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ABSTRACT 

 
In this paper the blind image deconvolution (BID) problem is addressed using the Bayesian 

framework. In order to solve for the proposed Bayesian model we present a new methodology 

based on a variational approximation, which has been recently introduced for several machine 

learning problems, and can be viewed as a generalization of the expectation maximization (EM) 

algorithm. This methodology reaps all the benefits of a “full Bayesian model” while bypassing 

some of its difficulties.  We present three algorithms that solve the proposed Bayesian in closed 

form and can be implemented in the discrete Fourier domain. This makes them very cost effective  

even for very large images. We demonstrate with numerical experiments that these algorithms 

yield promising improvements as compared to previous BID algorithms. Furthermore, the 

proposed methodology is quite general with potential application to other Bayesian models for 

this and other imaging problems. 
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1. INTRODUCTION 

 

The blind image deconvolution (BID) problem is a difficult and challenging problem because 

from the observed image it is hard to uniquely define the convolved signals. Nevertheless there 

are many applications where the observed images have been blurred either by an unknown or a 

partially known point spread function (PSF).  Such examples can be found in astronomy and 

remote sensing where the atmospheric turbulence cannot be exactly measured, in medical 

imaging where the PSF of different instruments has to be measured and thus is subject to errors, 

in photography where the PSF of the lens used to obtain the image is unknown or approximately 

known etc.  

 

A plethora of methods has been proposed to address this problem, see [1] for a seven year old 

survey of this problem.  Since in BID the observed data are not sufficient to specify the 

convolved functions, most recent methods attempt to incorporate in the BID algorithm some prior 

knowledge about these functions.  Since it is very hard to track the properties of the PSF and the 

image simultaneously, several BID methods attempt to impose constraints in the image and the 

PSF in an alternating fashion.  In other words, such approaches cycle between two, the image and 

the PSF, estimation steps. In the image estimation step the image is estimated assuming that the 

PSF is fixed to its last estimate from the PSF estimation step. In the PSF estimation step the PSF 

is estimated assuming the image to be fixed to its last estimate from the image estimation step. 

This decouples the non-linear observation model in BID into two linear observation model that 

are easy to solve. Algorithms of this nature that use a deterministic framework to introduce priori 

knowledge in the form of convex sets, “classical” regularization, regularization with anisotropic 

diffusion functionals and fuzzy soft constraints were proposed in [5, 6, 7], and [15], respectively.   

 

A probabilistic framework using maximum likelihood (ML) estimation was applied to the BID 

problem in [2, 3] and [4] using the expectation maximization (EM) algorithm [11]. However, the 

ML formulation does not allow the incorporation of prior knowledge, which is essential in order 

to reduce the degrees of freedom of the available observations in BID. As a result, in order to 

make these algorithms to work in practice, a number of deterministic constraints such as the PSF 

support and symmetry had to be used. These constraints although they make intuitive sense, 

strictly speaking, they cannot be justified theoretically by the ML framework.  
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In [8, 9] and [10] the Bayesian formulation is used for a special case of the BID problem where 

the PSF was assumed partially known. In this case the PSF was assumed to be given by the sum 

of a known deterministic component and an unknown stochastic component.  In these works two 

strategies were adopted in order to bypass the above mentioned difficulties in writing down the 

probabilistic law relating the observations and the quantities to be estimated.  First, in [8] the 

stochastic model that relates the observations with the quantities to be estimated was simplified. 

The direct dependence on the unknown image of the statistics of the additive noise component 

due to the PSF uncertainty was removed. This made possible to write down in closed form the 

probabilistic law that relates the observations with the quantities to be estimated and extend the 

EM algorithm in [3] and [4] to this problem.  Second, in [9] and [10] the use of the above 

mentioned probabilistic law was bypassed by integrating out the dependence of the unknown 

image to the observations. More specifically, a Laplace approximation of the Bayesian integral 

that appears in this formulation was used. In spite of this, it was reported in [9] that the accuracy 

of the obtained estimates of the statistics of the errors in the PSF and the image could vary 

significantly depending on the initialization. Thus, using the Bayesian approach in [9], it is 

impossible to obtain accurate restorations unless accurate prior knowledge about either the 

statistics of the error in the PSF or the image is available in the form of hyper-priors [10]. 

 

The Bayesian framework is a very powerful and flexible methodology for estimation and 

detection problems because it provides a structured way to include prior knowledge concerning 

the quantities to be estimated. Furthermore, both the Bayesian methodology and its application to 

practical problems have recently experienced an explosive growth, see for example [12, 13] and 

[14]. In spite of this, the application of this methodology to the BID problem remains elusive 

mainly due to the non-linearity of the observation model. This makes intractable the computation 

of the joint probability density function (PDF) of the image and the PDF given the observations. 

One way to bypass this problem is to employ in a Bayesian framework the technique of 

alternating between estimating the image and the PSF while keeping the other constant as 

previously described. The main advantage of such strategy is that it linearizes the observation 

model and then it is easy to apply the Bayesian framework. However, clearly this is a suboptimal 

strategy. Another approach to bypass this problem could be to use Markov Chain Monte Carlo 

(MCMC) techniques to generate samples from this elusive conditional PDF and then estimate the 

required parameters from the statistics of those samples. However, MCMC techniques are 

notoriously computational intensive and furthermore, there is no universally accepted criterion or 

methodology to decide when to terminate [13].  
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 In what follows we propose to use a new methodology termed “variational” to adress the 

Bayesian BID problem in a computationally efficient way neither without resorting neither to the 

suboptimal linearization by alternating between the assumption that the image and the PSF are 

constant as previously explained nor to MCMC. The proposed approach is a generalization of 

both the ML framework in [2, 3] and [4] and the partially known PSF model in [8, 9] and [10]. 

The variational methodology that we use was first introduced in the machine learning community 

to solve Bayesian inference problems with complex probabilistic models, see for example [17, 19, 

20, 22] and [23].  In the machine learning community the term graphical models has been coined 

in such cases, since a graph can be used to represent the dependencies among the random 

variables of the models and the computations required for Bayesian inference can be greatly 

facilitated based on the structure of this graph. It has also been shown that the variational 

approach can be viewed as a generalization of the EM algorithm [16]. In [21] a similar 

methodology to the variational, which is termed ensemble learning, is used by Miskin and 

MacKay to address BID in a Bayesian framework. However, the approach in [21] uses a different 

model for both the image and the PSF. This model assumes that the image pixels are independent 

identically distributed and thus does not capture the between pixel correlations of natural images. 

Furthermore, our model allows simplified calculations in the frequency domain. This greatly 

facilitates the implementation of our approach for realistic high resolution images. We believe 

that the approach in [21] cannot be applied to large images.  

 

The rest of this paper is organized as follows: in section 2 we provide the background on 

variational methods; in section 3 we present the Bayesian model that we propose for the BID 

problem and the resulting variational functional; in section 4 two iterative algorithms are 

presented that can be used to solve for this model; in section 5 we provide numerical experiments 

indicating the superiority of the proposed algorithms as compared to previous BID approaches; 

finally, in section 6 we provide our conclusions and suggestions for future work.   

 

2.  BACKGROUND ON VARIATIONAL METHODS 

 

The variational framework constitutes a generalization of the well-known Expectation 

Maximization (EM) algorithm for likelihood maximization in Bayesian estimation problems with 

“hidden variables”. The EM algorithm has been proved a valuable tool for many problems, since 

it provides an elegant approach to bypass difficult optimization and integrations required in 
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Bayesian estimation problems. In order to efficiently apply the EM algorithm two requirements 

should be fulfilled [11]: i) In the E-step we should be able to compute the conditional PDF of the 

“hidden variables” given the observation data. ii)  In the M-step, it is highly preferable to have 

analytical formulas for the update equations of the parameters. Nevertheless, in many problems it 

is not possible to meet the above requirements and several variants of the basic EM algorithm 

have emerged. For example, a variant of the EM algorithm called the “generalized EM” (GEM) 

proposes a partial M step in which the likelihood always improves. In many cases partial 

implementation of the E step is also natural.  An algorithm along such lines was investigated in 

[16]. 

 

The most difficult situation for applying the EM algorithm emerges when it is not possible to 

specify the conditional PDF of the hidden variables given the observed data that is required in the 

E-step.  In such cases the implementation of the EM algorithm is not possible. This significantly 

restricts the range of problems where EM can be applied. To overcome this serious shortcoming 

of the EM algorithm, the variational methodology was developed [17].  In addition, it can be 

shown that EM naturally arises as a special case of the variational methodology. 

 

Assume an estimation problem where x  and s  are the observed and hidden variables, 

respectively, and θ  are the model parameters to be estimated.  All PDFs are parameterized by the 

parametersθ , ie. ( ; ),  ( , ; ) and ( | ; )p x p s x p s xθ θ θ  and we omit θ  for brevity in what follows.  

For an arbitrary PDF ( )q s  of the hidden variables s  it is easy to show that: 

( ) ( ) ( ) ( )log ( ) log ( ) log ( , ) log ( ) ( | )q q q qp x E q s E p x s E q s E p s x+ = + −  

where qΕ  denotes the expectation with respect to ( )q s .  The above equation can be written as, 

( ) ( ) ( ) ( )log ( ) log ( , ) ( ) || ( | )q qL E q s E p x s KL q s p s xθ + = +  

where ( ) log ( ; )L p xθ θ=  the likelihood of the unknown parameters and 

( )( ) || ( | )KL q s p s x  the Kullback-Liebler distance between ( )q s  and ( | )p s x .  

Rearranging the previous equation we obtain:  

( , ) ( ) ( ( ) || ( | )) (log ( , )) ( )      (1)qq L KL q s p s x E p x s H qθ θ= − = +F  

where ( )H q  is the entropy of ( )q s .  From Eq. (1) it is clear that ( , )q θF  provides a lower 

bound for the likelihood of θ  parameterized by the family of PDFs ( )q s , since 

( )( ) || ( | ) 0KL q s p s x ≥ . When *( ) ( | ; )q s p s x θ=  the lower bound becomes exact: 
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*( , ) ( )q Lθ θ=F .  Using this framework EM can then be viewed as a special case 

when * ( ) ( | ; )q s p s x θ= . 

 

However, the previous framework allows, based on Eq. (1), to find a local maximum of ( )L θ  

using an arbitrary PDF ( )q s . This is a very useful generalization because it bypasses one of the 

main restrictions of EM that of exactly knowing ( | )p s x .  The variational method works to 

maximize the lower bound of ( , )q θF  with respect to both θ  and q .  This is justified by a 

theorem in [16] stating that, if ( , )q θF  has a local maximum at * ( )q s  and *θ , then ( )L θ  has 

a local maximum at *θ .  Furthermore,  if ( , )q θF  has a global maximum at * ( )q s  and *θ , then 

( )L θ  has a global maximum at *θ . Consequently the variational EM approach can be described 

as follows: 

E-step: ( 1) ( )arg max ( ,  )t t
qq q θ+ = F  

M-step: 
( 1) ( 1)arg max ( , )t tqθθ θ+ += F  

This iterative approach increases at each iteration t  the value of the bound ( , )q θF  until a local 

maximum is attained. 

 

3. VARIATIONAL BLIND DECONVOLUTION 

 

3.1 Variational Functional ( , )q θF  

 

In what follows we apply the variational approach to the Bayesian formulation of the blind 

deconvolution problem.  The observations are given by: 

g h f w H f w F h w= ∗ + = ⋅ + = ⋅ +  (2) 

and we assume the 1N ×  vector g to be the observed variables, the 1N ×  vectors f and h are the 

hidden variables, w is Gaussian noise and H  and F  the N N×
 convolution matrices.  We 

assume Gaussian PDFs for the priors of f and h. In other words, we assume ( ) ( , )f fp f N µ= Σ , 

( ) ( , )h hp h N µ= Σ  and ( ) (0, )wp w N= Σ . Thus, the parameters are , , , ,
T

f f h h wθ µ µ = Σ Σ Σ  . 

The dependencies of the parameters and the random variables for the BID problem can be 

represented by the graph in Figure 1.  
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The key difficulty with the above blind deconvolution problem is that the posterior PDF 

( , | ; )p f h g θ  of the hidden variables f  and h  given the observations g  is unknown.  This fact 

makes impossible the direct application of the EM algorithm.  However, with the variational 

approximation described in the previous section it is possible to bypass this difficulty.  More 

specifically, we select a factorized form for ( )q s  that employs Gaussian components: 

( ) ( , ) ( ) ( ) ( , ) ( , )q q q qf f h h
q s q h f q h q f N m C N m C= = =  (3) 

where , , ,q q q q

T

q f f h h
m C m Cθ  =    are the parameters of ( )q s . 

This choice for ( )q s  can be justified because it leads to a tractable variational formulation that 

allows for the variational bound ( , )q θF  (Eq. 1) to be specified analytically in the in the Discrete 

Fourier Domain (DFT) domain if circulant covariance matrices are used.  From the RHS of Eq. 

(1) we have 

F( , ) (log( ( , )) ( )qq E p x s H qθ = +  (4)          

where, ( , ) ( , , ) ( | , ) ( ) ( )p x s p g f h p g f h p f p h= = ⋅ ⋅  with ( | , ) ( , )wp g h f N h f= ∗ Σ . 

The variational approach requires the computation of the expectation (Gaussian integral) in Eq. 

(4) with respect to ( )q s .  In order to facilitate computations for large images, we will assume 

circulant convolutions in Eq. (2) and that matrices fΣ , hΣ , wΣ , qf
C  and qh

C are circulant. This 

allows an easy implementation in the DFT. Computing the expectation (log( ( , , ))qE p g f h  as 

well as the entropy of ( )q s  we can write the result in the DFT domain as (the derivation is 

described in Appendix-A): 

( )
1

0

1F( , ) log ( ) log ( ) log ( ) log ( ) log ( )
2 q q

N

w f h f h
k

q C k k k S k S kθ
−

=

= − Λ + Λ + Λ + +∑  

{ }( )
1 ( )

2 *
1

0

1 | ( ) | 2 Re ( ) ( ) ( )1             
2 ( )

q q

A k

N f h

k w

G k M k M k G k
N

k

−

=

−
−

Λ∑


������������������

 

2 ( )

2 2
1

0

1 1( ) | ( ) | ( ) | ( ) |
1             
2 ( )

q q q q

A k

N f f h h

k w

N S k M k S k M k
N N

k

−

=

  + +  
  −

Λ∑


����������������������
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{ }( )
( )

2 2 *
1

0

1 1( ) | ( ) | | ( ) | 2 Re ( ) ( )
1             
2 ( )

q q q

B k

f fN f f f

k f

S k M k M k M k M k
N N

k

−

=

 + + − 
 −

Λ∑


����������������������������

 

{ }( )
( )

2 2 *
1

0

1 1( ) | ( ) | | ( ) | 2 Re ( ) ( )
1             
2 ( )

q q q

C k

h hN h h h

k h

S k M k M k M k M k
N N

k

−

=

 + + − 
 −

Λ∑


��������������������������

 (5) 

where ( )
f qS k , ( )qh

S k , ( )
f

kΛ , ( )
h

kΛ  and ( )w kΛ  are the eigenvalues of the N N× circulant 

covariance matrices qf
C , qh

C , fΣ , hΣ and wΣ , respectively. Also, ( )G k , ( )qf
M k and ( )qh

M k  

are the DFT coefficients of the vectors g , qf
m  and qh

m , respectively. 

 

3.2 Maximization of the variational bound ( , )q θF  

 

In analogy to the conventional EM framework, the maximization of the variational bound 

( , )q θF  can be implemented in two steps as described in the end of Section 2.  In the E-step, the 

parameters , , ,q q q q

t

q f f h h
m C m Cθ  =    of ( )q s  are updated. Three approaches have been 

considered for this update.  The first approach (called VAR1) is based on the direct maximization 

of ( , )q θF with respect to the parameters qθ .  It can be easily shown that such maximization can 

be performed analytically by setting the gradient of ( , )q θF  with respect to each parameter equal 

to zero, thus obtaining the update equations for ( 1)
q

t
f

m + , ( 1)
q
t

f
C + , ( 1)

q
t

h
m +  and ( 1)

q
t

h
C + .  The detailed 

formulas of this approach are given in Appendix-B.  

 

In the second approach (called VAR2) we assume that ( ) ( | ; )q f p f g h=  

and ( ) ( | ; )q h p h g f= . When h or f are assumed known, the observation model in Eq. (2) is 

linear. Thus, for Gaussians priors on h , f  and Gaussian noise w , the conditionals of h and 

f given the observations are Gaussians / /( | , ) ( , )f g f gp f h g N m C= , 

/ /( | , ) ( , )h g h gp h f g N m C= with known means and covariances which are given by (see, [3] and 

[4]) 
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( ) ( )
( )

1

/

1

/

(6)
t t

f g f f f n f

t t
f g f f f n f

m H H H g H

C H H H H

µ µ
−

−

= + Σ ⋅ ⋅ ⋅Σ ⋅ + Σ ⋅ − ⋅

= Σ − Σ ⋅ ⋅ ⋅Σ ⋅ + Σ ⋅ ⋅Σ
 

( ) ( )

( )

1

/

1

/

(7)
t t

h g h h h n h

t t
h g h h h n h

m F F F g F

C F F F F

µ µ
−

−

= + Σ ⋅ ⋅ ⋅Σ ⋅ + Σ ⋅ − ⋅

= Σ − Σ ⋅ ⋅ ⋅Σ ⋅ + Σ ⋅ ⋅Σ
 

Therefore we set ( 1)
/q

t
f gf

m m+ = , ( 1)
/q

t
f gf

C C+ = , ( 1)
/q

t
h gh

m m+ =  and ( 1)
/q

t
h gh

C C+ = . 

Since in the above equations we don’t know the values of h  and f , we use their current 

estimates ( )
q
t

h
m  and ( )

q
t

f
m . It must also be noted that all computations take place in the DFT 

domain. A disadvantage of this approach is that the update equations of the parameters qθ  do not 

theoretically guarantee the increase of the variational bound ( , )q θF . Nevertheless, the numerical 

experiments have shown that this is not a problem in practice, since in all experiments the update 

equations resulted in an increase of ( , )q θF , see for example Figure 5 (b). 

