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Abstract

We propose a new approach for image segmentation based on a hierarchical and spatially variant

mixture model. According to this model the pixel labels are random variables and a smoothness

prior is imposed on them. The main novelty of this work is a new family of smoothness priors for

the label probabilities in spatially variant mixture models. These Gauss-Markov random field-based

priors allow all their parameters to be estimated in closed form via the maximum a posteriori (MAP)

estimation using the Expectation-Maximization (EM) methodology. Thus, it is possible to introduce

priors with multiple parameters that adapt to different aspects of the data. Numerical experiments are

presented where the proposed MAP algorithms were tested in various image segmentation scenarios.

These experiments demonstrate that the proposed segmentation scheme compares favorably to both

standard and previous spatially constrained mixture model-based segmentation.

Index Terms

Image and texture segmentation, clustering-based segmentation, Gaussian mixture model, spatial

smoothness constraints, smoothness prior, Gauss-Markov random field, simultaneously autoregressive

prior, maximuma posteriori (MAP) estimation, Expectation-Maximization (EM) algorithm.
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I. I NTRODUCTION

Image segmentation is the process of grouping image pixels based on the coherence of certain

attributes such as intensity, color, or texture. Many approaches have been proposed to solve the image

segmentation problem. For surveys of this topic the reader may refer to [1], [2]. In this paper, we will

focus our attention to image segmentation methods based on clustering. Clustering is the process of

arranging data into groups having common characteristics and is a fundamental problem in many fields

of science [3], [4]. Thus, image segmentation can be viewed a special type of clustering. Usually,

in image segmentation, our data, the image pixels have spatial locations associated with them. Thus,

apart from the commonality of attributes such as intensity, color or texture, commonality of location

is an important characteristic of the grouping that we are seeking in image segmentation.

More specifically, in this paper we will focus our attention on clustering methods based on the

modeling of the probability density function (pdf) of the data via finite mixture models (FMM) [5],

[6], [7]. Modeling the pdf of data with FMM is a natural way to cluster data because it automatically

provides a grouping of the data based on the components of the mixture that generated them. More

specifically, FMM are based on the assumption that each datum originates from one component of the

mixture according to some probability. Thus, this probability can be used to be assign each datum to

the component that has most likely generated it. Furthermore, the likelihood of an FMM is a rigorous

measure for the clustering performance [7]. FMM based pdf modeling has been used successfully in

a number of applications ranging from bioinformatics [8] to image retrieval [9].

The parameters of the FMM model with Gaussian components can be estimated very efficiently

through maximum likelihood (ML) using the Expectation-Maximization (EM) algorithm [5], [10],

[7]. Furthermore, it can be shown that Gaussian components allow efficient representation of any pdf.

Thus, mixture models with Gaussian components, in other words Gaussian mixture models (GMM),

are the ones used in most applications [7].

In mixture model-based image segmentation the image pixels are considered independent, thus it

is straightforward to use a GMM and ML for this problem. In [11], the performance of different

algorithms that estimate GMMs for image segmentation was evaluated. A drawback of the ML

approach for this application is that commonality of location is not taken into account when grouping

the data. In other words, the prior knowledge that adjacent pixels most likely belong to the same

cluster is not used.

To overcome this shortcoming, several approaches were proposed. Local Bayesian segmentation

methods with a comparison of mixture estimation algorithms are investigated in [12]. A Markov

random field (MRF) approach was proposed in [13]. Caillolet al. [14] introduced fuzziness in Gaussian
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mixtures and modeled spatial information in both the segmentation and parameter estimation levels.

The spatially variant finite mixture model (SVFMM) was proposed [15]. The SVFMM considers

the pixel labels as random variables instead of parameters as the ”classical” EM-ML formulation. It

assumes a MRF prior on the data. A maximuna posteriori (MAP) estimation using a Gibbs MRF-

based prior for the pixel labels is used [15]. This prior enforces spatial smoothness of the pixel labels,

and generates clusters that are spatially continuous. Based on this model, a number of approaches

have been proposed for various applications [16], [17].

