields
images that are smoother than the ones by the set theoretic
approach, see Fig. 3 for the images. However, the set
theoretic method requires less computation.
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TABLE IV

THE RATIOS OF THE NORMS OF THE R, G, AND B COLOR PLANES OF THE

DEGRADED g LENA 128 X 128 IMAGE

PR R

el _ el _ Il _

A gl =0 T =

Il Il _ el _

Il =07 Tl =0 T =10
TABLE V

MULTICHANNEL LEAST SQUARES RESTORATION OF THE COLOR LENA
128 x 128 IMaGE. UNIFORM S X 5,7 X 7, AND 9 X 9 BLURS WERE USED
FOR CHANNELS R, G, AND B, RESPECTIVELY. THE SNR 15 20, 30, AND 40

dB FOR THE RESPECTIVE CHANNELS

Channel R Channel G Channel B
Without Restoration MSE 6.85 12.08 9.18
i) Using the Two-Dimensional Laplacian @bpL
1/\; Lagrange multipliers 5.08E-02 3.82E-03 3.42E-04
MSE after restoration 5.46 7.69 4.76
1/, Set theoretic 3.03E-03 5.96E-04 2.39E-05
MSE after restoration 5.65 (18%) 7.44 38%) 4.90 47%)

ii) Using the Three-Dimensional Laplacian @spr.
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1/X\; Lagrange multipliers 7.82E-03 1.45E-03 1.64E-04
MSE after restoration 4.34 6.61 4.39
1/, Set theoretic 1.18E-03 2.33E-04 9.34E-06
MSE after restoration 4.91 6.20 4.65

iii) Using Qswy weights computed from original f image.

1/\; Lagrange multipliers 8.27E-03 1.85E-03 1.52E-04
MSE after restoration 4.40 6.19 4.41
1/\; Set theoretic 1.49E-03 2.92E-04 1.17E-05
MSE after restoration 4.72 5.88 4.47

iv) Using Qsw, weights computed from degraded g image.

1/, Lagrange multipliers 7.41E-03 2.09E-03 1.59E-04
MSE after restoration 4.38 6.20 4.47

1/, Set theoretic 1.47E-03 2.89E-04 1.16E-05
MSE after restoration 4.80 (30%) 5.87 (51%) 4.47 (51%)

The results of three regularation operators are: i) @,p. the two-dimen-
sional Laplacian. ii) Q;p.. the three-dimensional Laplacian. iii) @swi with
cross-channel weights from Table IIL. iv) Qw1 With cross-channel weights

from Table IV.

Two more 128 X 128 color images, the Balloon image
from Kodak, and the Skiers image from the Image Pro-
cessing Laboratory of the University of Wisconsin-Mad-
ison were used to test the multichannel filters. The be-
tween-channel similarity measures for these images were
computed and shown in Tables VI and VII, respectively.
It has been noted that the Skiers image has the strongest
between-channel similarity followed by the Lena and the
Balloon images. Both images were degraded in the same
way as the color Lena image in the previous experiments.
The set theoretic approach was used with regularization
oeprators Qyp,. and Qswi . Weights for the Qswy operator
were computed for both images and are shown in Tables
VIII and IX. The regularization coefficients 1/N; were
computed using [|Qgll> = E 2 The results of this experi-
ment are tabulated in Table X. In all cases, the three-
dimensional operator Qs produced superior results.

In order to quantify the results in Table X and the anal-
ogous results in Table V, we computed the percent im-
provement of the restored image (%). This measure was

defined as
B llf—f|l2>
g — fI?

where g, f, and f are the degraded, original, and restored
images, respectively. From Tables V and VI we obtain
the average (%) improvement of the Qsw, over the @2pL
for the Skiers, Lena, and Balloon images to be 12.67%,
9.67%, and 2.0%, respectively. This ordering corre-
sponds also to the ordering based on the magnitudes of
the cross-channel similarities as shown in Tables XI, XII
and II. Thus, we experimentally verified that stronger
cross-channel similarity produces better multichannel res-
toration.

(%) = 100 x <1 5.4
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(©)

Fig. 3. (a) Original color Lena image. Left: red, middle: green, and right: blue. (b) Distorted color Lena image. Left: red,
middle: green, and right: blue. (c) Restored color Lena image using the constrained optimization approach, @y, and 1/\,
computed as Lagrange multipliers. Left: red, middle: green, and right: blue. (Continued on next page.)

