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Restoration of Color Images by Multichannel Kalman
Filtering

Nikolas P. Galatsanos, Member, IEEE, and Roland T. Chin, Member, IEEE

Abstract—A multichannel image is a set of image planes that
exhibit between-plane correlations. Degradation of multichan-
nel imagery involves both within- and between-channel blurs.
Restoration of such images using existing independent-channel
filters is not appropriate because they fail both to restore the
between-channel degradation and to incorporate between-
channel correlations in the process. In this paper, a Kalman
filter for optimal restoration of multichannel images is pre-
sented. This filter is derived using a multichannel semicausal
image model that includes between-channel correlation and an
imaging equation with between-channel degradation. Both sta-
tionary and nonstationary image models are developed. This
filter is implemented in the Fourier domain and computation is
reduced from O(A’N>M*) to O(A’N*M?) for an M x M N-chan-
nel image with degradation length A. Color (red, green, and
blue (RGB)) images are used as examples of multichannel im-
ages, and restoration in the RGB and YIQ domains are inves-
tigated. Simulations are presented in which the effectiveness of
this filter is tested for different types of degradation and dif-
ferent image model estimates.

I. INTRODUCTION

YT MAGE restoration is often performed on images to re-

move degradation and noise for subsequent human or
machine analysis. In the past twenty years many research-
ers have addressed the problem of single-channel image
restoration. Recently, the research effort in this area has
been concentrated on simultaneous identification of blur
and restoration, and on multichannel processing, see [6],
[11], [12], [17], (8], and [4].

In this paper we consider the problem of restoring mul-
tichannel imagery, which is a set of image planes (chan-
nels) acquired by an imaging system that measures the
same scene using more than one sensor. Examples of
multichannel images include multispectral satellite im-
ages, color images, multiple time frames, and multiple
sensor images; all of these display signal interdependency
among channels. Degradation in these imaging systems
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may involve both spatial and between-channel blurring.
Examples of between-channel degradations include chan-
nel crosstalks, leakage in detectors, and spectral blurs.

In contrast to single-channel processing, multichannel
restoration has received little attention from the research
community and is still in its infancy. The extension of
existing single-channel image restoration techniques to
multichannel restoration is a nontrivial task, mainly be-
cause of the lack of multichannel image processing theo-
ries and of computational algorithms for multiple images.
Furthermore, filters that are optimal for single-channel
images may be suboptimal when applied individually to
the separate channels of a multichannel image.

Hunt and Kiibler in [8] formulated a multichannel Wie-
ner restoration filter which minimizes the mean-square er-
ror (MMSE) between the ideal and the restored image. It
uses both the between-channel and the within-channel
correlation and assumes that the signal autocorrelation de-
scribing the between-channel and within-channel relation-
ship is separable. This enables the formulation of the Kar-
hunen-Loeve transformation to decorrelate the signal
between image channels, making the channels orthogo-
nal. Tt follows that multichannel restoration of the trans-
formed signal under this assumption is equivalent to the
independent restoration of individual channels, and the
process does incorporate between-channel information.
Therefore, subsequent filtering of individual channels can
be done by conventional single-channel image restoration
algorithms. However, the use of the separable assumption
in practical images is considered restrictive, and the filter
cannot handle between-channel degradation.

A computational restoration filter for color images
based on the idea of Hunt and Kiibler is reported in
Ohyama er al. [14]. It decorrelates the between-channel
color components before applying independent restora-
tion separately to each color component. Other reported
color image restoration algorithms, for example Bescos et
al. 21, apply conventional filtering to individual color
components without using between-channel information.

There is much to be gained by incorporating in the res-
toration process both the between-channel and within-
channel correlation of the multichannel image. Such a
minimum mean-square error (MMSE) Wiener filter,
which does not require the separability assumption as re-
quired in [8], has been developed for between-channel
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restoration. Its results are reported by Galatsanos and Chin
in [6]. However, the filter assumes that the image signal
is spatially stationary and the degradation is shift invari-
ant.

The stationarity assumption of the signal autocorrela-
tion is recognized to be restrictive and unrealistic; the im-
age data are assumed to have mean and variance indepen-
dent of spatial location, while most real world images are
nonstationary. This problem can be alleviated by the
adaptive processing of signals via Kalman filtering.

The Kalman filter is an iterative MMSE procedure that
adapts to local changes of the signal. The disadvantage of
such a filter when applied to images is that it was derived
for one-dimensional signals and its two-dimensional ex-
tension is still under investigation by many researchers.

There are two different approaches for two-dimensional
Kalman filtering. In the first approach, a pixel-by-pixel
scanning order is defined and the image is transformed
into a one-dimensional signal. One widely known algo-
rithm using this approach is the reduced update Kalman
filter by Woods and Ingle [20]. It is based on a nonsym-
metric half-plane (NSHP) model for the image signal and
the updating process is limited to elements near the pres-
ent data point for the purpose of reducing computation
and storage. Recently, an extension of this filter was pro-
posed by Tekalp and Pavlovic [18] for the restoration of
color images. A NSHP multichannel color image model
was estimated from prototype images and restoration ex-
periments were reported in the RGB and YIQ domains.

The second approach is a line-by-line processing pro-
cedure. A number of researchers, including Biemond et
al. [3], have explored this approach. It uses a semicausal
image model which results in Toeplitz matrix structures
in the image model and observation equations. Using the
Toeplitz-to-circulant approximation, the line-by-line Kal-
man filter is then reduced to a parallel bank of low order
Kalman filters realized in the Fourier domain.

In this paper the two-dimensional Kalman formulation
of Biemond et al. [3] is used for multichannel restoration.
Information distributed across image planes is utilized;
thus all channels are processed simultaneously as a single
entity. Using this approach, multichannel images are re-
stored optimally because both the between-channel cor-
relation and degradation are incorporated into the process.
Both stationary and nonstationary image models for the
multichannel filter have been developed. Section II pre-
sents the multichannel imaging model. Section III de-
scribes the multichannel degradation model. In Section IV
the Kalman filter equations for multichannel images are
derived and a fast algorithm is presented. Section V pre-
sents a nonstationary image model for the restoration fil-
ter. In Section VI color imagery, a special case of multi-
channel images, is considered and color restoration in the
YIQ domain is explored. Section VII presents experi-
ments that were performed to test the proposed multi-
channel Kalman filter. Finally, Section VIII contains our
conclusions.

II. MULTICHANNEL IMAGE MODEL

Let an image with N channels each of size M X M be
modeled by a multichannel autoregressive model given by

N
00 By — (o,n)
faq =2 % a9
S —pJ— @ + G ))

for o=1,2,--+-,N and

ij=1,2,,M (2.1a)

where f° and u° are the image and the noise process of
the mth channel, respectively. The term a™ represents
the model coefficients, and R is the region of support. The
sum over index »n in (2.1) represents between-channel re-
lations. Using a semicausal model, R is defined as

(2.1b)

R=[p,9l0=p=p, —q1=q=%ql

which is shown in Fig. 1.

n=1 (z,weR

N
EW’G, j)1 = E[{f”(i,j) - 2 X a9z, w)
2
SAGEEN R w)} } 2.2)
is minimum. Minimizing (2.2) by setting

— Ofs her : -
6{a("’b’(l, k)} = E[u’(, ) f( Lj k)] 0

with (/, k) e R (2.2a)

where (I, k) € R, yields a set of multichannel normal equa-
tions

N
r}aYb)(l’ k) - mgl (p %:ER a(o‘,”)(p’ q)r}b,m)(l - D k- q)

= o}, 8(1) 8(k) (o — b) (2.3)
where
rPd, ky = ELf°G, PG~ 1j = 0] (2.42)
is the covariance of the signal fand
Oto,y = EL{u’G, Y] (2.4b)

is the covariance of the driving noise and

5 = 1
@) = 0

The coefficients @™ can then be obtained by solving the
normal equations (2.3).

i=0

elsewhere.
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Fig. 1. The region of support at location (i, j, o) of the multichannel
semicausal image model of (2.1a) and (2.1b). Indexes i, j specify the spa-
tial location, and the index o the channel.

The autocovariance function of the driving noise is
rP(, ky = EWw’G, Huti — 1, j — K]

= E[u"(z',nf”(i )

N
- 2 2 ad""(p, 9ud, j)
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we have 0 < (I, p) < p, and —¢q; = (k, q) < g, which
yields I = p = 0. The noise covariance then becomes

ri P, k)

(,k)y=@0,0andh =0

g (Zo, o)
=1{ d% ,ld*P©, k] (0, keR
0 elsewhere. (2.6)

Unlike causal models, semicausal minimum variance
models are not driven by white noise (see [9]). Thus the
noise process u’(i, j) is correlated along the noncausal
direction of our model (horizontal) and is also correlated
between channels.

Equation (2.1) can be expanded as

i, = 2 a%p, of'Q-p.ji-q
(p.q)€R
+ X dVp, fi-pi-t
(p.q)eR

+e X d"Mp, g
(p.q)ER

M= pJ - @+ WG ))
for o=12,---,N
ij=2,"", M

Substituting the sums in the horizontal direction with ma-
trix vector multiplications (2.7) yields

and
2.7

N m

BYu(i) = Z] 2 [A“"(p) f"(i — p)

n=1p=0"

+ EL°"(p)f1i = p) + ER*"(p)fi(i — p)]

m=1(p.gek 2.8
my s . -th
-f(z—l—p,;—k~q>]. @s " o o my
Fr@) = 116, 1, G, 2), - -+, f6 M]
At (1, k) = (0, 0), the second term of (2.5) is zero because
of the orthogonality principle, and only the first term con- w"G) = WG, 1, u'G, 2), -, W6 MY 2.9
a”"0,0) = —-1.0 foro =n,
[—d®(p,0) -+ =d®(p, —g) - 0 e 0]
: : —-a“""(p, —q)) :
—a*"(p, q)) -+ —a®"(p, 0) 0
ACP(p) = 0 : —a®"(p, 0) - =d"(p, —q)) (2.10)
—a“"(p, q1)
L0 0 =" (p, q) - —d""(p, 0)

tributes to the covariance. At/ + p = 0and k + g = 0,
the first term of (2.5) is zero and only the second term
contributes to the covariance. Since (I, k) and (p, q) € R,

and B} is an M X M identity matrix. Matrix 4" is M X
M Toeplitz, and matrices EL®™ and ER"'™ are upper and
lower triangular matrices, respectively, of dimension M




2240

X ¢q,. They represent the boundary coefficients. The g; X
1 vectors fy(i — p)and fr(i — p)for(i=1,2, -, M)
and (p = 1,2, - - -, py) are the left and right boundaries.
These, combined with the top boundary f"(i — p) for (p
=1,2,--+,p)and (k = 1, 2, -+, N), are neces-
sary to evaluate the image inside the M X M viewing area
according to (2.8). These boundary conditions must be
consistent with the statistical model of the image field and
[k f1, and f" are set to be equal to the mean value of the
image field. A more elaborate approach to the image
boundary problem can be found in [21]. However, the
improvement in visual quality at the image borders by
using this elaborate approach is reportedly small [3].
Therefore, following [3] we set the boundary conditions
equal to the mean value, in our case zero. Then (2.8) sim-
plifies to

N p2
Biu‘() = 2 % A“"(p)f"i —p) @11
n=1p=
for
o=1,2,---,N and i,j=1,2,:---, M.

For multichannel implementation of the Kalman filter,
each iteration is applied to a single row across all channels
simultaneously. For this purpose the multichannel image
model in (2.11) must be written in a form which allows
this type of processing. The summations over the channel
index n and the image model vertical support index p are
substituted by matrix-vector multiplications. Equation
(2.11) then yields

sG) = As(i — 1) + Bu(i) (2.12)

where
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is a matrix of dimension p, - NM X MN, Bya NM X MN
identity matrix

s@) =[f'@, -+, fli—p+ D) (219
is a matrix of dimension p, X NM
F6 = 'O {FPOY, - (O @.16a)
ui@) = [{a'OY, {(FOY, - -, {@"OF  (2.16b)
are multichannel vectors of dimension NM, and
AP0 ) - A
4% 14%2p)] - -+ [APV(p)]
A(p) = : . .
AN [AYP(p)] - - - [AYNM(p)]
2.17)

is a NM X MN matrix. Equation (2.12) is the multichan-
nel image model used in the Kalman equations.