The MAP algorithm proposed in [15] cannot find the pixel labels in closed form and used a gradient

projection algorithm. In [18], the problem of computing the pixel labels for the SVFMM was improved

using quadratic programming. This was shown to produce both better segmentations and values of

the criterion function. In this paper, we build upon the SVFMM framework rather than the works in

[16] and [17].

The main shortcoming of SVFMM in [15] and [18] is the use of a smoothness prior which is

rather inflexible and does not adapt to the data. This is a consequence of the fact that it uses only one

parameter that cannot be estimated automatically from the image. Our experience with this method

indicates that appropriate values for this parameter can be found. However, they require a tedious

trial-and error process. This clearly makes incorporation of more than one such parameter in the

prior prohibitive. In this paper, this difficulty is bypassed since the new prior that we propose allows

estimation of all its parameters in closed form the data. Thus, the introduction of priors that can adapt

to different aspects of the data is possible. Herein, we use priors that are cluster and directionally

adaptive and all their parameters are automatically estimated from the image. We also demonstrate

via numerical experiments for image segmentation problems with both single and multi-dimensional

feature vectors that the proposed priors improve the segmentation performance of the SVFMM.

In what follows, background for SVFMM is given in section II. The proposed priors are presented

in section III. In section IV, the proposed MAP algorithm is presented. Numerical experiments are

presented in section V and finally conclusions and directions for future research are given in section

VI.

II. BACKGROUND

Let xi = (xi
1, x

i
2, ..., x

i
L)T denote the vector of features representingith spatial location (pixel),

(i = 1..., N ), of an L-dimensional image modeled as independently distributed random variables.

Here,L is the number of features per pixel (e.g. intensity, textural features, location etc.). The SVFMM

[15] provides a modification of the classical FMM approach [7], [5] for pixel labeling. It assumes a

3



mixture model withK components each one having a vector of parametersθj defining the density

function.

Pixel i is characterized by its probability vectorπi =
(
πi

1π
i
2 . . . πi

K

)T
where K is the number

of components. We defineΠ = {(π1)T , (π2)T , . . . (πN )T } as the set of probability vectors and

Θ = {θ1, θ2, . . . , θK} the set of component parameters. The variablesπi
j represent the probabilities

of the ith pixel to belong to thejth cluster (or class) and must satisfy the constraints

0 ≤ πi
j ≤ 1,

K∑

j=1

πi
j = 1 (1)

The FMM assumes that the probability density function of an observationxi is expressed by:

f(xi|Π;Θ) =
K∑

j=1

πi
jφ(xi|θj), (2)

whereφ(xi|θj) is a Gaussian distribution with parametersθj = {µj , Σj}, whereµj = (µj,1, µj,2, ...µj,L)T

is the mean vector andΣj is the covariance matrix of theL-dimensional Gaussian distribution. This

notation implies thatΠ are considered as random variables andΘ as parameters. In this study, we

have considered a diagonal covariance matrixΣj = diag{σj,l}, with l = 1...L for each classj. The

SVFMM in [18] uses a prior density based on the Gibbs distribution for the random variablesΠ

given by:

p (Π) =
1
Z

e−U(Π) (3)

with

U (Π) = β

N∑

i=1

VNi
(Π) , (4)

whereZ is a normalizing constant called ”Partition Function”,β is the prior parameter that controls the

degree to which smoothness is imposed. This parameter is analogous to theregularization parameter

used to impose smoothness in ill-posed inverse problems, see for example [19]. The functionVNi
(Π)

denotes the clique potential function of the pixel label vectors{πi} within the neighborhoodNi. In

the general case, this function has the form:

VNi
(Π) =

∑

m∈Ni

g(di,m)

wheredi,m specifies the distance between two label vectors{−→π i} and{−→π m}:

di,m = ||{πi} − {πm}||2 =
K∑

j=1

(πi
j − πm

j )2

and the neighborhoodNi is the set of adjacent pixels to pixeli. A choice for the monotonically

increasing and non negative penalty function is

g(di,m) =
1

1 + 1
di,m

(5)
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which is robust to outliers [20]. The value of the partition functionZ in general depends onβ.