Experiment Three: This experiment was designed to
show the reverse effect of the previous experiment that
single-channel restoration is superior to multichannel res-
toration when the channels are not highly correlated. In
this case three unrelated image planes were chosen to con-
struct a three-channel image; the green color plane from

the Lena, the same from the Balloon, and the Skiers im-
age. They were degraded in the same way as in the pre-
vious experiments. The similarity measures across the
channels of this multichannel set of images are tabulated
in Table XI. They are restored by the set theoretic ap-
proach using @hp and Q3w . The cross-channel weights
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EZ. Left, red, middle: green, and right: blue. (e) Restored color Lena image using the constrained
multipliers. Left: red, middle: green, and right: blue. (f) Restored color Lena image using the

and 1/X; computed as Lagrange

(C))

)

Fig. 3. (Continued.) (d) Restored color Lena image using the set theoretic approach, Ganu, and 1/)\; computed by llggll> =

optimization approach, Qswi-

set theoretic approach, Qsw1, and 1/\; computed by | Qgll? = E?. Left: red, middle: green, and right: blue. (Continued on next

page.)

of Qsw. are tabulated in Table XII. The MSE results from
this experiment are tabulated in Table XIII. Since the be-
tween-channel similarities are very weak, independent-
channel is superior to multichannel restoration.
Experiment Four: The spatially adaptive filter de-

scribed in Section V was tested. The color Lena image in
experiment two was used. The image was segmented into
five segments of approximately equal spatial activity.
Based on visual examination, each segment was assigned
a 1/\; value according to its smoothness. Note that 1/X\;
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TABLE VI
THE SIMILARITY MEASURE S;; GIVEN BY (6.1) FOR THE R, G, aND B CoLOR
PLANES OF THE SKIERS 128 X 128 IMAGE ’

Ser = 1.0 Sk = 0.96 Ses = 0.91

Sgr = 0.96 Soe = 1.0 Sgs = 0.94

Ser = 0.91 S = 0.94 Ses = 1.0
TABLE VII

THE SIMILARITY MEASURE S;; GIVEN BY (6.1) FOR THE R, G, AND B COLOR
PLANES OF THE BALLOON 128 X 128 IMAGE

Ser = 1.0 S = 0.76 Sgs = 0.57

Ser = 0.76 So6 = 1.0 Sen = 0.64

Ser = 0.57 Sse = 0.64 Sas = 1.0
TABLE VIII

THE RATIOS OF THE NORMS OF THE R, G, AND B COLOR PLANES OF THE
DEGRADED g SKIERS 128 X 128 IMAGE

Ll _ gl gl

gl = 10 gl = %% A

Il _ Ifall _ Il _

gl = "0 el = 0 gl = 104

Il Il Igell

gl = % el = %% gl = 10
TABLE IX

THE RATIOS OF THE NORMS OF THE R, G, AND B COLOR PLANES OF THE
DEGRADED g BALLOON 128 X 128 IMAGE

Ll _ Ihl gl
Il gl =Y Il =
el sl Il
=0.85 - Ifell _
A el =~ 10 gl = M1
gl 4l I foh
=0.76 = L
Il A gl =10

in Table XIV are arranged in decreasing order corre-
sponding to the segment’s spatial activity. Four regulari-
zation operators were used; Qopr, Qspr, Q3wr, and the

[€:9)

Fig. 3. (Continued. ) (g) Restored color Lena image by the spatially adaptive filter using Q;aw.. and 1 /X, based on Table XVI.
Left: red, middle: green, and right: blue.

TABLE X
MULTICHANNEL LEAST SQUARES RESTORATION OF THE COLOR SKIERS, AND
BALLOON, 128 x 128 IMAGES. THE SNR 1s 20, 30, AND 40 dB FOR
CHANNELS R, G, AND B, RESPECTIVELY. REGULARIZATION PARAMETERS
1/N; WErRe ComputeD UsING ||Qgll> = E2. UNIFORM 5 X 5,7 X 7, AND
9 X 9 BLURS WERE USED FOR CHANNELS R, G, AND B, RESPECTIVELY

Channel R Channel G Channel B
Color Skiers 128 x 128 Image
Before Restoration MSE  15.03 17.40 19.19
Using the Two-Dimensional Laplacian Q,p;
1/N 3.78E-02 4.21E-03 4.20E-05
Restoration MSE 11.48 24%) 10.63 (39%) 9.03 (53%)

Using the Three-Dimensional Weighted @5y, Operator.

/N 2.34E-03 2.60E-04 2.60E-05
Restoration MSE 8.31 (45%) 8.18 (53%) 7.80 (59%)
Color Balloon 128 x 128 Image

Before restoration MSE 14.91 13.91 14.77

Using the Two-Dimensional Laplacian @,
1/N 4.64E-03 3.53E-04 3.09E-05
Restoration MSE 12.30 (18%) 9.88 (29%) 8.74 (41%)

Using the Three-Dimensional Weighted Qsw, Operator.
1.42E-03 1.08E-04 9.49E-06
11.52 (23%) 9.16 34%) 8.79 (40%)

1/N
Restoration MSE

TABLE XI
THE SIMILARITY MEASURES S;; GIVEN BY (5.1) FOR THE THREE CHANNELS,
LENA-GREEN (CHANNEL 1), BALLOON-GREEN (CHANNEL 2), AND SKIERS-
GREEN (CHANNEL 3)

S, =1.0 S, = 0.14 Si;=0.19
5, =0.14 Sy = 1.0 Syy = 0.17
Sy = 0.19 S = 0.17 Sy = 1.0

spatially adaptive three-dimensional operator Qs w; . The
cross-channel weights of Q;aw. were computed in the
same way as those of Q;w;. However, there were five
separate sets of weights, one for each segment, for the
Qsawo operator. This operator was used to capture the
spatial changes of the reflectivity across channels. The
MSE results of this experiment were tabulated in Table
XV. The resulting images for Q;,w; are shown in Fig.
3(g). Spatially adaptive least squares restoration is supe-
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TABLE XII
THE RATIOS OF THE NORMS FOR THE THREE DEGRADED IMAGES
LENA-GREEN (CHANNEL 1), BALLOON-GREEN (CHANNEL 2), AND
SKIERS-GREEN (CHANNEL 3)

LAl _ WAL _ WAl _

T T el = %

12l _ 15l _ LA _ o o

A A sl = %%

1Al _ 1Al _ 1Al _

A T T
TABLE XIII

MULTICHANNEL LEAST SQUARES RESTORATION OF THE THREE CHANNELS,

LENA-GREEN (CHANNEL 1), BALLOON-GREEN (CHANNEL 2), AND SKIERS-

GREEN (CHANNEL 3). THE SNR 15 20, 30 AND 40 dB FOR CHANNELS 1, 2,

AND 3, RESPECTIVELY. UNIFORM 5 X 5,7 X 7, AND9 X 9 BLURS WERE

USED FOR THE RESPECTIVE CHANNELS. REGULARIZATION PARAMETERS 1 /N
WERE CoMPUTED UsinG [|Qgll? = E?

TABLE XVI
MULTICHANNEL AND SINGLE-CHANNEL CONSTRAINED LEAST SQUARES
RESTORATION OF THE COLOR LENA 128 X 128 IMAGE. THE IMAGE WAS
BLURRED USING BOTH CROSS- AND WITHIN-CHANNEL BLUR.
THE SNR 15 30 IN ALL CHANNELS

Channel 1 Channel 2 Channel 3
Without restoration MSE 10.30 13.91 19.03
Using the Two-Dimensional Laplacian @,p.
1/N 2.34E-03 4.30E-04 5.40E-05
Restoration MSE 8.72 6.90 8.71
Using the Three-Dimensional Weighted Qs Operator
/N 3.10E-04 5.96E-05 7.14E-06
Restoration MSE 11.26 11.93 11.35
TABLE XIV
THE VALUES OF 1 /\; FOR THE SPATIALLY ADAPTIVE LEAST SQUARES FILTER
Segment Channel Channel Channel
Number R G B
1 1.0E-02 1.0E-03 1.0E-04
2 5.0E-03 5.0E-04 5.0E-05
3 1.0E-03 1.0E-04 1.0E-05
4 5.0E-04 5.0E-05 5.0E-06
5 1.0E-04 1.0E-05 1.0E-06
TABLE XV

MULTICHANNEL SPATIALLY ADAPTIVE LEAST SQUARES RESTORATION OF THE
CoLOR LENA 128 X 128 IMAGE. THE SNR 15 20, 30, AND 40 dB FOR
CHANNELS R, G, AND B, RESPECTIVELY. UNIFORM 5 X 5,7 X 7, AND
9 X 9 BLURS WERE USED FOR THE RESPECTIVE CHANNELS. THE VALUES
FOR 1 /X; ARE IN TABLE XIV

Channel R Channel G Channel B
MSE Using Qsp1 5.27 7.16 4.26
MSE Using Qsp. 4.09 5.77 3.75
MSE Using Qw1 4.08 5.55 3.73
MSE Using @Gsawr 4.05 5.46 3.72

rior to the others both visually and in terms of MSE (see
Tables V and XI). It is noted that the improvement of the
operator Qs,wi Over the operator Qsy Was very small.
Experiment Five: In this experiment both within-chan-
nel and cross-channel blur were used. Channels 1-3 cor-
respond to the red, green, and blue image planes, respec-

Channel Channel Channel
R G B
MSE Before restoration 8.31 13.64 10.80
Multichannel Restoration H;; # 0 fori # j
Using Q5w value of 1/\, 6.41E-04 6.92E-04 5.01E-04
MSE using Qw1 4.48 6.57 5.25
Using @by value of 1/); 9.93E-04 1.66E-03 1.09E-03 -
MSE using @yp1 6.79 8.89 7.12
Single-Channel Restoration H;; = 0 fori # j
Using Q,p, values of 1/)\; 3.64E-03 5.78E-03 2.65E-03
MSE using the Qp1. 6.98 9.23 7.93

tively. The color Lena image was degraded by a known
degradation matrix H given by

0.5H, 03H, 02H,;
H = 025 H2| 05 H22 025 H23 (55)
02 Hy, 0.3 Hy 0.5 Hsy

and H;; are M> X M? block Toeplitz submatrices repre-
senting low-pass blurring filters implemented as convo-
lution masks. Submatrices H,(, H,, H); represent a 5 X
5 uniform convolution operator with 1/25 weights; H,
H,,, Hy; a7 x 7 mask with 1/49 weights; and Hy, H3,,
Hi; a9 X 9 mask with 1/81 weights. Finally, indepen-
dent white Gaussian noise was added to each degraded
image plane, resulting in 30-dB SNR in all channels.

In this experiment, the constrained optimization was
used to derive the least squares filters. Both single and
multichannel least squares filters were used. The single-
channel filter was implemented using (2.17) with Qhpp
while ignoring the cross-channel degradations, that is, H;;
= 0 with i # j. The multichannel filters were imple-
mented with @, and Qawy using the full H as given by
(5.5). The MSE results of this experiment are tabulated
in Table XVI. Using Q3w results in a drastic improvment
over Qhpy, also, as expected, multichannel restoration is
superior to single-channel restoration.

VI. CONCLUSIONS

In this paper least squares filters for multichannel im-
ages were developed. They offer an alternative to multi-
channel Wiener filtering [8] when accurate estimates of
the multichannel statistics are not available. Two ap-
proaches, the set theoretic and the constrained optimiza-
tion, were investigated. It has been demonstrated by a ge-
ometrical interpretation that the constrained optimization
solution is smoother than the set theoretic one.

Color imagery was used as an example in multichannel
restoration. Three regularizing operators that capture the
between and within-channel properties of color images
were used in the filter implementation. In addition, a spa-
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tially adaptive algorithm was proposed to handle prob-
lems associated with local image spatial variations.

Experiments were performed and the following conclu-
sions were reached.

a) For images with strong between-channel similarity,
multichannel restoration always outperforms single-chan-
nel restoration.

b) The constrained optimization approach produces
smoother images than the set theoretic approach, even
with a rough estimate of E2.

c) The spatially adaptive algorithm produces superior
results in terms of MSE and visual quality.

APPENDIX A
EQUATION FOR THE CENTER OF THE BOUNDING
ELLIPSOID

Clearly, the actual observation g; specifies a set Sy,
which must contain f according to (2.5). More specifi-
cally, the set Sy, because of (2.4) can be written as

Spre = Lf: (Hif — g)'(1/e)*(Hf —g) = 11 (A.D)

= Uf: (HSf - Hf?) /e HS - Bf) < 1]
(A.2)
= (=Y HHB/DS - £ < 1. (A3)
In obtaining (A.3) it was assumed that g; € R(H,), where
R(H,) is the range of H;. Then, f” = H/g,, where H

the generalized inverse of H;.
Consider now the general case of N + [ ellipsoids

Sn=1f: (f— )G, (f—cw) = 1]

m=1,2,--- N+ 1 (A4)

The ellipsoid
S =0f:(f—e)G;'(f— ) = 1]

which bounds the intersection of the N + 1 ellipsoids of
(A.4) is characterized by [26]

(A.5)

N+1
¢ = Gb< z p,,.G;,lcm> (A.6)
me
and
N+1
Gy' = % pnGy' (A7)
forp, > 0and )1} p,, < 1. Substituting
Gyi1 = Q'Q/E%,  cyyy =0 (A.8)
and
Gi_l = ﬁ;ﬁi/f?» ¢=f= (p:rli)_l(rligi)

for i=1,2,---,N (A.9)

in (A.6), we get

N 7187, 07!
H;H, (Y
Cp = |:i=zl pi—5 t Pnei FJ

which yields (2.9).

APPENDIX B

COMPUTING THE JACOBIAN OF Z; (N, Ny, * " , Ay)

The (i, j ) element of the Jacobian of the function Z; (A,
Ny, 0, Ay) is given by

EY A D SRR HS — &l
(A M _ N) - :_"_f__?’_ ®.1)
a(n;) a(\))
Let us write
f=A"'Hg (B.2)
where
A=[HH+ A'Q'Q). (B.3)
Using (B.2) and the property
dA™! _,0A
= — — B.4
ox A ox A (B.4)
the derivative of (B.1) can be written as
HS - gl LA Lo
— 71— = —g'HA" ———ATHHA'H'
a()\J)*l 8 a()\J)—l i 4
— g'HAH'HA™' —A"'H'
g a(N) 1 4
= A
+2gHA™ —A'H'g. (B.S
Equation (B.3) can be equivalently written as
N
A= {H'H + 2 (xk)"lka’Q} (B.6)
with
[0y oy ---[0] --- [0]
[0y oy --- [0} --- [0]
kk = . : . (B7)

[0] [0] --- [0] --- [0]
where I, is an NM? x M’N matrix, [0] represents an
M? X M? zero matrix and [I] an identity M2 x M? matrix
at location (k, k). Using this notation we have

d0A
an) !

=1,0'0. (B.8)
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Finally, using (B.8), (B.5) yields the (i, j )th element of
the Jacobian equal to

dlH: f — gl y? ‘HA'1,0'0f
Ji= "o~ T2ES - e RATLLQ00
(B.9)

ApPENDIX C
CoMPUTING INVERSES OF FORM D MATRICES

Assume D is a NM?2 X M*N form D matrix given by
D1,1) D@2,1) --- DV, 1)
D(1,2) D@2,2) --- DIV, 2)

) . . (C.1)
D(1,N) D2,N) --- DN, N)

with D(i, j YM? x M? diagonal matrices and i, j = 1, 2,
.-+, N.Wedefineby D¥, k = 1,2, - - - , M?, the N X
N matrix

D*(1, 1) D*2, 1)
D¥(1,2) D*2,2)

N Dk(N, 1))
e Dk(N, 2)
) (C.2)
D*(1, Ny D*@,N) --- D*(N, N)
with D¥(i, j) the (k, k) element of the matrix D(i, j ) of
(C.1). For nonsingular D¥, let B* be its inverse, that is,
B*D* = 1. (C.3)

Clearly, the computation of B* is a very easy task since
N << M. Let us define the following NM? X M*N form
D matrix

B(1,1) B(,2)
BQ2,1) B(2,2)

+ B(1, N)

- B(2, N)
. (C.4)

B(N,1) B(N,2) -+ B(N,N)

with each B(i, j) an M? x M? diagonal matrix such that
BX(i, j), the (i, j )th element of the matrix B* in (C.3) is
the (k, k) element of the diagonal matrix B(i, j ) in (C.4).
Then due to (C.3)

BD =1 (C.5)

where 1 is the NM? X M>N identity matrix. Thus the in-

version of NM? x M?N form D matrix can be decom-
posed into M? inversions of N X N matrices.
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