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ABSTRACT 

 
In this paper we propose a new family of watermark detectors for additive 

watermarks in digital images. These detectors are based on a recently proposed two-

level, hierarchical image model, which was found to be beneficial for image recovery 

problems. The top level of this model is defined to exploit the spatially-varying local 

statistics of the image, while the bottom level is used to characterize the image 

variations along two principal directions. Based on this model we derive a class of 

detectors for the additive watermark detection problem, including a detector similar 

in spirit to a generalized likelihood ratio test (GLRT), Bayesian, and Rao test 

detectors. We also propose methods to estimate the necessary parameters for these 

detectors. Our numerical experiments demonstrate that these new detectors can lead 

to superior performance to several state-of-the-art detectors. 

                                                 
∗ Corresponding author 
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1. INTRODUCTION 

Additive watermark detection can be formulated as a hypothesis testing problem, where 

one needs to determine the presence or absence of a known watermark in an image. Within 

such a formulation, the watermark is treated as the known signal and the image is treated as 

the corrupting noise [1] and [2]. To derive a test statistic for this problem, such as the 

likelihood ratio test detector, a statistical model for the image has to be defined.  

A well known and widely used detector for watermarking is the correlation detector.  It is 

straightforward to show that this detector can be derived using the likelihood ratio test 

criterion under the assumption that that image pixels are independent, identically distributed 

(IID) Gaussian random variables [1]. While such an image model greatly simplifies the 

problem, it is often not accurate in characterizing the image properties. Alternatively, 

detectors are proposed based on the use of a high-pass filter to “pre-whiten” the image before 

the correlation detector is applied [1]. In such detectors the output of the high-pass filter 

rather than the image is modeled by IID Gaussian random variables. While an improvement 

over its predecessor, this model is found to be sometimes inadequate for characterizing the 

residuals of the image (i.e., the output of the high-pass filter). For example, in the vicinity of 

edges in the image large residual values will be produced by the high-pass filter, which will 

lead to heavy tails in the observed residual statistics [9].  

In recent years there have been considerable efforts in the research community in the 

development of image models for improved watermark detection. In [3] Hernandez et al 

proposed an optimal detector for watermarking based on the assumption of a generalized 

Gaussian density (GGD) function for the discrete cosine transform (DCT) coefficients of the 

image.  In [4] a Weibull distribution was used for the discrete Fourier transform (DFT) 

coefficients of the image. In [5] and [6] optimal detectors were derived for both additive and 

multiplicative watermarking by assuming GGD distributions for the DCT, DFT, and discrete 

wavelet transform (DWT) coefficients of the image. In [7] Nikolaidis and Pitas proposed 
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asymptotically optimal detectors by using GGD models for the DCT and DWT coefficients. 

In [8] Briassouli et al used α -stable distributions for the DCT coefficients of the image.  

In this paper we propose the use of a hierarchical, locally adaptive image model for 

watermark detection. The top level of this model is defined to exploit the spatially-varying 

local statistics of the image. This model can be viewed as a generalization of the concept of 

line process used in the context of compound Markov random fields [23] and [24]. The 

difference is that a continuous model, rather than binary edges, is used for characterizing the 

local discontinuities in the image. Using this image model we will derive several detectors for 

additive watermarking, including a “pseudo generalized likelihood ratio test” (PGLRT), 

Bayesian, and the Rao test detectors. The term “pseudo” is used since we use maximum a 

posteriori and not maximum likelihood (ML) estimates for the unknown parameters as the 

generalized likelihood ratio test requires [28]. 

We note that this hierarchical image model used in this study was recently developed for 

image restoration in [22]. It is interesting to note that the development of image models has 

also been very important for the classical image denoising and restoration problems, in which 

a statistical image model is essential [9] for various estimation methodologies, e.g., maximum 

a posteriori estimation. For example, the simultaneous autoregressive (SAR) image prior has 

been used extensively in image restoration, e.g., [10]-[14]; “edge preserving” image priors are 

based either on modeling the residuals of the image or on a decorrelating transform (e.g., 

wavelet), e.g., [15]-[20].  

The rest of this paper is organized as follows. In Section 2 we introduce the hierarchical 

image model and formulate its use for additive watermark detection. In Section 3 the PGLRT 

detector is derived and methods to estimate the necessary parameters of the model are given. 

Bayesian and Rao test based detectors are derived in Section 4. In Section 5 numerical results 

are given to demonstrate the proposed detectors. Conclusions are drawn in Section 6. For 

completeness, in the Appendix we provide the details on the detectors used for comparison in 

our experiments, which were based on wavelet transform and GGD modeling.  
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2. IMAGE MODEL AND ADDITIVE WATERMARKING 

The image model we propose to use in this paper is based on the first order differences of 

the image along the two principal directions. Specifically, consider an image f , whose pixels 

are denoted by ( ),f i j . At pixel location ( ),i j , we define the image directional differences 

(IDD) along the horizontal and vertical directions, respectively, as follows: 

1 2( , ) ( , ) ( , 1),   ( , ) ( , ) ( 1, )i j f i j f i j i j f i j f i jε ε= − + = − + .  (1) 

We assume that these IDDs obey a Gaussian probability density function (pdf), given by  

( )1

( , ) ~ 0, ( , )k ki j N a i jε
−

,    (2) 

where 
1

( , )ka i j
−

 is the variance parameter.  

For notational convenience, in the rest of the paper we will denote the IDDs using a 

single index as [ ](1), (2),..., ( ) T
k k k k Nε ε ε=ε , k=1,2, where N is the total number of image 

pixels. In addition, let 1 2,
TT T⎡ ⎤= ⎣ ⎦ε ε ε� , a vector consisting of IDDs in both directions.  

Assuming independence of the IDDs, we can write the joint pdf  

( ) ( )1/ 2
2

2

1 1

1; ( )exp ( ) ( )
2

N

k k k
k i

p a i a i iε
= =

⎡ ⎤⎛ ⎞∝ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∏∏ε a�� ,                                 (3) 

 where 1 2

TT T⎡ ⎤= ⎣ ⎦a a ,a� , [ ](1), (2),..., ( ) T
k k k ka a a N=a , 1, 2k =  which denotes the 

corresponding variance parameters. In this form index i  denotes a pixel location in 

lexicographic order. 

The pdf in (3) allows the flexibility that the local variance can vary from pixel to pixel. 

This is desirable for modeling the spatially non-stationary properties of the image (e.g., 

edges). Unfortunately, it includes as many variance parameters )(iak as the number of image 

pixels. To avoid the problem of over-fitting, it is necessary to impose additional constraint on 
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the model to limit its degrees of freedom. For this purpose we model )(iak as random 

variables, and define a hyper-prior on them.  

In this work we use a Gamma pdf for the hyper-prior [27], which is of the form  

 { }
2

2( ( ); , ) ( ) exp ( 2) ( ) ,  1,2
l

k k kp a i m l a i m l a i k
−

∝ − − = ,                (4)  

where m and l are the parameters of the Gamma distribution.  Such a choice is motivated by 

the fact that the Gaussian and the Gamma families are conjugate [26] with respect to the 

inverse of the variance of the Gaussian, of which the benefit will become clear later in the 

estimate of the model parameters. This combination has also been used successfully in sparse 

Bayesian models for machine learning tasks [25].  

For the Gamma pdf in (4), we have  

( )[ ] ( )( ) 12 2kE a i l m l −
= − , and ( ) ( )( ) 1222 2kVar a i l m l

−
⎡ ⎤ = −⎣ ⎦ .  

Assuming that )(iak are independent and identically distributed, then we have  

{ }
22

2

1 1

( ; , ) ( ) exp ( 2) ( )
lN

k k
k i

p m l C a i m l a i
−

= =

⎛ ⎞
= ⋅ − −⎜ ⎟

⎝ ⎠
∏∏a� ,   (5) 

where C is a normalization constant. 

To illustrate the properties of the proposed image model, we show an example in 

Figures 4 the estimated values of ( )1
ka i− , 1,2k =  from the “Lena” image in Figure 1 (of 

which the detail of the estimate will be provided in Sect. 5). It can be seen that the parameters 

( )1
ka i−  can effectively capture the spatially-varying local statistics of the image. Notably, the 

edge structures along respective directions in the image have been highlighted by the large 

values of ( )1
ka i− . In this regard, the parameters ( )1

ka i−  can be viewed as a generalization of 

the line process used in the context of compound Markov random fields (CMRF) [23] and 

[24]. More specifically, in the case of CMRFs the square of the difference between two 

adjacent pixel is either used or omitted from the prior depending on the value of the binary 

line process between these pixels. When the line process has value 1 they are omitted when 

the line process has value 0 they are included. For our model all differences are included in 
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the prior. However, they are weighted according to strength of the edge that lies between 

them. In the vicinity of edges this weight is small while in smooth areas it is large. Thus, our 

model does not “quantize” image discontinuities.  

This two level model since in essence models the pdfs of the IDDs as an infinite 

mixture of Gaussians with zero mean and different variances which is very flexible and 

captures very accurately the IDDs statistics. Looking at this model from another point of view 

one can observe that if we marginalize the inverse variances of this two level model the 

resulting pdfs of the IDDs become Student-t [25]. This pdf is very flexible and can have 

heavy tails which is very useful for robust modeling. Furthermore, it can behave, depending 

on the values of its parameters, from a Gaussian to a uniform [31]. Such models provide a 

very elegant mechanism that allows us to describe in detail the local image structure. This is 

very useful in many low level image processing applications such as image recovery [22], 

[32]-[34] and image watermarking as we demonstrate herein.  

In the additive watermark detection problem one has to decide between the following two 

hypotheses 

wfy
fy

γ+=
=

:
:

1

0

H
H

    (6) 

where y  and f  are the observed and the original images, respectively, and w  is the 

watermark signal and γ  is its strength.  

The image directional difference operators, kQ  1,2k =  are defined by k k=Q f ε  using the 

kε  in Eq. (1). Applying the directional difference operators kQ , 1,2k = , to the observed 

image in (6), we obtain  

'
0

'
1

:

:
k k

k k k k k

H

H γ

=

′ ′′= + = +

y ε

y ε w ε w
    (7) 

where '
k k=y Q y , k k=ε Q f , k kγ′′ =w Q w , 1,2k = . 

 Based on Eqs. (3) and (5), the conditional pdfs of the observations for the two 

hypotheses in Eq. (7) can be written as 
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( ) ( )( )

( ) ( ) ( )( )

2 2 21/ 2
0

1 11 1

2 2 21/ 2
1

1 11 1

1( ; , ) ( ) exp
2

1( ; , ) ( ) exp
2

N N

k k k
k ik i

N N

k k k k
k ik i

p H C a i a i y i

p H C a i a i y i w i

= == =

= == =

⎧ ⎫ ⎛ ⎞′ ′= ⋅ −⎨ ⎬ ⎜ ⎟
⎝ ⎠⎩ ⎭

⎧ ⎫ ⎛ ⎞′ ′ ′′= ⋅ − −⎨ ⎬ ⎜ ⎟
⎝ ⎠⎩ ⎭

∑∑∏∏

∑∑∏∏

y a

y a

��

��
   (8) 

where  1 2,
TT T′ ′ ′⎡ ⎤= ⎣ ⎦y y y� . In what follows these pdfs will be used to derive the PGLRT, 

Bayesian, and Rao test detectors.  

 

 

3. PSEUDO GENERALIZED LIKELIHOOD RATIO DETECTOR 

The likelihood ratio test for the hypothesis testing problem in Eq. (7) is given by  

1

0

H

1

0
H

>( ; , )( ; ) log  0
( ; , ) <

p HLRT
p H

⎧ ⎫′
′ = ⎨ ⎬′⎩ ⎭

y ay a
y a
����
��

.    (9) 

Unfortunately, the parameters a�  are not known, and the test in (9) cannot be used directly. In 

such a case the generalized likelihood ratio test (GLRT) is usually employed, where one uses 

estimates of the unknown parameters [28]. The GLRT is given by  

 
1

1

0
0

H

/ 1

/ 0 H

ˆ( ; , ) >( ) log  0ˆ <( ; , )
H

H

p H
GLRT

p H

⎧ ⎫′⎪ ⎪′ = ⎨ ⎬
′⎪ ⎪⎩ ⎭

y a
y

y a

��
�

��
,    (10) 

where 
0/

ˆ
Ha� , 

1/
ˆ

Ha�  are the ML estimates of a�  in Eq. (9) under the two hypotheses. In what 

follows since we do not use the ML estimates in Eq. (10) we term our detectors as “pseudo 

GLRT” (PGLRT). 

With the conditional pdfs in Eq. (8), the test statistic for the detector in Eq. (10) can be 

written as   

( ) ( )0 1 1 1

2
2 2

/ / / /
1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( )
N

k k H k H k H kk k kk k H
k i

T y i a i a i a i w i y i w i a i
= =

′ ′ ′′ ′ ′′= − − −∑∑y� . (11) 

For weak watermarks, it is reasonable to expect that the estimates 
0 1/ /ˆ ˆ( ) , ( )k H k Ha i a i  are 

approximately equal. Thus, the test statistic in Eq. (11) can be simplified as (upon ignoring 

the middle term as it does not depend directly on the data)  
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( )
1

1

0

2

/
1 1

ˆ( ) ( ) ( )
H

N

PGLRT k k k H
k i

H

T y i w i a i T
= =

>′ ′ ′′=
<

∑∑y� ,    (12) 

where T is a threshold that determines the false alarm vs. probability of detection tradeoff of 

the detector [28].  

The simplified test statistic in (12) offers a rather informative insight on the PGLRT 

detector.  It assumes essentially the form of a matched filter, where the observation at each 

pixel is normalized by its local variance.  

The test statistic in (11) and (12) requires the estimates of the parameters ˆ ( )ka i .  

Obviously, the ML estimate here will be problematic because only one data point is available. 

Instead, we use a maximum a posteriori estimate instead, where the hyper-prior ( ; , )p m la�  is 

used to ameliorate this difficulty. By invoking the Bayes’ law, this estimate is obtained as 

( ) ( ){ } ( ) ( ){ }
0 0 0/

( ) ( )
ˆ arg max log | , , , arg max log | , log ; , ,

k k

k H
a i a i

a i p H m l p H p m l′ ′= = +a y y a a� � �� �  

and similarly for ( )
1/

ˆk H
a i . After some algebra, it can be shown that 

( ) ( )
0 12 2/ /

1 ( 2) 1 ( 2)ˆ ˆ,  and 
( ( )) 2 ( 2) ( ( ) ( )) 2 ( 2)k kH H

k k k

i i
l la a

y i m l y i w i m l
+ − + −

= =
′ ′ ′′+ − − + −

. (13) 

It is interesting to examine the effect of the parameter l  in this estimate. As l →∞  the 

estimate becomes ( ) ( ) 1ˆ 2ka i m −= for both 0H  and 1H .  That is, the prior dominates the 

estimate. On the other hand, as 2l → , the prior parameters disappear in (13), and the estimate 

simply degenerates to the ML estimate.  For ( )2,l∈ ∞ , the prior “regularizes” the estimate 

( )ˆka i  where the ML estimate is unstable because of lack of data. 

In our experiments we tested both the PGLRT detector in Eq. (11) and its approximate in 

(12), and found that their performance was almost identical. For this purpose in the rest of this 

paper we will report results with the simplified one in Eq. (12). 

At this point it is worth pointing out that the test statistic of the proposed PGLRT detector 

in Eq. (12) follows a Gaussian pdf under both hypotheses. The test statistic under hypothesis 

1H  has mean value and variance  
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( ) ( )
2

2
1

1 1

; ( )
N

GLRT k k
k i

E T H a i w i
= =

′′= ∑∑ , ( ) ( )
2

2
1

1 1

; ( )
N

PGLRT k k
k i

Var T H a i w i
= =

′′= ∑∑  

respectively. Similarly, the test statistic distribution under hypothesis 0H  has mean value 

0( ; ) 0PGLRTE T H = and variance ( ) ( )
2

2
0

1 1
; ( )

N

PGLRT k k
k i

Var T H a i w i
= =

′′= ∑∑ . Thus, the 

derivation of probability of false alarm and probability of detection is then straight forward 

[28]. 

 

4. BAYESIAN AND RAO DETECTORS 

An alternative strategy to deal with the unknown parameters a�  in the LRT detector in Eq. (9) 

is to “marginalize” them using the hyper-prior [28]. This leads to the Bayesian detector given 

by 

( ) ( )
( ) ( )

1
_ 1

0
0

| , ; ,
( '; , ) log 0

| , ; ,

H
p H p m l d

m l
p H p m l d

H

⎧ ⎫′ >⎪ ⎪Β = ⎨ ⎬
′ <⎪ ⎪⎩ ⎭

∫
∫

y a a a
y

y a a a

� � ��

� � ��
.   (14) 

It is important to note that the integration terms in Eq. (14) can be computed in closed 

form.  This is guaranteed by the choice of the Gamma pdf as hyper-prior which is conjugate 

with the Gaussian [26], because the integrals in Eq. (14) are Gamma integrals of the 

form 1 ( )a x ax e aβ β− − = Γ∫ . Indeed, after some algebra and upon absorbing into the threshold 

T the terms in Eq. (14) that do not depend on the observations, one can show that the test 

statistic for Bayesian detector is given by 

( )
1

22

2
1 1

0

( '( ) ( )) 2 ( 2); , log
( '( )) 2 ( 2)

N
k k

B
k i k

H
y i w i m lT m l T

y i m l
H

= =

>′′⎛ ⎞− + −′ = ⎜ ⎟+ − <⎝ ⎠
∑∑y� .  (15) 

By comparing the detector above with the PGLRT in Eq. (12), we can observe that in the 

Bayesian detector the influence of the variance parameters )(iak  of the image model is now 

exhibited in the form of the parameters of the hyper-prior.  
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Interestingly, recall the Bayesian estimate for the variance parameters earlier in Eq. (13). 

One can rewrite Bayesian detector in Eq. (15) as 

( )
( )
( )

0

1

1
2

/

1 1 /
0

ˆ
; , log

ˆ

N k H
B

k i k H

H
a i

T m l T
a i

H
= =

>
′ =

<∑∑y� .    (16) 

The form above provides an intuitive insight on the Bayesian detector. The test statistic is 

formed by comparing the variance of the IDDs at individual pixels. The presence of a 

watermark signal will increase the value of the variance estimate under 1H , thereby leading to 

a smaller value of the test statistic.  

Thus far in deriving the watermark detectors we have considered the situations that the 

watermark strength is exactly known (i.e., parameter γ  in Eq. (6)). There are also situations it 

might not be known, e.g., in public watermarking. In such a case one could treat γ  the same 

way as other model parameters and use its estimate in the PGLRT detector. However, this 

becomes problematic in applications where the watermark signal is much weaker than the 

cover image. Our experiments indicate that this can greatly compromise the accuracy of the 

ML estimate of γ . In order to address this difficulty, we use the Rao test, which is a locally 

optimal detector (LOD) with performance close to that of a clairvoyant PGLRT (when γ  is 

small) [29]. This detector was first introduced to the image watermarking problem in [7].  

The Rao test for the observations in Eq. (7) is given by  

( )
( ) ( ) ( )( )

( ) ( )( )

( ) ( ) ( )( )
( ) ( )( )

2
2

0 1

1 1 0
222 2

0

0
1 1 1 1 0

; ,
; ,

;    
; ,1

2 ; ,

N
k k

k
k i k k

R
N N

k k
k

k i k i k k

p y i a i H Hw i
p y i a i H

T T
p y i a i H

w i H
N p y i a i H

= =

= = = =

′ ′
′

>′
′ =

<′ ′
′

′

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∑∑

∑∑ ∑∑
y a�� ,       (17) 

where ( ) ( )( )0; ,k kp y i a i H′ ′  is the derivative of the pdf with respect to the observations [29].  

It is noted that in Eq. (17) it is only the watermark shape '
kw  (not the parameter γ ) that is 

necessary for the Rao detector.  

Substituting the pdfs model into Eq. (17), we obtain  
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( )
( ) ( ) ( )

( )( ) ( ) ( )( )
0

0

0

22
1

/
1 1

/ 2 2 22

/
01 1 1 1

ˆ
ˆ;    

1 ˆ
2

N

k k H k
k i

R H N N

k k H k
k i k i

H
w i a i y i

T T
w i a i y i HN

= =

= = = =

′ ′ >
′ =

<′ ′

⎡ ⎤
⎢ ⎥⎣ ⎦
∑∑

∑∑ ∑∑
y a�� ,      (18) 

where 
0/

ˆ
Ha� is the estimated value of a� under hypothesis 0H . 

Interestingly, the Rao detector assumes the form of a normalized correlation detector, 

where the watermark shape is correlated with the normalized observations. One may recall 

that earlier the PGLRT detector in its simplified form in Eq. (12) also assumes the form of a 

correlator. The Rao detector in Eq. (18) is invariant with respect to the strength of the 

watermark. The parameter estimates ( )
0/ˆk Ha i  are also obtained by the MAP methodology as 

for the PGLRT detector in Eq. (13). 

 

5. NUMERICAL EXPERIMENTS 

Numerical experiments are used to test the performance of the detectors based on the 

proposed image model. At first four commonly used test images (of size 512 512× , shown in 

Figure 1) in image processing tasks were used in our experiments to demonstrate our 

detectors. Then, in order to establish statistical significance of our results we used 200 

representative images (10 from each one of the 20 categories) of the Microsoft Image 

Recognition data base [30]. These images were interpolated to size 512 512× . In Figure 2 we 

show a representative sample of 40 of these 200 images used. 

To quantify the power of the watermark in our experiments, the so-called watermark to 

document ratio (WDR) is used, which is defined as 

1020 logWDR dB
γ⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

w
f

.    (22) 

To quantify the detection performance, the receiver operating characteristics (ROC) 

curves are used. In particular, the area under the ROC (AUROC) curve for false alarm 

probability range [0-0.1] is used to quantify the performance of the detector at low false alarm 
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rates; the total area under the ROC curve is also computed to quantify the overall performance 

of the detector. These two metrics are referred to as AUROC1 and AUROC2, respectively, in 

the rest of the paper.  

ROCs curves were obtained using two approaches:  

i) A set of 100 different randomly generated 1-bit spread spectrum watermarks [1] 

were used for each image in Figure 1 at a specified WDR. For each watermark 

the test statistic was evaluated twice, once with the watermarked and once with 

the un-watermarked image. The histograms of the test statistic for the two cases 

are then computed based on which the ROC curve is generated using a moving 

threshold. In other words, for this approach “random watermarks” were used to 

obtain ROCS for fixed images. 

ii) The 200 images were added to the same watermark. Then, the test statistic was 

evaluated for the 200 images with the watermark and the 200 images without the 

watermark. Thus, histograms of the test statistic for the two cases were created 

from which ROC curves were generated. In other words, for this approach 

“random images” were used to obtain ROCs for fixed watermarks.  

For comparison purposes we considered detectors that are based on wavelet transform 

and GGD modeling. These detectors represent the state-of-the-art methods for additive 

watermark detection. To the best of our knowledge, a non-adaptive wavelet model is typically 

used in the existing work in the literature, e.g., [5] and [7], where a single GGD model is 

assumed for all wavelet bands. In our experiments, we considered an “adaptive” wavelet 

GGD model, in which we used a different GGD model for each wavelet band. Our 

experiments demonstrate that an adaptive wavelet GGD model can lead to better detection 

performance than a non-adaptive model. Thus, we report our comparison results based on this 

adaptive wavelet GGD model. For completeness, we provide the detail of these wavelet GGD 

based detectors in the Appendix. Hereafter these detectors are referred to as wavelet GGD 

detectors.  
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For fairness to the wavelet GGD detectors, watermarking was performed in the 

wavelet domain of the images. The watermark was imbedded in the 2nd level of the discrete 

wavelet transform (DWT), as illustrated in Figure 3. The Daubechies-8 2-D separable filters 

were used [35]. In all experiments the watermarked images were first quantized using 8 bits 

per pixel accuracy in the spatial domain before watermark detection.  

For the wavelet GGD detectors the watermark detection was performed directly in the 

wavelet domain using the watermarked coefficients. For our proposed detectors, the wavelet 

domain watermark was first transformed back to the spatial domain before the detection was 

performed.  

For the proposed model the parameters m  and l of the Gamma hyper-prior were 

determined as follows in our experiments. As mentioned earlier, as l →∞  we have from (13) 

( ) 1ˆ
2ka i

m
= , which corresponds to a stationary model. In such a model we can easily find the 

ML estimate of the residual variance as ( ) 21 1ˆSTATa
N

− = ε  with ( )1 2
1
2

= +ε Q Q f , which is 

the “average” of the 2 IDDs. Then, the parameter m  is estimated as 1
ˆ2 STAT

m
a

= . The 

parameter l  was selected empirically in such a way that the histogram of the resulting 

normalized IDDs ( ) ( )( ) ( )
1
2

k k ki a i iε ε′ = , 1,2k = , and 1,2i N= …  would best fit a standard 

Gaussian pdf. The procedure in [20] and [21] was used to fit the histograms. The example 

mentioned earlier in Figure 4 was obtained using this procedure, where the estimated 

parameters ( )
0

1
/

ˆk H
a i−  were shown for the “Lena” image.  

In what follows we present four experiments were we test the proposed detectors. In the 

first three averaging over random watermarks is used while in the last one averaging over 

images is used to test different detectors. 

Experiment I: The simplified PGLRT detector in Eq. (12) was tested. The AUROC1 and 

AUROC2 metrics for this detector are summarized in Tables 1(a)-(d) for various WDR levels 

for the images in Figures 1(a)-(d), respectively. For comparison, the results of the adaptive 
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wavelet domain PGLRT detector (in Eq. (A.2)) are also given. From these results we observe 

that the proposed PGLRT detector outperforms the wavelet GGD detector.  

Experiment II: The Bayesian detector in Eq. (15) was compared with the PGLRT detector. 

The AUROC1 and AUROC2 of the Bayesian detector are summarized in Tables 2(a)-(d) for 

the same set of test images. Compared with the results Tables 1(a)- (d), it can be seen that the 

performance of the Bayesian detector is inferior to that of the PGLRT detector; nevertheless, 

the overall performance of the Bayesian detector is close to that of the wavelet GGD detector. 

Among the four test images, the two methods were about the same in two images (“Barbara” 

and “Lena”), while the Bayesian detector was better in the “Bridge” image and worse in the 

“Boat” image. In Figures 5(a)-(d) we show some ROC curves obtained for the PGLRT, 

Bayesian, and wavelet GGD detectors.  

 Experiment III: The Rao test detector in Eq. (18) was tested. The AUROC1 and 

AUROC2 results are summarized in Tables 3(a)-(d) for the test images in Figure 1. For 

comparison, results are also furnished for the corresponding Rao test detector based on the 

“adaptive” wavelet GGD model in Eq. (A.3). In addition, we show in Figures 6(a)-(d) some 

ROC curves obtained for the two detectors. From these results, we observe that the proposed 

Rao test detector outperforms the wavelet GGD Rao test detector. Furthermore, by comparing 

with the earlier results in Tables 1(a)-(d), we observe that the PGLRT detector outperforms 

the Rao test detector. This is not unexpected because the Rao test does not assume knowledge 

of the watermark power. 

Experiment IV: In this experiment we tested all three proposed detectors for a number of 

WDRs using a set of 200 images and the same watermark as explained above. More, 

specifically, in Tables 4(a)-(c) we summarize AUROC1 and AUROC2 results for different 

WDRs for the GLRT detectors using both GGD wavelet, and the proposed prior, the Bayesian 

detector, and the Rao test using both GGD wavelet, and the proposed prior. In Figure 7 (a)-

(d) we show the ROCs for the proposed detectors and the corresponding wavelet GGD based 

detectors. From the AUROC and the ROCs in these tables and figures the superiority of the 

detectors based on the proposed prior for this experiment is also clear. It is worth noting at 
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this point, for the sake of simplicity, the same value of the Gamma hyper prior parameter -l- 

was used for all test images. Thus, in this experiment the detectors based on the proposed 

prior have a handicap as compared to the previous experiments where these parameter was 

adapted to the statistics of each image as explained above. In spite of this, the proposed 

detectors worked out equally well in this experiment also.  

To test the robustness of the proposed PGLRT detector JPEG compression attacks were 

used. Detection performance of our detector degraded gracefully as the quality factor 

decreased. In Figures 8 (a), (b) we show for two different images (“Lena”, “Barbara”), the 

ROC curves for the PGLRT detector without and with JPEG compression attacks (quality 

95% and 80%).  

In Figures 9 (a), (b) also show the histograms of PGLRT test statistic. The first case is 

when one image and many different watermarks are used, while the second one is when the  

images from the database (200 images) and a common watermark are used, see ROC 

generation approaches (i) and (ii) explained previously.  

Finally, as far as computational complexity concerned, for computing the test statistic 

for 200 images (100 with valid watermarks and 100 with invalid watermarks) it took 

approximately 20, 6, and 35 minutes, respectively, for the proposed PGLRT, Bayesian and 

Rao test detectors. For the wavelet GGD detectors, it took approximately 6.5 minutes and 6.2 

minutes, respectively, for the PGLRT and Rao test. These detectors were implemented in 

Matlab on a Pentium-4 3.2 GHz PC. The above reported run time also includes the time 

needed for estimating the model parameters in each case. 

 

6. CONCLUSIONS AND FUTURE WORK 

In this paper we presented a new class of detectors based on a spatially adaptive image 

prior. This prior has the ability to explicitly model the local image discontinuities (edges) 

based on the variance parameters ( )ka i  of the local IDDs of the image. The derived detectors 

were demonstrated to show notable improvement over their counterparts derived from the 
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state-of-the-art wavelet based image models. Also, the PGLRT and Rao test detectors were 

demonstrated to achieve better performance than the Bayesian detector.  

We note that, in addition to the results presented in the paper, we also tested these 

detectors with several other images, including JPEG compressed watermark images. In all 

these tests similar results were obtained to what were presented in the paper. These results 

were not included here in favor of space. As the results show, the proposed detectors are 

somewhat more computationally expensive than the wavelet GGD detectors, a trade-off with 

better detection performance.  

The performance of the proposed detectors depends on the estimates of the parameters 

( )ka i  and the hyper-prior parameters m  and l . In this work we used a MAP approach to 

estimate ( )ka i  and an empirical method to estimate m  and l . We expect that additional 

gains can be achieved if a Bayesian methodology is used to estimate these parameters. One 

possible direction might be to explore a simultaneous image segmentation and estimation of 

these parameters. Also another important issue that was not addressed in this work is 

determining the detection performance limits of the proposed scheme and how close we can 

get to them.  

We believe that the fields of image recovery and watermark detection although 

seemingly very different share certain commonalities. More specifically, they both use 

statistical models to describe the unknown image.  Thus, accurate and flexible models 

developed for one of these fields can be very beneficial to the other.  In this paper we have 

just demonstrated this point. 

 

APPENDIX: WAVELET GGD BASED DETECTORS 

In wavelet based GGD models, the wavelet coefficients ( )X i  of the image, where i  denotes 

the spatial index of the wavelet coefficients, are modeled as IID GGD random variable with 

pdf given by  

( ( )) exp( ( ) )cp X i A bX i= − ,    (A.1) 
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where c is known as the shape parameter of the distribution, ( )1b n c
σ

=  and
( )2 1/
bcA

c
=

Γ
, 

with (3/ )( )
(1/ )

cn c
c

Γ
=

Γ
and ∫

∞
−−=Γ

0

1)( dueut ut . Here the unknown parameters are{ , }c b . When 

the shape parameter 2kc = , the GGD becomes the well known Gaussian.  

In our comparison, we considered an “adaptive” GGD wavelet model, in which we used a 

different GGD model for each wavelet band. The test statistics for the GLRT and the Rao test 

detectors are given respectively by  

( ) ( )
1 1

; , ( ) ( ) ( )
K

k kk

k

NK
c cc

GLRT GGD k k k k k k k
k i

T b X i X i W i−
= =

′′= − −∑∑X b c ,  (A.2) 

and  

( )
( )( ) ( ) ( )

( ) ( ) ( )

2
1

1 1

2 12

1 1 1 1

1

; ,
1

k
k

k

k k

k k

NK
c

k k k k k k
k i

RAO GGD N NK K
c

k k k kK
k i k i

k
k

sign X i X i W i
T

W i X i
N

−

= =

−
−

= = = =

=

′

=
′

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑∑

∑∑ ∑∑
∑

X c b  ,         (A.3) 

where ki  denotes the i-th coefficient in the k -th band, kN  is the total number of coefficients 

in k -th band, and K  is the number of bands. The vector 

( ) ( ) ( )1 1 1(1) 1K K KX X N X X N= ⎡ ⎤⎣ ⎦X … … …  includes all the wavelet coefficients of the image;  

( ) ( ) ( ) ( )1 1 1 1  1K K KW W N W W N′′ ′′ ′′ ′′⎡ ⎤⎣ ⎦… … …  is the watermark when the watermark power is 

known; and ( ) ( ) ( ) ( )1 1 11 1K K KW W N W W N′ ′ ′ ′⎡ ⎤⎣ ⎦… … …  is the watermark shape. The vectors 

[ ]1 2, Kb b b=b …  and [ ]1 2, Kc c c=c …  denote the GGD model parameters in the K bands. The 

ML estimates of { , }k kc b  were used for the GLRT and Rao detectors, which were determined 

for each wavelet band separately.  

In our experiments 3K =  and 
2

4k
MN ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 for 1,2,3k =  were used for original images of 

size M M× . 
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(a) “Barbara” 

 
(b) “Boat” 

 
(c) “Bridge” 

 
(d) “Lena” 

 
Figure 1(a)-(d): The four test images used to evaluate the proposed detectors in Experiments 

I-III. 
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Figure 2: A sample of 40 of the 200 images used to evaluate the proposed detectors in 
Experiment IV. 

 
Figure 3:  Watermark embedding in the three detail sub-bands of the second level of a 2-level 
DWT was used. 
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(a) 

 
(b) 

Figure 4: Values of ( )( )1log ka i−  for the 1st order differences along: (a) horizontal, and (b) 

vertical directions. 
 
 
 

(AUROC1, AUROC2) WDR 
dB GGD Wavelet Proposed Prior 
-61 (0.100, 1.000) (0.100, 1.000) 
-62 (0.0991, 0.99) (0.100, 1.000) 
-63 (0.0593, 0.92) (0.100, 1.000) 
-64 (0.0133, 0.64) (0.0940, 0.993) 
-65 (0.0060, 0.52) (0.0903, 0.986) 
-66 (0.0034, 0.50) (0.0848, 0.981) 

(a) 

(AUROC1, AUROC2) WDR 
dB GGD  Wavelet Proposed Prior 
-64 (0.100, 1.00) (0.0993, 0.9993) 

-65 (0.0095, 0.90) (0.0922, 0.9894) 

-66 (0.004, 0.62) (0.0892, 0.9784) 

-67 (0.004, 0.50) (0.0769, 0.9489) 
(b) 

Tables 1(a)-(b): AUROC1 and AUROC2 for the PGLRT detector with: (a) “Barbara”, (b) 
“Boat” images. 

 
 

(AUROC1,AUROC2) WDR 
dB GGD Wavelet  Proposed Prior 
-60 (0.100, 1.000) (0.100, 1.000) 
-61 (0.0979, 0.99) (0.100, 1.000) 
-62 (0.0706, 0.94) (0.100, 1.000) 
-63 (0.0302, 0.75) (0.0942, 0.993) 
-64 (0.0087, 0.58) (0.0697, 0.946) 
-65 (0.0057, 0.51) (0.0624, 0.880) 

(c) 

(AUROC1,AUROC2) WDR 
dB GGD Wavelet  Proposed Prior 
-62 (0.100, 1.000) (0.100, 1.000) 
-63 (0.0965, 0.99) (0.100, 1.000) 
-64 (0.0279, 0.81) (0.100, 1.000) 
-65 (0.0092, 0.58) (0.0991, 0.9991) 
-66 (0.0056, 0.50) (0.0987, 0.9987) 

(d) 
Table 1(c)-(d): AUROC results PGLRT detector with: (c) “Bridge” and (d) “Lena” images.  
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(AUROC1, 
AUROC2) WDR 

dB Bayesian 
detector 

-61 (0.100, 1.000) 
-62 (0.0980, 0.998) 
-63 (0.0512, 0.8748) 
-64 (0.0110, 0.610) 
-65 (0.0059, 0.5214) 
-66 (0.0055, 0.5028) 

 (a) 

(AUROC1, 
AUROC2) WDR 

dB Bayesian 
detector 

-64 (0.0366, 0.901) 

-65 (0.0105, 0.61) 

-66 (0.0058, 0.52) 

-67 (0.0054, 0.503) 
(b) 

Table 2(a)-(b): AUROCs results of Bayesian detector with: (a) “Barbara”, (b) “Boat” images. 
 

AUROC1, 
AUROC2 WDR 

dB Bayesian 
detector 

-60 (0.100, 1.000) 
-61 (0.100, 1.000) 
-62 (0.0809, 0.962) 
-63 (0.0330, 0.757) 
-64 (0.0093, 0.581) 
-65 (0.0062, 0.524) 

(c) 

AUROC1, 
AUROC2 WDR 

dB Bayesian 
detector 

-62 (0.100, 1.000) 
-63 (0.100, 1.000) 
-64 (0.0521, 0.898) 
-65 (0.0082, 0.585) 

-66 (0.047, 0.51) 

(d) 
Table 2(c)-(d): AUROC results of Bayesian detector with: (a) “Bridge”, (b) “Lena” images. 

 
 

(AUROC1, AUROC2) WDR 
dB Rao GGD 

Wavelet 
Rao Proposed 

Prior 
-59 (0.100, 1.000) (0.100, 1.000) 
-60 (0.0901, 0.97) (0.100, 1.000) 
-61 (0.0827, 0.96) (0.100, 1.000) 
-62 (0.0294, 0.76) (0.100, 1.000) 
-63 (0.0112, 0.68) (0.0764, 0.9739) 
-64 (0.0029, 0.51) (0.0567, 0.8862) 

(a) 

(AUROC1, AUROC2) WDR 
dB Rao GGD 

Wavelet 
Rao Proposed 

Prior 
-61 (0.100, 1.000) (0.100, 1.000) 
-62 (0.0973, 0.98) (0.100, 1.000) 
-63 (0.0736, 0.94) (0.100, 1.000) 
-64 (0.0274, 0.66) (0.0748, 0.983) 
-65 (0.0217, 0.7163) (0.0425, 0.830) 
-66 (0.011, 0.6401) (0.0213, 0.697) 

(b) 
Tables 3(a)-(b): Rao detectors AUROC results with: (a) “Barbara”, (b) “Boat” images. 

 
 

(AUROC1, AUROC2) WDR 
dB Rao GGD 

Wavelets  
Rao Proposed 

Prior 
-60 (0.100, 1.000) (0.100, 1.000) 
-61 (0.0827, 0.97) (0.100, 1.000) 
-62 (0.0355, 0.80) (0.0982, 0.9982) 
-63 (0.0100, 0.50) (0.0709, 09315) 

(c) 

(AUROC1, AUROC2) WDR 
dB Rao GGD 

Wavelet 
Rao Proposed 

Prior 
-61 (0.100, 1.000) (0.100, 1.000) 
-62 (0.0851, 0.85) (0.100, 1.000) 
-63 (0.0366, 0.77) (0.100, 1.000) 
-64 (0.0083, 0.54) (0.0847, 0.9929) 
-65 (0.0051, 0.50) (0.0568, 0.9037) 

(d) 
Tables 3(c)-(d): Rao detectors AUROC results with: (a) “Bridge”, (b) “Lena” images. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figures 5(a)-(d): ROC curves of PGLRT and Bayesian detectors for selected WDRs  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figures 6(a)-(d): ROC curves of Rao test detectors for selected WDRs  
 

 
 
 
 

 
(AUROC1, AUROC2) (AUROC1, AUROC2) WDR 

dB GGD Wavelet PGLRT (proposed Prior) 
-61 (0.0540, 0.9925) (0.0862, 0.9680) 
-62 (0.0166, 0.7048) (0.0785, 0.9540) 
-63 (0.0041, 0.6039 (0.0831, 0.9512) 
-64 (0.0052, 0.5307) (0.0763, 0.9238) 
-65 (0.0014, 0.5051) (0.0746, 0.9149) 

Tables 4(a):AUROC results for PGLRT detectors using 200 images. 
 
 

(AUROC1, AUROC2) WDR 
dB BAYESIAN (proposed prior) 
-61 (0.0970, 0.9979) 
-62 (0.0383, 0.8743) 
-63 (0.0120, 0.6645) 
-64 (0.0070, 0.5540) 
-65 (0.0055, 0.5167) 

Tables 4(b):AUROC results for Bayesian detector using 200 images. 
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(AUROC1, AUROC2) (AUROC1, AUROC2) WDR RAO GGD Wavelet RAO (proposed prior) 
-60 (0.0894, 0.9844) (0.0993, 0.9992) 
-61 (0.0675, 0.9679) (0.0883, 0.9983) 
-62 (0.0672, 0.9165) (0.0775, 0.9848) 
-63 (0.0348, 0.8001) (0.0694, 0.9432) 
-64 (0.0300, 0.5419) (0.0389, 0.8106) 

Tables 4(c):AUROC results for Rao test detectors using 200 images.  
 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7: (a), (b) ROC curves for PGLRT and Bayesian detectors, (c), (d) ROC curves for 
Rao test based detectors, using 200 images. 
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(a) 

 
(b) 

Figure 8: ROC curves for PGLRT detector before and after JPEG compression (quality factor 
95% and 80%) for (a) “Lena” and (b) “Barbara” images. 

 
 

 
(a) 

 
(b) 

Figure 9: Histogram of test statistic for PGLRT detector. (a) For one image and many 
watermarks, (b) for many images and one watermark. 
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