However, this relationship is unknown unless the penalty function has a very simple form [21], [22].

For many penalty functions including the one in equation (5) this relation is unknown.

Therefore, denotingX the set of pixels{xi}, with i = 1, ..., N , which we assume to be statistically

independent and following Bayes rules, we obtain the posterior probability density function given by:

q(Π|X;Θ)n
N∏

i=1

p(Π)f(xi|Π,Θ) (6)

with the log-density:

L(Π|X;Θ) =
N∑

i=1

log f(xi|Π,Θ) + log p(Π) (7)

The EM algorithm [10] for MAP estimation, based on the SVFMM [15], requires the computation

of the conditional expectation values of the ”hidden” variables at the E-step of iteration stept:

z
i(t)
j =

π
i(t)
j φ(xi|θ(t)

j )
K∑

p=1

π
i(t)
j φ(xi|θ(t)

p )

(8)

In the M-step, the expected log-likelihood of the complete data is used [10]. This log-likelihood for

mixture models is well-known [5], [7] and is linear in the ”hidden” variables. The details of the

derivation of this log-likelihood for the SVFMM can be found in [15]. The maximization of

Q(Π,Θ|Π(t),Θ(t)) =
N∑

i=1

K∑

j=1

z
i(t)
j {log(πi

j) + log
(
φ(xi|θj)

)} − β
N∑

i=1

∑

m∈Ni

g(di,m) (9)

corresponding to the complete data log-likelihood, yields the model parameters. The functionQ(·) in

(9) can be maximized independently for each parameter with the following update equations of the

mixture model parameters at stept + 1:

µ
(t+1)
j,l =

N∑

i=1

z
i(t)
j x

i(t)
l

N∑

i=1

z
i(t)
j

,
(
σ

(t+1)
j,l

)2
=

N∑

i=1

z
i(t)
j

[
x

i(t)
l − µ

(t+1)
j,l

]2

N∑

i=1

z
i(t)
j

. (10)

Several methods have been proposed to compute the contextual mixing proportionsπj
i of each normal

density. A generalized EM scheme, based on the gradient projection algorithm was used in [15].

In [18], an approach based on quadratic programming was proposed. This approach was shown to

improve both the criterion function (9) and the classification of the SVFMM.
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III. T HE NEW PRIOR FOR THE PIXEL LABELS

As already mentioned, the main drawbacks of the SVFMM [15], [18] are that one parameter,

the scalarβ in Eq. (9) is used to capture the smoothness of all the clusters and in all directions.

Furthermore, the value of this parameterβ cannot be estimated from the data in an easy way. This

stems from the fact that for penalties of the form of Eq. (5) the relationship of the partition function

andβ is difficult to find. If the penalty function is quadratic this relationship is known and closed-form

estimates ofβ from the data are easily obtained.

Motivated by the above we consider a Gauss-Markov random field prior probability forΠ in (7)

which is given by

p (Π)n β−NKexp



−1

2

N∑

i=1

K∑

j=1

( ∑

m∈Ni

(πi
j − πm

j )

)2

β2




, (11)

whereNi is the neighborhood for theith pixel.

The statistical assumptions used in this prior can be clearly explained if the predictor of the label

πi
j is defined by the mean of its spatial neighbors as

π̂i
j =

1
|Ni|

∑

m∈Ni

πm
j (12)

where|Ni| is the number of pixels in the neighborhood, and the prediction error

πi
j − π̂i

j = εi
j . (13)

This prior is based on the assumption thatp
(
|Ni|εi

j

)
= N

(
0, β2

)
. In other words, the prediction

errors of the labels, for all spatial locations and all clusters are independent identically distributed

Gaussian random variables with zero mean and varianceβ2.

Obviously, the prior in Eq. (11) is based on a simplistic assumption and does not capture the fact

that the statistics of each cluster might be different. To capture this property one can use a distinct

varianceβ2
j for each cluster. Then, the prior is given by

p (Π)n
K∏

j=1

β−N
j exp



−1

2

N∑

i=1

( ∑

m∈Ni

(πi
j − πm

j )

)2

β2
j




. (14)

In this prior, the parameterβ2
j captures the spatial smoothness of clusterj. Thus, this prior can enforce

smoothness of different degree in each cluster and adapts better to the data.
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Moreover, this prior can be further refined by allowing smoothness that varies both within cluster

and along different spatial directions. In other words, parametersβ2
j,d can be used to express not only

the class variance for clusterj but also the variance within clusterj at a certain spatial directiond

(e.g. horizontal, vertical and diagonal pixel variances). In that case, the prior is given by

p (Π)n
D∏

d=1

K∏

j=1

β−N
j,d exp



−1

2

N∑

i=1


 ∑

m∈N d
i

(πi
j − πm

j )




2

β2
j,d




, (15)

whereD is the total number of the considered directions (generally 4),β2
j,d is the variance of class

j only considered for pixels having adjacency typed andN d
i , d = 1, ..., D is the neighborhood of

the ith pixel in directiond. In the general case,D = 4 directions (horizontal, vertical and 2 diagonal

directions).

This prior can be also explained in a similar fashion as the one in eq. (11). One can define in the

same manner as in eq. (12) and (13)D directional predictors and prediction error for each one of the

K data clusters. Then, this prior assumes that theD×K prediction errors for each direction and cluster

are independent and identically distributed for each pixel Gaussian random variables. In other words,

we havep
(
|N d

i |εi
j,d

)
= N

(
0, β2

j,d

)
where |N d

i | the number of pixels in neighborhoodN d
i . Priors

of this nature have been applied successfully for images (pixel values) to regularize various ill-posed

inverse problems in order to generate smooth image estimates from noisy observations. Priors of this

nature are calledsimultaneously autoregressive(SAR) (see [19], [23], [24] and [25]). In this work we

adopt such priors, by applying them to the pixel labels, for SVFMM based image segmentation.

IV. MAP ESTIMATION

Using the previously proposed priors one can derive the corresponding MAP algorithms using the

EM methodology is a similar manner as in [15], [18]. Since the only difference from the previous

SVFMM are the priors all parameters of the SVFMM model except the pixel labels and the parameters

of priors are identically computed. Since the priors in equations (11) and (14) can be considered as

special cases of the prior in eq. (15) we will derive only the MAP algorithm for latter. The prior in

eq. (15) yields the following MAP function to be maximized for the M-step of the EM algorithm

Q(Π|Π(t);Θ,Θ(t)) =
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N∑

i=1

K∑

j=1





z
i(t)
j

[
log(πi

j) + log
(
φ(xi|θj)

)]−
D∑

d=1




1
2

log(β2
j,d)−

1
2


 ∑

m∈N d
i

(πi
j − πm

j )




2

β2
j,d








(16)

To compute the model parametersπ
i(t+1)
j and β

2(t+1)
j,d at time step(t + 1) of the EM algorithm

we have to maximize (16) with respect toπi
j or to compute its partial derivative and set the re-

sult to zero. Notice that we have to take into consideration that everyπi
j in the summation term

 ∑

m∈N d
i

(πi
j − πm

j )




2

occurs once as the probability of the central pixel and|N d
i | times as a neighbor

πm
j of different pixels if a first order neighborhood is used. Thus,

∂Q

∂πi
j

= 0 gives a second degree

equation with respect toπi(t+1)
j :

2|N d
i |

D∑

p=1

∏

d=1
d6=p

β
2(t)
j,d

(
π

i(t+1)
j

)2
− 2

D∑

p=1

D∏

d=1
d6=p

β
2(t)
j,d

∑

m∈N p
i

πm
j π

i(t+1)
j − zi(t)

D∏

d=1

β
2(t)
j,d = 0 (17)

for i = 1, ..., N andj = 1, ..., K, expressing the probability of theith pixel to belong to thejth class

at time (t + 1). By setting:

B
(t)
j =

D∑

p=1

D∏

d=1
d 6=p

β
2(t)
j,d , (18)

which is the sum of all combinations of products betweenβ2
j,p, for j = 1, ..., D, when a specificβ2

j,p,

for p = 1, ..., D is excluded from the product, equation (17) becomes:

2|N d
i |B(t)

j

(
π

i(t+1)
j

)2
− 2B

(t)
j

∑

m∈N p
i

πm
j π

i(t+1)
j − zi(t)

D∏

d=1

β
2(t)
j,d = 0 (19)

The solution of Eq. (19) forπi
j at time stept + 1 of the EM algorithm is:

π
i(t+1)
j =

B
(t)
j

∑

m∈N p
i

πm
j ±

√√√√√

B

(t)
j

∑

m∈N p
i

πm
j




2

+ 2|N d
i |zi(t)B

(t)
j

D∏

d=1

β
2(t)
j,d

2|N d
i |B(t)

j

(20)

Also, the solution for the class variances are obtained by setting
∂Q

∂β2
j,d

= 0 and solving forβ2
j,d at

time step(t + 1):

β
2(t+1)
j,d =

1
N

N∑

i=1


 ∑

m∈N d
i

(
π

i(t+1)
j − πm

j

)



2

, (21)

for j = 1, ..., K andd = 1, ..., D. Analogous are the log-likelihoods to be maximized for the models

involving the priors in (11) and (14).
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In the standard EM algorithm, the neighborhoodN d
i in expressions (20) and (21), for the com-

putation of the parameters at time stept + 1, includes pixels with label parameter vectors computed

at time t. In our experiments, we have noticed that if pixels with updated label parameter vectors

(computed for timet+1), as well as pixels whose label vectors have not yet been updated (computed

at time t) are combined then the algorithm converges faster. However, there is no theoretical proof

neither for the speed-up of the algorithm nor for the convergence itself.

The overall EM algorithm may be summarized as follows:

• Initialize the mixture model component parametersθj = {µj , σj}, j = 1, ...,K and the contextual

mixing proportion vectorsπi for each pixeli = 1, ..., N .

• Do until the MAP functional (16) does not change significantly.

– E-step

∗ Calculate the posterior probabilitieszi(t)
j for the ith pixel to belong to thejth class (8).

– M-step

∗ Calculate the new mixture model parameters (10).

∗ Calculate the new contextual mixing proportions (20).

∗ Project the contextual mixing proportions onto the constraints (1) using the quadratic

programming algorithm in [18].

∗ Calculate the class variances (21).

• End

V. NUMERICAL EXPERIMENTS

The performance of the proposed approach is illustrated with a number of numerical examples.

Since the EM algorithm is sensitive to initialization, we have executed a number of iterations of

the EM algorithm with a set of randomly generated initial conditions and kept the one giving the

maximum value for the log-likelihood. The termination criterion of the EM algorithm, considered

here, was convergence defined as the percentage of change in the log-likelihood (16) between two

consecutive iterations to be less than0.001%, or
∣∣∣∆Q

Q

∣∣∣ < 10−5.

We present comparisons for image segmentation between the standard finite mixture model (FMM)

[6], the spatially variant finite mixture model (SVFMM) [15] improved by the quadratic optimization

method we proposed in [18] and the herein proposed directional class-adaptive spatially variant finite

mixture model (DCA-SVFMM). We also present the comparisons of the intermediate versions of our

final prior model: the adaptive spatially variant finite mixture model (A-SVFMM) having only one

global variance for the prior distribution (11) and the class-adaptive spatially variant finite mixture
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model (CA-SVFMM) (14) having one variance per cluster (14). In all our experiments we used a 8

closest pixels neighborhood system forNi and a one neighbor system for the directional systemN d
i .

Results on piece-wise constant, color and textured images are presented. Furthermore, the proposed

algorithm was tested on the Berkeley image segmentation data base [26].

A. Piece-wise constant image segmentation

Figure 1(a) shows a simulated three-class image with intensities for the three classes 30, 125 and

220. The contextual mixing proportions are 0.37, 0.30 and 0.33 respectively. