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Design of Two-Channel Equiripple FIR
Linear-Phase Quadrature Mirror Filters
Using the Vector Space Projection Method

Khalil C. Haddad, Henry Starkzellow, IEEE,and Nikolas P. GalatsanoSenior Member, IEEE

Abstract—A new technique for designing finite impulse re- T2
sponse (FIR) quadrature mirror filters (QMF'’s) is proposed. The H (@) p| 12 { —pif (@)
approach is based on the vector space projection method (VSPM).
Convex constraint sets and their projections that capture the x(n) i(n)
properties of the desired QMF's are given. The proposed ap-
proach produces equiripple filters. This method is compared with H ()Ll 12 u T2 L ()
the classical Johnston’'s method and is shown to have certain v
advantages.

<—Analysis —> <—Synthesis—>
I. INTRODUCTION

QUADRATURE mirror filters (QMF’s) [1] are used in

subband coders for speech processing [2], transmUliiear phase). In this letter, we propose a new approach to
plexers for telecommunication [3], and image compregesigning QMF's based on the vector space projection method

sion [4]. A common requirement in most applications is th VSPM). We will provide examples and compare this method
the reconstructed output signal should be “as close” as possible, johnston’s method.

_to the input signal. When the Qutput is a delayed, replica_of theyyspm deals with the problem of finding an object (for
input then the QMF's system is calledbarfect reconstruction example, a signal, function, image, etc.) in a proper vector

(PR) QMF system. In order to design a PR QMF, one needs, ¢ that satisfies multiple constraints. When all the constraint

to relax one of the QMF properties, such as the phase lineadlyq are convex and havevanempty intersectiorihere exists
or the power complementary property. On the other hand,dt,,verful theory in finding the object that satisfies all the

may be desirable that the analysis and synthesis portions 8hgiraints. This subset of VSPM is callgdojection onto
the QMF's have linear-phase for certain applications that dea|,,,ex set¢POCS). The reader is referred to [6] and [7] for

(for examlple) with low bit rqte .coding. “an introduction to this method.
A classical method for designing near perfect reconstruction

QMF's was first proposed by Johnston [5]. It consist of
selecting the filter coefficients such that(w)|* +|H (7 —w)|?

is made as close to unity as possible (the so-called powe/ two-channel QMF bank is shown in Fig. 1, wheffg(w),
complementary property) while simultaneously minimizing (of1(«) are the lowpass and highpass filters, respectively, of the
constraining) the stopband energy of the transfer functi@alysis bank filters, anflo(w), F1(w) are the corresponding
H(w). This approach leads to the minimization of the integrﬁynthesis filters. The conditions imposed on the analysis and

Fig. 1. Two-channel QMF bank.

II. Two-CHANNEL QMF PROPERTIES

squared error synthesis filters for a PR system are well known; see, for
- example, [1]. All filters are assumed linear phase and are of
J = N/ |H(w)|? dw length N, where N is even. For the analysis sections, the
ws impulse responses are
+(1- u)/ [[H(w))? + [H(m — w)|* = 1] dw ho(n) =ho(N —n—1) foro0<n<N/2—1 (1)
0
hi(n) = (=1)"ho(n) )

wherey; is a weighting factor in the range 6f< 1 < 1 and
ws is the stopband frequency. In performing the optimization,
the filter impulse response is constrained to be symmetric

hi(n)=—h(N—-n—-1) for0<n<N/2-1 (3)

. . . . o |Ho(w)> + |Hi (W) =1 for0<w < 7. 4)
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in the stopbands. As mentioned previously one needs to relalkere
the power complementary property to design a QMF with

linear phase. In what follows, we propose a design algorithm 1Go(w)]
based on VSPM. (H} (W), Hf (W) = 0 eio(w)
[1Ga(w)|?+]G1(w)]?
140
G o
lIl. DESIGN OF TWO-CHANNEL | 12(w)| - Je 1 (11)
LINEAR PHASE QMF USING VSPM 1/%

The first step in implementing the VSPM algorithm is to
define the appropriate sets that capture the QMF’s propertiesy |Go(w)]? + |G1(w)]? < 1 — o, the projectionP; onto
These sets are parametrized by the constraints needed 1owill be
specify the characteristics of the QMF's. In parallel with (1) to
(4) and taking into consideration the stopbands attenuation we
define the following appropriate sets. In the frequency domain,
the sets are (6)—(8), shown at the bottom of the page, where
is the passband and stopband frequencigfw) and Hy(w), Where
respectively, and», = m — w; is the passband and stopband
frequency ofH; (w) andHy(w), respectively. Since the lengths ( |Go(w))|
of hy andh; are known,po(w) and ¢, (w) the linear phases (Hj(w),H{ (w)) = - -
associated wittHy(w) and H;(w) are also known. In the time \/ w
domain, the set is (9), shown at the bottom of the page.

In words, C; is the set of all two-tuple finite-length se- |G1(w) ENC) (13)
guences that imply a Fourier transform that satisfies (4) (power [1Go ()2 4+|G1 (w)? '
complementarity) with an error tolerance &f. SetC, is the 1=
set of all two-tuple, finite-length sequences, whose lowpass
responsen, — Hy(w) has a stopband attenuation magnitude Finally, if 1 — ¢ < [Go(w)|* + |Gi(w)|* < 1+ 0, the
bounded by. In C», h; is otherwise unrestricted. Sét is the projection 1 onto C; will be
set of all two-tuple, finite-length sequences, whose highpass
responseh; «— H;(w) has a stopband attenuation magnitude (b, h}) = Pi(go,g1) « (Hi(w), Hf (w)) (14)
bounded by. In C3, hg is otherwise unrestricted. S€t, is the
set of symmetrical sequenchs, andh; that satisfies (1), (2), h
and (3) (the QMF property and linear phase). The convexi\fg/ ere
of Cy,Cs, C3, and Cy can be easily established using similar

(hg, hy) = Pi(go, g1) = (Hg(w), Hi(w))  (12)

clPo (w)

arguments as for the sets defined in [6, pp. 225-228]. (Ho(w), Hi (w)) = (Go(w), G1(w)). (15)
The next step is to find the projections onto these sets. In
the interest of brevity, we give projections without proof. These equations implicitly define the project®y.
Projection ontoC: The projection of an arbitrary two- Projection ontoC»: The projection of an arbitrary

tuple (go, 1) G,I}N‘X RY o (Go(w), G1(w)) ontoCy where (g o) v (Gy(w), G1(w)) is obtained using the Lagrange
Gi(w) = |G|/, i = 0,1 can be computed using themultiplier method. The result i, ht) = Px(go,g1) where
Lagrange multiplier method. The results are as follows.
If |Go(w)|]? + |G1(w)|*> > 1+ o, the projectionP; onto

hj < {

Cr il b 8[Go(w)/|Go(w)]]. if |Go(w)| > &, for ws < w <,

Go(w), if |Go(w)] <8, for ws <w <,
Go(w), elsewhere
(hg, by) = Pi(go. 81) < (Hy(w), Hi(w))  (10) hj < Gi(w). (16)

cr A (ho,h;) ERY xRN 11— 0 < |H(w)| + |Hi(w)| £ 140 (©)
1= andpo(w) = p1(w) =w(N —-1)/2 for0<w <7

Cy = {(hg,h;) e RN x RV : |Hp(w)| <6 forwy <w <7} (7)

Cs = {(hp,h;) e RN x RV : |Hi(w)| <6 for0<w<wy )} (8)

C Sy (ho,hl) c RN X RN : ho(TL) = ho(N —n — 1), h1(7’L) = h1(N —n — 1) (9)
47 andhy(n) = (—=1)"ho(n) forn=0,1,...,N/2 -1
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Fig. 2.. F‘requency response for the Johnston (top) and VSPM (bottogy. 3. Plot of |Ho(w)[? + |Hy(w)|? for the Johnston (top) and VSPM
analysis filters. (bottom) pair of filters.

Projection ontoC5: The projection of an arbitrarygy,
g1) < (Go(w),G1(w)) is obtained using the Lagrange multi-
plier method. The result i€h{, hi) = Ps(go,g1) where

ha > Go(w) %
S[G1(w)/|Gr(w)]], If |Gi(w)| > 6, for 0 < w < wy,
hi < ¢ Gi(w), if |Gi(w)] <6, for 0 <w < wy, ‘ : : . . .
G1(w), elsewhere - : : . . . .
0 20 40 60 80 100 120 140
17) . n
x10

These equations implicitly define the projectéts and s,
respectively.

Projection ontoCy: The projection of an arbitrary two-
tuple go,g1) € RN x R" onto C, is again computed using
the Lagrange multiplier method. The result (bj,hy) =
Pi(go,g1) where

e(n)

N non(n) — g (N —n—1) o 20 40 60 80 100 120 140
h(n) = (=1) ; "
and Fig. 4. Plot of the residual error(n) for the Johnston (top) and VSPM
« ni (bottom) pair of filters.
hi(n) = (=1)"hg(n). (18)
Finally, the VSPM algorithm takes the form sets. To measure the error of the reconstructed signal for each
(90 91 )kt1 = PLP2P3Py(go, g1 ) (19) filter, we applied an impulsé(n) as input, and computed

the energy of the residual errdf of the outputy(n) i.e.
Each projection is called a step. A new iteration cycle begis = Ziﬁo(y(n) —&(n— N —1))>2

after four steps. Table | shows that the QMF's designed by VSPM have
superior stopband attenuation than the Johnston’s design (71
IV. EXAMPLE AND NUMERICAL RESULTS dB versus 65 dB). In addition, the peak-to-peak deviation of

In this experiment, we discretized the signals in the frdd€ power complementary property of the VSPM designed

quency domain to 512 samples. A linear phase QMF wilier is much smaller than that of the Johnston’s filter and
designed WithN = 64, o = 25 x 107%, § = 3 x 10~*, this led to smaller residual erroE, as the last entry in

and a transition bandwidth f = 0.172. This is compared to Table | shows. From Fig. 2, we see that the VSPM's filter
the QMF’s with the same\ f and N designed by Johnston’sis equiripple.

method in [5], where the author furnished the value of the The plot of the frequency responses of the Johnston and
impulse response. In order to demonstrate the value of VSPAPM QMF's are shown in Fig. 2. Fig. 3 shows the plot
for this problem, we chose the above (small) values ahdé of |Ho(w)|? + |Hi(w)|? in dB scale, and Fig. 4 shows the
that still allowed a nonempty intersection of all the constraintesidual errore(n) = y(n) — 6(n — N — 1). For readers who
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TABLE |
CHARACTERISTICS ASDESIGNED BY VSPM AND THE JOHNSTON METHOD

VSPM Johnston
Stopband attenuation 71dB 65 dB
|Ho(@) +|H, (@)’ peak-to-peak deviation 0.005 dB 0.012 dB
Residual error £ 1.77x10* | 2.58x10*

TABLE I
FIRST HALF OF THE VSPM HLTER IMPULSE RESPONSE
Hy, THE SECOND HALF Is THE MIRROR IMAGE
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proposed VSPM algorithm for this example converged after
about 25000 cycles.

V. CONCLUDING REMARKS

We presented a new, promising, QMF design method based
on vector space projection that allows more flexibility in
the design in that any number of convex constraints can be
incorporated in the design without the need to find one-step
analytical solution. This method can be also easily extended

n VSPM QMFs COEFFICIENTS n

1 0.00013088298316 | -0.00043557700746 17
2 -0.00007452654723 | 0.00838931844286 18
3 -0.00003053811788 | -0.00055024660557 19
4 0.00003987775353 -0.01255700407782 20
5 -0.00004002735530 | 0.00255927794332 21
6 0.00005470068848 0.01816875065335 22
7 0.00017690202124 |} -0.00619855026950 23
8 -0.00030653011763 | -0.02582300936335 24
9 -0.00037654204409 | 0.01256117149338 25
10 0.00082208716903 0.03689109647512 26
11 0.00060271163836 | -0.02412409348449 27
12 -0.00173048413854 | -0.05535148773602 28
13 -0.00078208236958 | 0.04879669656944 29
14 0.003 18063580290 0.09840378875785 30
15 0.00078938636202 | -0.13643881722561 31
16 -0.00533870973317 | -0.46134656497794 32

to multidimensional QMF designs.

(1]
(2]
(3]
(4]

(5]

(6]

wish to compare these results with their own methods, wg]

include in Table Il the VSPM filter impulse responig. The
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