III. MULTICHANNEL DEGRADATION MODEL

A linear multichannel degradation with both within
(spatial) and between-channel blur is assumed. The
within-channel degradation is assumed to be shift invari-
ant. However, a similar assumption for the between-chan-
nel degradation is not applicable. In many multichannel
imaging systems, imaging characteristics vary from chan-
nel to channel: for example, in multispectral imaging, the
wavelength at each channel is different. Assuming shift
invariance for the between-channel blur, (H%) =
HU@+%J*hy forces all the within-channel degradations
HY%Y to be identical. This severely limits the applicability
of the imaging model; for example, Bescos et al. [2]

[ [ATNO)AD)] - - [ATNO)A(p, — D] [ATNO)Ap)]
1 0 0
A= 0 0 0 (2.13)
| 0 1 0 _

is a matrix of dimension p, +- NM X p, - MN, I denotes
an NM X MN identity matrix, 0 denotes a NM X MN zero
matrix

[ [A7'©0)B,] ]

~
I
e

(2.14)

showed that for color images, chromatic aberrations result
in different amounts of blur in each color plane.
Using the above assumptions the multichannel imaging
equation is given by
N A1 ki
"i,j)y= 2 2 2 K(NK
& (l’J) n=1A=—-\k=-k ( )
“ffi=Nj—=k + oG )
m=1,2,+:,N

i’j=1729.“5M

and
3.1
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where »™ is white additive noise and g™ is the observed
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and

image. Using the same philosophy as for the multichannel '[ A~'(0)B ﬂ
image model, (3.1) yields 0
_ 0
g(i) = Hz(i) = v(i) (3.2) 0
where g(i) and v(i) are vectors of length MN defined in B .
the same way as f (i) in (2.16a) B = 0 (3.9)
) =[G+ N, L @, 1= NT
’ (3.3) :
is a vector of length AMN, with A = 2\, + 1 L 0
H = [H(—\), - -+, HO), - -+, H(\ 34 - o5
(H(=M) © 1 G4 Matrix A is of dimension AMN X MNA, matrix B is of
is a matrix of dimension MN X MNA dimension AMN X MN, Iis a NM X MN identity matrix,
and 0 is a NM X MN a zero matrix. Equations (3.7) and
[HEYON] [HEYPON)] - [HM (V] (3.2) are the state and observation equations of the mul-
tichannel Kalman filter.
Hon = H®YO [HPPO] - -+ [HEVO]
N = : IV. KaLMAN FILTER EQUATIONS
HN-D\ N o (N.N) Following Sage and Melsa [15] and using (3.5) and
[ M) 1 M L (3.6) as the signal and observation equations, respec-
(3.5) tively, the Kalman filter equations for multichannel image
is a MN X MN matrix, and
[—H™"(N, 0) + -+ —h™"(\, —kp) + - 0 o ]
: : —H"™"(N, —ky) :
W™\ k) o —R™(N, 0) 0
HOM(N) = 0 : Coe —RmION, —ky) (3.6)
—H"™"(N, k) —h"" (N, 0)
L 0 0 cee —H™(ON K)o =HTT(N0)
is a M X M Toeplitz matrix.
Ifp, + 1 < A = 2\, + 1, we can substitute z(i) in the image model equation. Then (2.12) yields
2() = Az(i — 1) + Bu(i) 3.7
with
[A7'OAD] [AT0AQ)] - - [ATO)Ap)] 0 -0 0
1 0 0 0-00
0 1 0 0-00
A= -0 0 (3.8)
0 0
0 1
L 0 0 0 0-1 0]
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restoration are given as

2() = A2(i — 1) + FG)[gl) — HAZG — D] 4.1
where the first and the second term of the right-hand side
of (4.1) are the prediction and the correction term of the
new estimate Z(i), respectively. Matrix F(i) is the Kal-
man gain which is given by

Fi)y = QG — DHTHQG — DH' + R,()]™". 4.2

Matrix Q(i) is the covariance of the error [z(i) — 2(i)]
and is given by

Q@) = Al — F())H1Q(G — DA + BR()B' (4.3)
where R, (i) is the covariance matrix of the observation

noise vector v(i). For white noise that is uncorrelated be-
tween channels

0 e 0
. 0 0%21 st 0
R =| . - . 4.4)
0 0 * O'%/NI

with
ol = E[V"G, ).

The matrix R,(i) is the covariance of the nonwhite image
model driving noise #(i) and is defined by

R,(i) = Elu(i)u'()]
E[@'(@")]1 E[@'@») Elu'(@"]
_ | E@@"1 E@@ - - E[a* @)
E[a"@'Y] E[@"@] E[w" @™
(4.5)

From (2.6) we have
E[@"(){u"()}] = 0y mAQ)™"8G)  (4.6)

where af,,,,,,) is defined in (2.4), and (4.5) can be written
as

G%]J)A“'”(O) U%I’I)A(I,Z)(O)
05.24%"0)  03.2A4%2(0)

R.() = 8(i) X

aov AN D0) ol nyAN2(0)

Matrices F(i), Q(@i), R,(i), and R,(i) in (4.1), (4.2),
and (4.3) are of dimensions AMN X MN, AMN X MNA
MN X MN, and MN X MN, respectively. Computing Z(i)
from (4.1),-(4.3) directly is computationally expensive.
It requires O(M) multiplications of ANM X MNA matri-
ces and M inversions of MN X MN matrices. For a modest
example, a 128 X 128 X 3 image with A} = k; = 2,
requires O(128) multiplications of 1920 X 1920 matrices
and 128 inversions of 384 X 384 matrices.

In monochrome image restoration, the Toeplitz-to-cir-
culant approximation and the discrete Fourier transform
(DFT) are commonly used to decouple the Kalman filter
equations for fast computation (see Biemond er al. [3]).
In order to alleviate the computational and storage re-
quirement for the implementation of the multichannel
Kalman restoration filter, the structure of the matrices in-
volved in the computation is examined.

The matrices A(p) and H(\) defined in (2.18) and (3.3)
appear as submatrices in A and H of the filter given by
(4.1)-(4.3). Both A(p) and H(\) contain submatrices
H“)(N\) and A“)(p) which are M X M Toeplitz. How-
ever, A(p) itself is not Toeplitz, that is,

A('"'”)(p) + A(m +k,n+ k)(p) (4. 8)

where A" and A™ %" *® contains model coefficients
of channels (m, n) and (m + k, n + k), respectively. In
general, different channels contain different characteris-
tics of the scene being imaged; therefore, there is no jus-
tification for assuming that coefficients of different chan-
nels are equal. Similarly, H(A) is not Toeplitz, that is,

H™P(N) # H" 00N “.9)
because of the between-channel shift-variant blur assump-
tion.

For the above reasons, the standard Toeplitz-to-circu-
lant approximation as used in monochrome image resto-
ration cannot be applied directly to multichannel restora-
tion. The approximation can only be used for submatrices
A%P(p) and HSD(N) with (i, j = 1,2, -+ - , N), (p =
0, -+ ,ppand (A = =Ny, =+, 0, -+, N\) (see
Andrews and Hunt [1]). After the circulant approxima-
tion, the matrices in (4.1)-(4.3) become block matrices
of the following form:

Cll C12 e ClQ
C2l C22 ... C2Q

(Form C)
C‘Pl C.PZ .. C.PQ
oA (0)
- 634 5,A%M0
end (V) @.7)

aov.mANN(0)



GALATSANOS AND CHIN: RESTORATION OF COLOR IMAGES

where the entire matrix is not circulant but its submatrices
CV are circulant. The above matrix structure is denoted as
the form-C matrix. Form-C matrices can be transformed
to matrices of the following form:

(D' (D% --- D'
DZI D22 . DZ
[:][:]...[:Q] (Form D)
(D™ (DY --- (DP9

via the DFT [5], where [DY] are M X M diagonal matri-
ces.

After the Toeplitz-to-circulant approximation the Form-
C matrices A, F(i)°, Q@)‘, R(i), and R(i); in (4.1)-
(4.3) can be transformed to form-D matrices, giving

Z(i) = APZ(i — 1) + FPG)[G(i) — HPAPZ(i — 1)

(4.10)
FP() = QPG — 1(HPY
- [HPQP(i — D(HY + RY(]™ @.11)
0°() = A"l - FPHHP10%G - 1)
- (A% + BRG)(B%Y 4.12)

where Z (i) and G(i) are the DFT of £(i) and g(i), re-
spectively. The superscript D in the above equations in-
dicates form-D matrices. Since form-D matrices are closed
under multiplication addition and inversion, the compu-
tations in (4.10)-(4.12) can be performed efficiently {6].

Based on the above, the multichannel Kalman filter is
implemented by the following steps:

Step 1: Diagonalize A ™(p) and H"™"(\) using the
DFT form,n=1,2, -+ ,N, =Ay = A < A\, and 0
< p < p, where \, and p, define the region of support of
the degradation and the image mode, respectively.

Step 2: Transform g"(i) using G™(i) = W~'g"(i) for

i=1,2, -, Mandm =1, 2, - -+, N and construct
G(i).

Step 3: Construct matrices AP, BP, and H®.

Step 4: Fori = 1,2, - -+, N compute (4.13)-(4.15)

to solve for 2(1‘), the Kalman solution. Use the iterative
procedure of Lemma 2 in [6] for the matrix inversion in
4.11).
Step 5: Inverse DFT of Z(i).
From the definition of z(i) in (3.7) it is easy to see that
£ () is contained in all 2(j) withj =i — N, =+, i,
-, i + ;. In our implementation f” (i) is obtained from
the N\, — lag estimate of z(i) by

i) =10,0, - -, I12G + \).

In this case f (i) is updated A = 2\, + 1 times, yielding
the smallest estimation error. Using the above method,
the multichannel restoration problem can be solved even
when NM is large.
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V. NONSTATIONARY IMAGE MODEL
The Kalman filter implementation of (4.1)-(4.3) has
been derived from the imaging model of (2.17). This im-
aging model is a fixed model for the entire image. It lacks
the flexibility to take into account the local changes of
image statistics. An improved model that adapts to spatial
variations is given by

P2
p§0 AY(p) f(i — p) = B uG). (.1

Using (5.1) the Kalman equations (4.1)-(4.3) become
2() = [AP)2G — 1) + Fi)(g() — H[AV]12G — D]

(5.2)
FG) = QG — DIHITHQG — DIHY + R, )]
(5.3)
0G) = [A911 - FG)H1Q0G — DIAYT
+ [BO\R)[BY (5.4)

where R,(i) is the covariance matrix of the noise vector
v(i) and is defined in the same way as the stationary model
in (4.4). The matrix R,(i) is the spatially varying covar-
iance of u(i). For the nonstationary model, R, (i) has the
same definition as in (4.5) and (4.7); however, (4.6) be-
comes

E[a"() {#"H}] = ool (470 "156)

where

5.5)

lofnn) = E[u"G, pu"G, j))- (5.6)

The index i in (5.5) and (5.6) indicates the spatially vary-
ing nature of the image model. Note that a spatially vary-
ing degradation H" can be included in the nonstationary
model without any additional complications. This nonsta-
tionary Kalman filter is implemented in a similar way as
the stationary filter. Equations (5.2)-(5.4) are solved
using the 5-step process previously described.

VI. RESTORATION OF COLOR IMAGES IN THE YIQ
DoOMAIN

Color imagery is a special case of multichannel images.
For most color images the three RGB color planes exhibit
strong between-channel correlations. In order to decor-
relate the three color planes the RGB-to-YIQ transfor-
mation has been used and reported in [15]. This transfor-
mation can be viewed as a between-color Karhunen-Loeve
transformation (see [16] and [8]). The RGB-to-YIQ trans-
formation is defined by

£, ) 0.299  0.587  0.114 | | fi(i, )

G, ) | =059 —0274 —0.322 || f56. )

Folis 1) 0211 —0.523 0312 || falir )
©6.1)
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In the YIQ domain, the multichannel imaging equation
(3.1) for M X M color images can be written as

g=HT'Tf ++ 6.2)

where g, f, and ¥ are 3M? vectors, representing the ob-
served, original, and noise signal, respectively. The 3M?
X 3M? matrix H represents the color degradation [4]. The
linear RGB-to-YIQ transformation 7T is defined by

0.2991 0.5871 0.1141
T =] 0.59I -0.2741 -0.3221 6.3)
0.2111 -0.5231  0.3121

where I is an M? x M? identity matrix. Using (6.2) as
the imaging equation the stored color image can be com-
puted in the YIQ domain from image data given in the
RGB domain.

The transformed degradation is given by

1.0 09561 0.6211
HT'=H| 1.0 -02721 —-0.6471| (6.4
1.0 —1.1061 1.7031

where the coefficients of T ™! are computed as

-1

0.299
0.596
0.211

0.587
-0.274
-0.523

0.114
-0.322
0.312

1.0 0.956
=110 -0.272
1.0 —~1.106

0.621
—0.647
1.703

The transformed degradation contains between-channel
degradation components even when the original H con-
tains only spatial blur. Thus, restoration in the YIQ do-
main cannot simplify to independent channel restoration
even when there is no between-channel blur in the original
RGB image data. A similar approach was used in [18] for
restoration of color images in the YIQ domain. It was as-
sumed that the observed data are in the YIQ domain as
defined by the following imaging equation:

Tg = THT'Tf + Tv. (6.5)
Using this approach, the observation noise is also trans-
formed in the YIQ domain, yielding correlated between-
channel noise. In the special case considered in [18], all
channels were only spatially degraded by the same blur,
thus the degradation THT ™' had no between-channel
component. However, in the general case using the ap-
proach in [18], both the noise covariance and the degra-
dation will contain between-channel components.

VII. EXPERIMENTS

Experiments were performed to test the multichannel
Kalman filter. In many imaging systems, where the phys-
ical process that generates the observed images is known,
it is not unreasonable to assume that the degradation can
be correctly estimated. In addition, the problem of blind
estimation of image noise variance has had some success
(see [1] and [13]). Thus in our experiments we assumed
that both the degradation and the noise variance were
known. .

The Toeplitz-to-circulant approximation was computed
using the DFT, whereby the Toeplitz matrix was first
transformed by a similarity transformation and then the
off-diagonal elements were set to zero. Image models with
p» = ¢, = 1 were used in all the experiments. As a mea-
sure of filter performance, we used both the MSE and the
percentage of improvement defined by

I 7= £l
I%=100X|:1——'7 7.1)
le—fF*
where || - || is the L, norm, f is the ideal image, f is the

restored image plane, and g is the observed image plane.

Experiment One: This experiment was designed to test
multichannel Kalman filtering when identical channels are
spatially degraded. This situation may arise when motion
compensated multiple time frames are being restored, or
when the same scene is imaged by different sensors (see
[7] and [10]). A multichannel test image constructed by a
set of identical images was used.

The green color plane of the Lena 128 X 128 image
was chosen to construct a three-channel image. Known
spatial degradation H was applied, where H is given by

H®P 0 0
H=| 0 H%9 o (7.2)
0 0 H®Y

and H%? are M? X M? block Toeplitz submatrices rep-
resenting linear-motion blurring filters implemented as
convolution masks. Submatrix H®® represents a 1 x 5
uniform convolution operator with 1/5 weights in the R
channel; H% 9 a1 x 7 mask with 1/7 weights in G; and
H®P a1 x 9 mask with 1/9 weights in B. Finally, in-
dependent white Gaussian noise was added to each de-
graded image plane, resulting in 20, 30, and 40 dB SNR
in channels R, G, and B, respectively. The SNR was de-
fined by

AN

I >

Single and multichannel Kalman filtering was used in
the restoration. The image model was estimated from the
degraded image. Since the multichannel image consists of
different degraded versions of the same signal, the mul-
tichannel model contains more information and thus yields
better restoration. The MSE results of this experiment are
tabulated in Table I.

SNR = 10 log

(7.3)
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TABLE 1
EXPERIMENT ONE: KALMAN FILTER RESTORATION OF THE THREE IDENTICAL
GREEN PLANES OF THE LENA 128 X 128 IMAGE. THE SNR was 20, 30,
AND 40 dB FOR CHANNELS 1, 2, AND 3, RESPECTIVELY. 1 X 5,1 X 7,
AND 1 X 9 BLURS WERE USED FOR THE RESPECTIVE CHANNELS. THE IMAGE
MoDELS WERE COMPUTED FROM THE DEGRADED IMAGE g

Mean-Square Error (Percentage Improvement %)

Channel 1 Channel 2 Channel 3
Without restoration 9.54 (0%) 11.23 (0%) 12.88 (0%)
Independent restoration 7.92 (16%) 7.88 (30%) 6.64 (48%)
Multichannel restoration  6.86 (28%) 5.46 (51%) 5.34 (59%)

Experiment Two: This experiment was designed to test
the multichannel Kalman filter in restoring images with
correlated channels degraded only by spatial blur. Color
imagery was used as an example. Restoration of color im-
ages was performed both in the RGB and in the YIQ do-
main, and image models were estimated from both the
original f and the degraded g image. Finally, both sta-
tionary and nonstationary image models were tested.

The RGB components of the 128 X 128 Lena color
image were blurred with the same degradation H as in
experiment one. Two sets of observed images were gen-
erated by adding white Gaussian noise to the blurred im-
ages. In the first set the SNR was 10, 20, and 30 dB and
in the second, 20, 30, and 40 dB for channels R, G, and
B, respectively.

The original and degraded images were used to esti-
mate both the single and multichannel image models in
the RGB domain. As expected, in both cases multichannel
filtering gave better results, both visually and by MSE.
This was expected since the three channels are highly cor-
related in the RGB domain, thus the multichannel image
model contains cross-channel coefficients used in resto-
ration whereas the single-channel model treats each chan-
nel separately.

Restoration in the YIQ domain was tested. The original
images were used to estimate the image models. Multi-
channel restoration was used with the transformed deg-
radation matrix HT~'. Single-channel restoration is not
applicable in this case (see Section VI). The multichannel
Kalman filter was tested using both multichannel (with
between-channel coefficients) and single-channel (with-
out between-channel coefficients) image models. The sin-
gle-channel image model produced better results. This was
expected, since transformation to the YIQ domain decor-
relates between-channel components, resulting in inde-
pendent signals across channels. In order to quantify the
between-channel decorrelation property of the RGB-YIQ
transform, a between-channel correlation measure S;; was
used and is given by

)
(FANPA
where (,) is the inner product, || || the L, norm, and i, j

the channel indices. The §;; for the test image were com-
puted in the RGB and in the YIQ domain and are tabulated

7.4)
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TABLE II
VALUES OF THE SIMILARITY MEASURE S;; GIVEN BY (7.3) FOR THE
R, G, AND B COLOR PLANES OF THE LENA 128 X 128 IMAGE

Sgr = 1.0 Sc = 0.88 Sep = 0.68

Sr = 0.88 Soe = 1.0 Sgs = 0.91

Sar = 0.68 Sac = 0.91 Sas = 1.0
TABLE III

THE VALUES OF THE SIMILARITY MEASURE S;; GIVEN BY (7.3)
FORTHE Y, I, AND Q PLANES OF THE LENA 128 X 128 IMAGE

Syy = 1.0 Sy = —0.22 Syq = —0.76
Sy = —0.22 Sy =1.0 Sio = 0.31
Soy = —0.76 Sqr = 031 Soe = 1.0

in Tables II and III. From these tables we can see the
between-channel correlations are significantly smaller in
the YIQ domain than in the RGB domain.

The nonstationary image model described in Section V
was also tested in this experiment. The model coefficients
were estimated from the original image f with p, = ¢, =
1. To estimate the ith model, rows (i — L) to (i + L) from
the original image data were used. It was observed ex-
perimentally that L = 16 produces the best results for the
color Lena image.

The results of this experiment are tabulated in Tables
IV and V. Images used in this experiment corresponding
to Table V are shown in Fig. 2. from Tables IV and V we
observe that multichannel restoration in the RGB domain
yields better MSE results than multichannel restoration in
the YIQ domain. This is expected, since the YIQ trans-
formation is a fixed transformation independent of the in-
put image signal, approximating the between-color Kar-
hunen-Loeve transform. From Table III and IV we also
observe that the nonstationary image model yields better
results than the stationary model. However, the MSE im-
provement is small and virtually undetected visually.

Experiment Three: This experiment was designed to
test the multichannel Kalman filter in the presence of be-
tween-channel blur. This type of degradation is encoun-
tered in remote sensing of multispectral satellite images.
Less than ideal spectral characteristics of detectors pro-
duce leakage between adjacent spectral bands, resulting
in between-channel degradation.

The same Lena color image was used. The known deg-
radation matrix H is given by

0.50H®® 0.25H®9® (025H®D
H=|025HC%® 050HCY 025HC® | (7.5
0.25H®R 0.25H®9 0.50H®D

where H%7) are M%. x M? block Toeplitz submatrices
representing low-pass blurring filters implemented as con-
volution masks. The submatrices H®®, H® O and
H®® were implemented as 1 X 5 convolution operators
with 1/5 weights; HE®, HCG 9 and HE® were 5 x §
masks with 1/25 weights; H(B‘R), H(B'G’, and H®® were
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TABLE IV
EXPERIMENT TWO: MULTICHANNEL KALMAN RESTORATION OF THE COLOR
LENA 128 X 128 IMAGE. UNIFORM | X 5,1 X 7, AND 1 X 9 BLURS
WERE USED FOR CHANNELS R, G, AND B, RESPECTIVELY. THE SNR was
10, 20, 30 dB iN CHANNELS R, G, AND B, RESPECTIVELY

TABLE V
EXPERIMENT TWO: MULTICHANNEL KALMAN RESTORATION OF THE COLOR
LENA 128 X 128 IMAGE. UNIFORM 1 X 5,1 X 7, AND 1 X 9 BLURS
WERE USED FOR CHANNELS R, G, AND B, RESPECTIVELY. THE SNR was
20, 30, 40 dB IN CHANNELS R, G, AND B, RESPECTIVELY

Mean-Square Error (Percentage Improvement %)

Channel R Channel G Channel B

Mean-Square Error (Percentage Improvement)

Channel R Channel G Channel- B

Without restoration 8.47 (0%) 11.51 (0%) 8.59 (0%)

(i) Independent-channel restoration, using f to estimate the image model.

6.30 (26%) 7.95 31%) 3.99 (53%)
(ii) Multichannel restoration, using f to estimate the image model.
4.92 (42%) 5.46 (53%) 3.39 (60%)

(iii) Independent-channel restoration, using g to estimate
the image model.

6.70 21%) 9.32 (19%) 6.14 (28%)
(iv) Multichannel restoration, using g to estimate the image model.
5.98 (29%) 7.52 (35%) 5.57 (35%)

(v) Restoration in the YIQ domain without between-channel
coefficients in the image model.
4.89 (42%) 6.25 (46%) 3.63 (58%)

(vi) Restoration in the YIQ domain with between-channel
coefficients in the image model.
7.59 (10%) 6.67 (42%) 4.79 (44%)

(vii) Multichannel restoration using a nonstationary
model estimated from f.

4.56 (46%) 5.03 (56%) 3.08 (64 %)

The results of the experiments are: (i) Independent-channel restoration,
using the original image f to estimate the image model. (i) Multichannel
restoration, using the original image f to estimate the image model. (iii)
Independent-channel restoration, using the degraded image g to estimate
the image model. (iv) Multichannel restoration, using the degraded image
g to estimate the image model. (v) Restoration in the YIQ domain without
between-channel coefficients in the image model. (vi) Restoration in the
YIQ domain with between-channel coefficients in the image model. (vii)
Multichannel restoration using a nonstationary model estimated from the
original image f.

5 X 1 masks with 1/5 weights. Finally, independent-
white Gaussian noise was added to each degraded image
plane, generating two sets of images. The first set had
SNR = 20 dB in each channel, and the second, 30 dB.

For comparison purposes the degraded color image was
first restored by the single-channel Kalman filter of the
Biemond et al. [3]. It was applied independently to each
of the three color channels, using only spatial degrada-
tion. Next, the multichannel Kalman filter was applied
using between-channel degradation, and only within-
channel model coefficients of (2.1) were used. Finally,
the multichannel Kalman filter was applied using both be-
tween-channel degradation and between-channel image
model coefficients.

The MSE results of this experiment are tabulated in Ta-
bles VI and VII. Images of this experiment corresponding
to Table VII are shown in Fig. 3. As expected, neglecting
between-channel degradation produces poor results.
Ringing artifacts are observed in Fig. 3(b) in channels B
and G of the independent-channel restoration. The line-
by-line approach of this Kalman filter implementation re-

6.30 (0%) 11.23 (0%) 8.57 (0%)

(i) Independent-channel restoration, using f to estimate
the image model.

Without restoration

4.60 27%) 5.44 (52%) 2.32(73%)
(ii) Multichannel restoration using f to estimate the image model.
2.90 (54%) 2.95 (74 %) 1.76 (80%)

(iii) Independent-channel restoration, using g to estimate
the image model.

5.24 (17%) 7.88 (30%) 4.51 (48%)
(iv) Multichannel restoration, using g to estimate the image model.
3.58 (43%) 5.38 (52%) 4.09 (52%)

(v) Restoration in the YIQ domain without between-channel
coefficients in the image model.
3.07 (51%) 3.93 (65%) 1.98 (77%)

(vi) Restoration in the YIQ domain with between-channel
coefficients in the image model.
6.36 (—1%) 4.16 (64 %) 3.42 (60%)

(vii) Multichannel restoration using.a nonstationary
model estimated from f.

2.68 (58%) 2.72 (76 %) 1.60 (81%)

The results of the experiments are: (i) Independent-channel restoration,
using the original image f to estimate the image model. (ii) Multichannel
restoration, using the original image f to estimate the image model. (iii)
Independent-channel restoration, using the degraded image g to estimate
the image model. (iv) Multichannel restoration, using the degraded image
g to estimate the image model. (v) Restoration in the YIQ domain without
between-channel coefficients in the image model. (vi) Restoration in the
YIQ domain with between-channel coefficients in the image model. (vii)
Multichannel restoration using a nonstationary model estimated from the
original image f.

quires a boundary condition for blurs that have a vertical
component. Since circulant convolution was used to de-
grade the channels vertically the degraded image in a cir-
culant order was used as the boundary condition. How-
ever, independent-channel restoration neglects between-
channel degradation; thus there is a discrepancy between
the boundary condition and the degradation model. This
discrepancy resulted in the ringing artifacts in Fig. 3(b).
Experiments using zero boundary conditions were con-
ducted. Similar results were observed, however, the ring-
ing was more severe because the discrepancy of this
boundary condition is worse. When the between-channel
degradation was used, the ringing artifacts disappeared
and the average intensity of the restored images was nearly
equal to the original average (see channel G in Fig. 3(b)
and (c). Further improvements was observed when the be-
tween-channel model coefficients were used in the resto-
ration process.

Experiment Four: This experiment repeated experi-
ment three using a different color test image. The color
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(c)

Fig. 2. (a) The original color Lena image. The left image is the red channel, the middle is the green channel, and the right is
the blue channel. (b) The degraded color Lena image. Spatial degradation given by (7.2) is used and the SNR is 20, 30, and 40
dB in the red, green, and blue channels, respectively. Left: red channel, middle: green channel, and right: blue channel. (c)
Restored by independent-channel Kalman filter using the original image f to estimate the model. Left: red channel, middle:
green channel, and right: blue channel. (Continued on next page.)

128 x 128 skiers image was used. First, the three chan-  volution masks. The submatrices H®® HR®RO and
nels were degraded by the degradation H given by (7.5) H (R.B) were implemented as 1 X 5 convolution operators
where H) are M> x M? block Toeplitz submatrices  with 1/5 weights; H@®, H9, and HC® were 5 x 1
representing low-pass blurring filters implemented as con-  masks with 1/5 weights; H®R® HE®O and H®P were
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)

Fig. 2. (Continued.) (d) Restored by multichannel Kalman filter using the original image f to estimate the model. Left: red
channel, middle: green channel, and right: blue channel. (e) Restored by independent-channel Kalman filter using the degraded
image g to estimate the model. Left: red channel, middle: green channel, and right: blue channel. (f) Restored by multichannel
Kalman filter using the degraded image g to estimate the model. Left: red channel, middle: green channel, and right: blue
channel. (Continued on next page.)

5 X 5 masks with 1/25 weights. A full degradation H  dation but with no between-channel components as in
with between-channel components as in (7.5) was used in ~ (7.2) was used. White Gaussian noise was added in both
one experiment. In another experiment the same degra-  cases, resulting in 20-dB SNR in all channels. The MSE
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(g

Fig. 2. (Continued.) (g) Restored by multichannel Kalman filter in the YIQ domain using an image model that contains no
between-channel coefficients. The original image £ is used to estimate the model. Left: red channel, middle: green 9hannel. and
right: blue channel. (h) Restored by multichannel Kalman filter in the YIQ domain using a full image model with between-

channel coefficients. The original image f is used to estimate t

blue channel.

TABLE V1
EXPERIMENT THREE: MULTICHANNEL KALMAN RESTORATION OF THE COLOR
LENA 128 X 128 IMAGE. THE IMAGE 1S DEGRADED BY BOTH SPATIAL AND
BETWEEN-CHANNEL BLUR GIVEN BY (7.5). TABLES VI AND VII ARE THE
RESTORATION RESULTS OF THE 20 AND 30 dB IMAGES, RESPECTIVELY

Mean-Square Error (Percentage Improvement %)

Channel R Channel G Channel B

Without restoration 8.28 (0%) 12.08 (0%) 7.47 (0%)
(1) Independent-channel restoration.

7.26 (12%) 9.66 (20%) 7.13 (5%)

(ii) Multichannel restoration without between-channel
model coefficients.

4.11 (50%) 5.66 (53%) 4.28 (43%)

(iii) Multichannel restoration with between-channel
model coefficients.

3.97 (52%) 5.35 (56%) 4.18 (44 %)

The results of the experiments are: (i) Independent-channel restoration.
(ii) Multichannel restoration, neglecting the between-channel coefficients
in the image model. (iii) Multichannel restoration, using the between-chan-

nel coefficients in the image model. The image model in all cases is esti-

mated using the original image f.

he model. Left: red-channel, middle: green channel, and right:

TABLE VII
SAME As TABLE VI, ExcepT SNR = 30 dB

Mean-Square Error (Percentage Improvement %)

Channel R Channel G Channel B
Without restoration 8.08 (0%) 11.79(0%) 7.30 (0%)
(i) Independent-channel restoration.

6.52 (19%) 8.45 (28%) 6.76 (1%)
(ii) Multichannel restoration without between-channel model coefficients.
3.89 (52%) 4.91 (58%) 3.93 (46%)

(iii) Multichannel restoration with between-channel model coefficients.
3.08 (62%) 3.58 (70%) 3.07 (58%)

results from this experiment are tabulated in Tables VIII
and IX. The findings of this experiment agreed with pre-
vious results.

VIII. CONCLUSIONS

Multichannel imagery consists of channels that are in-
terelated. The two most important elements of between-
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(b)

©)

Fig. 3. (a) The degraded color Lena image. Both spatial and between-channel degradation given by (7.5) were used and the
SNR is 30 dB in all channels. Left: red channel, middle: green channel, and right: blue channel. (b) Restored color Lena image
by independent-channel Kalman filter, where no between-channel degradation can be used. Left: red channel, middle: green
channel, and right: blue channel. Note the ringing artifacts. (c) Restored color Lena image by multichannel Kalman filter using
an image model that contains no between-channel coefficients. Left: red channel, middle: green channel, and right: blue channel.

(Continued on next page.)

channel information for multichannel image restoration
are between-channel degradation and between-channel
correlation. Restoration using traditional single-channel
Kalman filters can incorporate neither one.

Multichannel Kalman filtering has been formulated to

incorporate between-channel correlation for the restora-
tion of both spatial and between-channel blur. Moreover,
a computational filter for the Kalman formulation has been
developed. For an M X M N-channel image with blurring
length A, the computational complexity of the Kalman fil-
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(d)

Fig. 3. (Continued.) (d) Restored color Lena image by multichannel Kalman filter using a full image model that contains
between-channel coefficients. Left: red channel, middle: green channel, and right: blue channel.

TABLE VIII
EXPERIMENT FOUR: MULTICHANNEL KALMAN FILTER RESTORATION OF THE COLOR SKIERS IMAGE DEGRADED
BY BOTH SPATIAL AND BETWEEN-CHANNEL BLUR GIVEN IN (7.5) AND ADDITIVE NOISE. THE SNR OF ALL
THREE CHANNELS wWas 20 dB

Mean-Square Error (Percentage Improvement %)

Channel R Channel G Channel B
Without restoration 12.42 (0%) 13.11 (0%) 17.11 (0%)
(i) Independent Kalman filter 9.86 (20%) 11.09 (15%) 13.98 (18%)
(ii) Multichannel Kalman filter
without between-channel coefficients 9.62 23%) 10.11 23%) 10.82 (36%)
(iii) Multichannel Kalman filter
with between-channel coefficients 7.85 (37%) 8.09 (38%) 8.74 (49%)

The results of the experiments are: (i) Independent-channel Kalman filter restoration, that is, the be-

tween-channel blur and between-channel image correlation are not used. (ii) Multichannel Kalman filter
restoration using between-channel blur but not between-channel image correlation. (iii) Multichanne! Kal-
man filter restoration using both between-channe! blur and between-channel image correlation.

TABLE IX
EXPERIMENT FOUR: MULTICHANNEL KALMAN FILTER RESTORATION OF THE COLOR SKIERS IMAGE DEGRADED
ONLY BY SPATIAL BLUR AND ADDITIVE NOISE. THE SNR OF ALL THREE CHANNELS WAs 20 dB

Mean-Square Error (Percentage Improvement %)

Channel R Channel G Channel B
Without restoration 11.27 (0%) 12.57 (0%) 12.63 (20%)
@) Independent Kalman filter 8.39 25%) 10.50 (16%) 12.63 (20%)
(i1) Multichannel Kalman filter
Stationary model 6.60 (41%) 7.96 (36%) 8.36 (47%)
(iii) Multichannel Kalman filter
Nonstationary model 6.52 (42%) 7.82 (38%) 8.30 (48%)

The results of the experiments are: (i) Independent Kalman filter restoration, the between-channel image
model coefficients are assumed to be zero. (ii) Multichannel Kalman filter restoration using between-chan-
nel coefficients and the stationary model. (iii) Multichannel Kalman filter restoration using between-channel
coefficients and the nonstationary model.

ter is reduced from O(A’N>M*)—the requirement for
O(M) multiplications of ANM X MNA full matrices, to
O(A* N3 M?)—the requirement for O(M) multiplications
of ANM X MNA form-D matrices. For 128 X 128 x 3
images with blurring length A = 5, this amounts to a re-
duction from 0(10'%) to 0(10°).

Experiments were performed to test the proposed filter
and the following summarizes our observations: a) Be-
tween-channel degradation is essential for accurate res-
toration of multichannel images. Using color RGB im-
ages, it was shown that the proposed filter effectively
restored between-channel blur. b) Multichannel imagery
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which exhibits strong between-channel correlation greatly
benefits from multichannel processing because between-
channel coefficients are used in the image models. On the
contrary, multichannel imagery with weak between-chan-
nel correlations does not benefit from multichannel image
models. Color images in the RGB domain were used as
an example of multichannel images with strong between-
channel correlation. Color images in the YIQ domain were

" used as an example with weak between-channel correla-

tions. ¢) Stationary and nonstationary image models were
developed and tested. The nonstationary image model
only yields a slight improvement over the stationary
model; the -additional computation does not justify the
achieved improvement.

Finally, it is noted that the multichannel Kalman filter
is comparable to the multichannel Wiener filter [5] and
[6], when the same amount of prior information is avail-
able. Both filters assume the knowledge of the additive
noise and multichannel degradation. However, the Kal-
man filter offers the flexibility of processing spatially
varying images at the cost of a complex implementation.
The problem of simultaneous estimation of degradation
and restoration for multichannel images remains to be in-
vestigated.
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