 

In the M-step, the parameters qθ  are considered fixed and Eq. (5) is maximized with respect to 

the parameters θ  leading to the following update equations: 

( 1) ( 1)
q

t t

f f
µ µ+ += , 

( 1) ( 1)
q

t t

h h
µ µ+ += , 

( 1) ( 1)
q

t t

f f
C+ +Σ =  and 

( 1) ( 1)
q

t t

h h
C

+ +
Σ = (8) 

for both approaches VAR1 and VAR2. The covariance of the noise is updated for the VAR1 and 

VAR2 approaches according to  

( ) { }( )
( ) ( ) ( ) ( )

21 ( 1) ( 1)

2 2( 1) ( 1) ( 1) ( 1)

1( ) ( ) 2 Re ( ) ( ) ( )

1 1                 

q q

q q q q

t t t
w f h

t t t t
f f h h

k G k M k M k G k
N

N S k M k S k M k
N N

+ + + ∗

+ + + +

Λ = −

  + + +  
  

 (9) 

for 0,1 1k N= −… , where ( )1 ( )t
w k+Λ , ( )( 1)

q
t

f
S k+ , ( )( 1)

q
t

h
S k+  ( 1) ( )q

t
f

M k+  ( )( 1)
q
t

h
M k+  and ( )G k  

are defined as in Eq. (5).  The detailed derivations of the formulas for the parameter updates of 

our models are given in Appendix-B. 

 

In the third approach (called VAR3) the optimization of the function ( , )q θF  at each iteration is 

done in two stages assuming f  and h  constant in an alternating fashion. At the first stage of 

each iteration, f  is assumed a random variable and the parameters associated with f  are 
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updated while h  is kept constant. In the second stage the reverse happens. More specifically, at 

the E-step of the first stage, since h  is assumed deterministic, we have that ( ) ( )q s q f=  and 

from Eq. (1) the new variational bound can be written 

( )( ( ), ) (log ( , )) ( ( ))f q fq f E p g f H q fθ = +F .         (10) 

where , ,
T

f f wθ µ = Σ Σ  . ( , )f q θF  can be easily obtained from ( , )q θF  in Eq. (5) by replacing 

( )qh
M k  with ( )H k , setting ( ) 0qh

S k = , and dropping the all the terms that contain ( )h kΛ .  From 

Eq. (1) it is clear that in this case setting ( ) ( ) ( | ; )q s q f p f g h= =  (given by Eq. (6)) leads to 

maximization of ( , )f q θF  with respect to ( )q f . In the M-step of the first stage, in order to 

maximize ( , )f q θF  with respect to θ  it suffices to maximize ( ) ( )( )/ ; log ,p f g hE p g f  since the 

entropy term is not a function of θ . Thus, the first stage reduces to the “classical” EM for the 

linear model g Hf w= + , also known as “iterative Wiener filter”; see for example [3]. In the 

second stage of the VAR3 method, the role of f  and h  is interchanged and the computations 

are similar. In other words, the variational bound ( , )h q θF  (where [ ], , T
h h wθ µ= Σ Σ ) is obtained 

from ( , )q θF  in Eq. (5) by replacing ( )qf
M k  with ( )F k , ( ) 0qf

S k = , and dropping the all the 

terms that contain ( )f kΛ . The parameters of ( )| ;p h g f  in this case are updated by Eq. (7).  

 

For the VAR3 approach the M-step updates specified in Eq. (8) still hold for both stages. 

However, the update of ( )1 ( )t
w k+Λ  in the stage where h  is considered deterministic and known is 

obtained from Eq. (9) by following the same rules as the ones used to obtain ( , )f q θF  

from ( , )q θF . This yields the update 

( ) { }( )
( ) ( )

21 ( 1)

22 ( 1) ( 1)

1( ) ( ) 2 Re ( ) ( ) ( )

1( )

                 

q

q q

t t
w f

t t
f f

k G k M k H k G k
N

H k S k M k
N

+ + ∗

+ +

Λ = −

 + + 
 

(11) 

Similarly the update ( )w kΛ  in the stage where f  is considered deterministic and known is 
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( ) { }( )
( ) ( )

21 ( 1)

22 ( 1) ( 1)

1( ) ( ) 2 Re ( ) ( ) ( )

1( )

                 

q

q q

t t
w h

t t
h h

k G k F k M k G k
N

F k S k M k
N

+ + ∗

+ +

Λ = −

 + + 
 

(12). 

It is worth noting that the VAR3 approach, since it uses linear models, can be also derived 

without the variational principle by applying the “classical” EM (iterative Wiener filter) twice, 

once for f  using as data generation model g Hf w= +  with H  known, and once for h  using 

as data generation model g Fh w= + with F  known. From a Bayesian inference point of view 

clearly VAR3 is suboptimal since it alternates between the assumptions that f  is random and h  

deterministic and vice-versa.  

 

4.   NUMERICAL EXPERIMENTS 

 

In our experiments we used a simultaneously autoregressive (SAR) model [18] for the image, in 

other words we assumed ( )
1 2

2
1( ) exp
2

N

p f Qfα
−  ∝ − 

 
 where Q  the circulant matrix that 

represents the convolution with the Laplacian operator. For h  we assume 2( ) ( , )hp h N m Iβ= , 

and for the noise ( )2( ) 0,p n N Iσ= . Therefore the parameters to be estimated are , ,hmα β  

and 2σ . 

 

The following five approaches have been implemented and compared: i) the variational method 

VAR1 ii) the variational method VAR2 (with ( ) ( | , )q f p f h g=  and ( ) ( | , )q h p h f g= ), iii) 

the variational approach VAR3 in which h  and f  are estimated in an alternating fashion. Since 

the VAR3 approach, in contrast with the VAR1 and VAR2 methods does not use a “full 

Bayesian” model, it serves as the comparison benchmark for the value of such model. iv) The 

Bayesian approach for partially known blurs (PKN) as described in [9] and v) the iterative 

Wiener filter (ITW) as described in [3] where only the parameters α and 2σ are estimated. The 

ITW since it does not attempt to estimate the PSF it is expected to give always inferior results. 

However, it serves as a baseline that demonstrates the difficulty of each BID case we show in our 

experiments.  
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As a metric of performance for both the estimated image and the PSF the improvement in the 

signal-to-noise ratio (ISNR) was used. This metric is defined for the image 

as
2

2
log10

ˆf
f g

ISNR
f f

−
=

−
, where f̂  the restored image and for the PSF as 

2

2
log10

ˆ
in

h
h h

ISNR
h h

−
=

−
 where  inh  and ĥ are the initial guess and the estimate of the PSF, 

respectively. Two series of experiments were performed: first with PSFs that were partially 

known, in other words corrupted with random error and second with PSFs that were completely 

unknown. 

 

A. Partially known case 

 

Since in many practical cases the PSF is not completely unknown, in this series of experiments 

we consider that the PSF is partially known [8-10], i.e. it is the sum of a deterministic component 

and a random component: 0h h h= +∆ . The Bayesian model that we use in this paper includes the 

partially known PSF case as a special case. Thus, in this experiment we compared the proposed 

variational approaches with previous Bayesian formulations designed for this problem. The 

deterministic component 0h  was selected to have a Gaussian shape with support 31x31 pixels 

given by the formula 
2 2

2 20 ( , ) exp
X Y

k m
h k m

σ σ
= +

 
 
 

 with , 15 15k m = − …  that is also normalized to 

one such that ( )
15 15

15 15
0 , 1

k m

h k m
=− =−

=∑ ∑ . The width and the shape of the Gaussian are defined by the 

variances which were set 2 2 20X Yσ σ= = . For the random component h∆  we used white Gaussian 

noise with 2( ) (0, )p h N Iβ∆ = .  In these experiments, since 0hm h=  is known, the parameters to 

be estimated are ,α β  and 2σ . 

 

The following three cases were examined where in each case a degraded image was created by 

considering the following values for the noise and the PSF: i) 210σ −= , 410β −= , ii) 310σ −= , 

410β −= , iii) 410σ −= , 410β −= . In all experiments and for all tested methods the initial values 
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of the parameters were � l l2 7 2 5500, 10 , 10α β σ− −= = = . The obtained ISNRf values of the restored 

images are summarized in Table 1. 

Table 1. ISNRf values for the partially known experiments. 

 210σ −= , 410β −= 310σ −= , 410β −= 410σ −= , 410β −=  

VAR1 2.6dB 3.9dB 4.8dB 

VAR2 2.6dB 3.9dB 4.9dB 

VAR3 2.5dB 2.9dB 3.0dB 

PKN 2.1dB 3.0dB No convergence 

ITW 2.5dB 2.8dB 1.64dB 
 
 

 

Table 1 clearly indicates the superior restoration performance of the proposed variational methods 

(VAR1, and VAR2) as compared with both the partially known (PKN) method and the VAR3 

approach. As expected, the improvement becomes more significant when standard deviation of 

the PSF noise β  becomes comparable to the standard deviation of the additive noiseσ . Also as 

the noise in the PSF becomes larger the benefits of compensating for the PSF increase as 

compared to using the ITW.  It must be noted that, as also reported in [9], the PKN method is 

very sensitive to initialization of β  and σ  and it did not converge in the third experiment. It is 

also interesting to mention that the first two variational schemes provide similar reconstruction 

results in all tested cases. In Figure 2 we provide the images for the case 310σ −= , 410β −= . 

B. Unknown Case 

In this series of experiments we assumed that the PSF is unknown, however an initial estimate is 

available. In this experiment an additional image was used to test the proposed algorithm. The 

initial estimate is the PSF that was used for restoration with the iterative Wiener (ITW), and as 

initialization of the PSF mean for the three variational (VAR1, VAR2, VAR3) methods. More 

specifically, the degraded image was generated by blurring with a Gaussian shaped PSF trueh  as 

before and additive Gaussian noise with variance 2 610gσ −= . The initial PSF estimate inith  was 

also assumed Gaussian shaped but with different variance than those used to generate the images. 

Furthermore, the support of the true PSF is unknown. For this experiment the unknown 

parameters to be estimated are , ,hmα β  and 2σ . The PKN method was not tested for this set of 

experiments since it is expected to yield suboptimal results because it is based on a different PSF 



 14

model. Two cases were examined and the results are presented in Table 2 along with the obtained 

ISNR values after 500 iterations of the algorithm. The PSF initializations 1
inith  and 2

inith for these 

two experiments were chosen such that 1 2
true init true inith h h h− = − , where trueh  the true PSF 

which we are trying to infer. 

 

Table 2. Final ISNRs of estimated images and PSF with the “Trevor” image. 

 case 1 

2 2

Generating PSF

20, 20X Yσ σ= = 2 2

Initialization

12, 12X Yσ σ= =
 

case 2  

2 2

Generating PSF

20, 20X Yσ σ= = 2 2

Initialization

40, 40X Yσ σ= =
 

 
fISNR  hISNR  fISNR  hISNR  

VAR1 3.18dB 7.45dB 1.63dB 2.92dB 

VAR2 1.8dB -6.54dB 1.59dB 2.36dB 

VAR3 2.24dB -0.59dB 1.53dB 2.52dB 

ITW 2.25dB NA -15.7dB NA 

 

Table 3. Final ISNRs of estimated images and PSF for the experiments with the ‘Leena’ image. 

 Case (1) 

2 2

Generating PSF

20, 20X Yσ σ= = 2 2

Initialization

12, 12X Yσ σ= =
 

Case (2) 

2 2

Generating PSF

20, 20X Yσ σ= = 2 2

Initialization

40, 40X Yσ σ= =
 

 
fISNR  hISNR  fISNR  hISNR  

VAR1 3.94dB 7.23dB 3.37dB 4.81dB 

VAR2 2.37dB -4.87dB 3.14dB 2.87dB 

VAR3 2.68dB -1.28dB 2.43dB 2.69dB 

ITW 2.73dB NA -18.01dB NA 

 

In Figures 3 and 4 we provide the images for cases 1 and 2 of Table 2. In Figures 5 (a-c) we show 

the values of the function ( , )q θF  and the values of fISNR and hISNR  for the VAR1 approach 

as a function of the iteration number. In Figures 5 (d-f) we show a cross section in the middle of 

the 2-D estimated, initial and true PSFs for the VAR1, VAR2 and VAR3 approaches. Everything 

in Figure 4 refers to case 1 of Table 2. In Figures 6 (a-c) we show the value of the function 

( , )q θF  as a function of the iteration number for the VAR1, VAR2 and VAR3 approaches, 
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respectively, for case 2 of Table 2. In Figures 6 (d-f) we show a cross section in the middle of the 

2-D estimated, initial and true PSFs for the VAR1, VAR2 and VAR3 approaches, respectively for 

the case 2 of Table 2.  In Figure 7 we show the images which resulted from the experiments 

tabulated in Table 3 case 1, where the ‘Leena’ image has been used. 

 

From this set of numerical experiments it is clear that the VAR1 approach is superior to both the 

VAR2 and VAR3 approaches in terms of both fISNR and hISNR . This is expected since both 

VAR2 and VAR3 are suboptimal in a certain sense. VAR2 since in the E-step it does not 

explicitly optimize ( , )q θF  with respect to ( )q s  and VAR3 since it does not use the “full 

Bayesian” as previously explained. Nevertheless, in all our experiments all methods increased 

monotonically the variational bound ( ),q θF . This is somewhat surprising since the VAR2 

method does not optimize ( ),q θF  in the E-step and VAR3 method optimizes ( ),f q θF  and 

( ),h q θF  in an alternating fashion.  

 

5.   CONCLUSIONS AND FUTURE WORK 

 

In this paper the blind image deconvolution (BID) problem was adressed using a Bayesian model 

with priors for both the image and the point spread function. Such a model was deemed necessary 

to reduce the degrees of freedom between the estimated signals and the observed data.  However, 

for such a model, even with the simple Gaussians priors that used in this paper, it is impossible to 

write explicitly the probabilistic law that relates the convolving functions given the observations 

required for Bayesian inference. To bypass this difficulty a variational approach was used and we 

derived three algorithms which solved the proposed Bayesian model. We demonstrated with 

numerical experiments that the proposed variational BID algorithms provide superior 

performance in all tested scenarios compared with previous methods. The main shortcoming of 

the variational methodology is the fact that there is no analytical way to evaluate the tightness of 

the variational bound. Recently methods based on Monte Carlo sampling and integration have 

been proposed to address this issue [23]. However, the main drawback of such methods is on the 

one hand computational complexity and on the other hand convergence assessment of the Markov 

Chain. Thus, clearly this is an area where more research is required in order to implement 

efficient strategies to evaluate the tightness of this bound. Furthermore, further research on 

methods to optimize this bound is also necessary. In spite of this, the proposed methodology is 
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quite general and it can be used with other Bayesian models for this and other imaging problems. 

We plan in the very near future to apply the variational methodology to the BID problem with 

more sophisticated prior models that capture salient properties of the image and the PSF such as 

DC gain, non stationarity, positivity, and spatial support.  
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APPENDIX-A: Computation of the variational bound ( , )q θF  

 

From Eq. (1) we have that  

( )( , ) log ( , ) ( )qq E p x s H qθ = +F    (A.1) 

where 

( ) ( ) ( ) ( , ) ( , )q q q qf f h h
q s q f q h N m C N m C= = , ( , ) ( , , ) ( | , ) ( ) ( )p x s p g f h p g f h p f p h= = ⋅ ⋅  

(with ( | , ) ( , )wp g h f N h f= ∗ Σ ) and ( ) (log ( ))qH q E q s=  the entropy of ( )q s . 

The implementation of the variational EM requires the computation of the Gaussian integrals 

appearing in Eq. (A.1).  The integrand of the first part of Eq. (A.1) is given by 

log ( , , ) log ( | , ) log ( ) log ( )p g f h p g f h p f p h= + + =

( ) ( ) ( ) ( )

( ) ( )

1 1
1

1 2

1

3

1 log log
2

                                                                           + log

tt
w w f f f f

b b

t
h h h h

b

K g h f g h f f f

h h

µ µ

µ µ

− −

−

− Σ + − ∗ Σ − ∗ + Σ + − Σ −


Σ + − Σ − 


�����	����
 �����	����


����	���


 (A.2) 

where 1K  is a constant.  The terms that are not constant in this integration with respect to the 

hidden variables are called ( )q iE b  with 1,2,3i = . These terms can be computed as 

( ) ( ) ( ) ( ) ( )
1 2 3

1 1 1 1
1

t tt t
q q w w w w

I I I

E b E g g h f g g h f h f h f− − − −
 
 = Σ − ∗ Σ − Σ ∗ + ∗ Σ ∗
 
 
�	
 ������	�����
 ����	���
  (A.3) 

These are the terms that must be integrated with respect to ( )q h and ( )q f . The last one using the 

interchangeability of the convolution and its matrix vector representation is given by 

( ) ( ) ( )1
3 ( ) ( )t

q wE I h f h f q h q f df dh−= ∗ Σ ∗ ⋅ ⋅ ⋅ ⋅∫∫ = 

( )1 ( ) ( )t t
wf H H f q f df q h dh−⋅ ⋅Σ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =∫ ∫  

( ( ) )1 ( ) ( )t t
wtrace H H f f q f df q h dh−⋅Σ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =∫ ∫  (A.4) 

( )( )1 ( )q q q
t t

w f f f
trace H H C m m q h dh−⋅Σ ⋅ ⋅ + ⋅ ⋅∫  

To compute this integral we resort to the fact that these matrices are circulant and have common 

eigenvectors given by the discrete Fourier transform (DFT). Furthermore, for a circulant matrix 
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C  it holds that 1WCW − = Λ , where Λ the diagonal matrix containing the eigenvalues and 

W the DFT matrix. This decomposition can be also written as 
1 WCW
N

∗ = Λ , where 

W ∗ denotes the conjugate since 1 1W W
N

− ∗= , see for example [3]. Using these properties of 

circulant matrices we can write  

( ) ( )
( ) ( )

2
1 2

3
0

1 ( ) ( )q q

N

q f f
k w

H k
E I S k M k q h dh

k N

−

=

   = + ⋅ ⋅ Λ   
∑∫  

( ) ( ) ( ) ( )

( )

2 2

1

0

1 1
q q q qN f f h h

k w

S k M k S k M k
N N

k

−

=

  + +  
  =

Λ∑ . (A.5) 

In the above equation ( ),qf
S k ( ),qh

S k and ( )w kΛ  are the eigenvalues of the covariance matrices 

qf
C , qh

C and wΣ . The ( )qf
M k and ( )qh

M k  are the DFTs of the vectors qf
m  and qh

m , 

respectively.  The remaining terms ( )1 2qE I I+  of (A.3) can be computed similarly: 

 

 

 

 

As a result, for the term ( )1qE b  we can write 

( )
( )

( )

( ) ( ) ( ) ( )

( )

2
1

1
0

2 2

1 ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

                ( .7)

q q q qf h

q q q q

N f h

q
k w

f f h h

w

G k M k M k G k M k M k G k
NE b

k

N S k M k S k M k
N N A

k

∗ ∗ ∗
−

=



 + +=  Λ



  + +    + Λ 


∑

 

The other terms ( )2qE b  and ( )3qE b  are similarly computed as 

( )
2 * *1

2 1
0

( ) ( ) ( ) ( ) ( ) ( ) ( )1 ( .6)
( )

q q q qN
f h f h

q
k w

G k M k M k G k M k M k G k
E I I A

N k

∗−

=

 + + + =  Λ  
∑
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( )
( )2 2

1

2
0

1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
( .8)

( )

q q q qf f fN f f f f

q
k f

S k M k M k M k M k M k M k
N NE b A

k

∗ ∗
−

=

 + + + + 
 =

Λ∑
 

and 

( )
( )2 2*

1

3
0

1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
( .9)

( )

q q q qh h hN h h h h

q
k h

S k M k M k M k M k M k M k
N NE b A

k

∗
−

=

 + + + + 
 =

Λ∑  

The computation of ( )H q  is easy because of the Gaussian choice for ( )q f  and ( )q h . In 

essence we have to compute the sum of the entropies ( )q iE J  with 1,2i =  of two Gaussian pdfs 

which is given by  
1 2

( ) log ( ) log ( )q

J J

H q E q f q h
  = − + = 
  
��	�
 ��	�
  

( ) ( ) ( )1 2
1 log log     ( .10)
2 q qq q f h

E J E J C N C C A+ = − + + +  

 

Replacing (A.7-A.10) into (A.2) results in equation (5) for ( ),q θF . 
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APPENDIX-B: Maximization of ( ),q θF  

 

We wish to maximize ( ),q θF  with respect to parameters qθ  and θ  where qθ are the parameters 

that define ( )q ⋅ . Since we are not bounded by the EM framework that contains E and M steps, 

we can do this optimization in any way we wish. However, in analogy to the EM framework we 

have adopted the following two steps that we call E and M steps:  

E-step (update of qθ ): 

( ){ }1 arg max ,
q

t t
q qF

θ
θ θ θ+ =  

M-step (update ofθ ): 

( ){ }1 1arg max ,t t
qF

θ
θ θ θ+ +=  

In the M-step, in order to find the parameters θ  that maximize F , we need to find the 

derivatives 
( ),F q θ
θ

∂
∂

 and set them to zero.  From Eq. (5) we have 

( )
( )

1 2
1 22

, 1 ( ) ( )0 0 ( ) ( ) ( )
( ) ( ) ( )

w
w w w

F q A k A k k A k A k
k k k
θ∂ +

= ⇒ − = ⇒ Λ = +
∂Λ Λ Λ

 for 0,1 1.k N= −…  

Similarly, we get ( ) ( )f k B kΛ =  and ( ) ( )h k C kΛ =  for 0,1 1.k N= −…  

( ),
0 ( ) ( )

( ) qf f
f

F q
M k M k

M k
θ∂

= ⇒ =
∂

 and 
( ),

0 ( ) ( )
( ) qh h

h

F q
M l M l

M l
θ∂

= ⇒ =
∂

 for 

0,1 1.k N= −…  

Thus we can compute the unknown parameters ( )1tθ +  as 
( )1 ( 1)( ) ( )qf

t t
f

M k M k+ +=     (B.1) 

( )1 ( 1)( ) ( )qh

t t
h

M k M k+ +=    (B.2) 

( )

( ){ }( )

21 ( 1) ( 1)

2( 1) ( 1) ( 1)

( 1)

1( ) ( ) ( )

1               ( ) 2Re ( ) ( )

             =   ( )

q q

qf

q

t t t
f f f

t t t
f f

t
f

k S k M k
N

M k M k M k
N

S k

+ + +

∗+ + +

+

 Λ = + + 
 

−   (B.3) 

For similar reasons  
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( )1 ( 1)( ) ( )qh

t t
h

k S k+ +Λ =     (B.4) 

( ) { }( )
( ) ( ) ( ) ( )

21 ( 1) ( 1)

2 2( 1) ( 1) ( 1) ( 1)

1( ) ( ) 2Re ( ) ( ) ( )

1 1                 

q q

q q q q

t t t
w f h

t t t t
f f h h

k G k M k M k G k
N

S k M k S k M k
N N

+ + + ∗

+ + + +

Λ = −

  + + +  
  

 (B.5) 

for 0,1 1k N= −… . 

 

In our experiments we have used an SAR prior [12] for the image model, thus 

( )
1 2

2
1( ) exp
2

N

p f Qfα
−  ∝ − 

 
, ( )( ) ,hp h N m Iβ=  and ( )2( ) 0,p n N Iσ=  where Q  the 

circulant matrix that represents the convolution with the Laplacian operator. Therefore, the 

unknown parameter vector θ  to be estimated contains the parameters ,  α β  and 2σ .  Because of 

the circulant properties it holds that: ( )
( ) 2
1

f k
Q kα

Λ = , ( )h k βΛ =  and ( ) 2
w k σΛ = . Based 

on these assumptions, the general Equations (B.1-B.5) for the updates at the M-step take the 

specific form: 

M-step 

( ) ( )
11 2 21 ( 1) ( 1)

0

1 1( ) ( )
1 q q

N
t t t

f f
k

S k M k Q k
N N

α
−−

+ + +

=

  = +  −   
∑  (B.6) 

( )
1 21 ( 1) ( 1)

0

1 1( ) ( )q q

N
t t t

f f
k

S k M k
N N

β
−

+ + +

=

 = + 
 

∑  (B.7) 

( )( )
{ }( )

( ) ( ) ( ) ( )

1
2 ( 1) ( 1)

1 02
1 2 2( 1) ( 1) ( 1) ( 1)

0

( ) 2 Re ( ) ( ) ( )
1 ( .8)

1 1                 

q q

q q q q

N
t t

f ht k

N
t t t t

f f h h
k

G k M k M k G k
B

N
N S k M k S k M k

N N

σ

−
+ + ∗

+ =

−
+ + + +

=

 − 
 =
   + + +      

∑

∑
 

For the VAR3 approach the updates for α and β  remain the same. However, to obtain the 

updates for the noise variance we apply the same rules that were previously used to obtain the 

variational bounds ( , )f q θF and ( , )h q θF  from the bound ( , )q θF in Eq. (5). 
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For the VAR1 approach, the update equations for the parameters qθ  of ( )q s  (which are complex 

in the DFT domain) are easily obtained after by equating the corresponding gradient of ( ),q θF  

to zero. This yields the following update equations for 0, , 1k N= −… : 

 

E-step (VAR1 approach): 
( ) ( )

( 1)
2 2 ( ) ( ) 2

Re( ( )) Re( ( )) Im( ( )) Im( ( ))
Re( ( ))

| ( ) | ( ) | ( ) |
q q

q

q q

t t
t h h

t tf
h h

M k G k M k G k
M k

Q k NS k M kασ
+ +

=
+ +

 (B.9) 

 
( ) ( )

( 1)
2 2 ( ) ( ) 2

Im( ( )) Re( ( )) Re( ( )) Im( ( ))
Im( ( ))

| ( ) | ( ) | ( ) |
q q

q

q q

t t
t h h

t tf
h h

M k G k M k G k
M k

Q k NS k M kασ
+ − +

=
+ +

 (B.10) 

 
2

( 1)
2 2 ( ) ( ) 2( )

| ( ) | ( ) | ( ) |q

q q

t
t tf

h h

S k
Q k NS k M k

σ
ασ

+ =
+ +

 (B.11) 

 

( 1) ( 1) 2

( 1)
2 ( 1) ( 1) 2

Re( ( )) Re( ( )) Im( ( )) Im( ( )) Re( ( ))
Re( ( )) (B.12)

( ) | ( ) |
q q

q

q q

t t
hf ft

t th
f f

M k G k M k G k M k
M k

NS k M k

β σ

σ β β

+ +

+
+ +

 + + =
+ +

 

( 1) ( 1) 2

( 1)
2 ( 1) ( 1) 2

Re( ( )) Im( ( )) Im( ( )) Re( ( )) Im( ( ))
Im( ( )) (B.13)

( ) | ( ) |
q q

q

q q

t t
hf ft

t th
f f

M k G k M k G k M k
M k

NS k M k

β σ

σ β β

+ +

+
+ +

 − + =
+ +

 
2

( 1)
2 ( 1) ( 1) 2( )

( ) | ( ) |q

q q

t
t th

f f

S k
NS k M k

βσ
σ β β

+
+ +=

+ +
(B.14) 
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Figure 1: The graphical model describing the data generation process for the blind deconvolution 

problem considered in this paper.  
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(a) (b) 

  

(c) (d) 

 

Figure 2: Images from Table 1 case with 310σ −= , 410β −= . (a) Degraded image (b) 

ITW, 2.8ISNR dB= . (c) PKN, 3.0ISNR dB= . (d) VAR2, 3.9ISNR dB= . 
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                                        (a)                                                 (b) 

 
                                         (c)                                                    (d) 

 

                                                                                         (e) 
Figure 3: Images from Table 2 case 1 (a) Degraded (b) ITW, 2.25fISNR dB= . (c) VAR1, 3.18fISNR dB=  

(d) VAR2, 1.8fISNR dB=  (e) VAR3, 2.24fISNR dB= .  
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                                          (a)                          (b) 

 
                                          (c)                 (d) 

 
Figure 4: Restored Images from Table 2 case 2 (a) ITW, 15.7fISNR dB= − . (b) VAR1 1.63fISNR dB=  (c) 

VAR2, 1.59fISNR dB= . (d) VAR3, 1.56fISNR dB= .  
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                                         (a)                                                                               (b) 

 

 
                                         (c)                                                                                (d)  

 
                                           (e)                                                                                  (f) 
 
Figure 5: Table 2 case (1) (a) ( ),q θF vs. iteration VAR1. (b) fISNR  vs. iteration VAR1. (c) hISNR  vs. 
iteration VAR1. (d) 1-D cross-section of the 2-D PSFs  VAR1. (e) 1-D cross-section of the 2-D PSFs  VAR2. 
(f) 1-D cross-section of the 2-D PSFs  VAR3. 
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                                         (a)                                                                                 (b) 

 
                                          (c)                                                                                 (d)  

 
(e) (f) 

Figure 6: Table 2 case 2. (a) ( ),q θF vs. iteration VAR1. (b) ( ),q θF  vs. iteration VAR2. (c) ( ),q θF  vs. 
iteration for VAR3. (d) 1-D cross-section 2-D PSFs VAR1. (e) 1-D cross-section 2-D PSFs VAR2. (f) 1-D 
cross-section 2-D PSFs VAR3. 
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                                        (a)                                                 (b) 
 

 
                                         (c)                                                    (d) 

 
(e) 

Figure 7: Images from Table 3 case 1 (a) Degraded (b) ITW, 2.73fISNR dB= . (c) VAR1, 3.94fISNR dB=  

(d) VAR2, 2.37fISNR dB=  (e) VAR3, 2.68fISNR dB= .  
 


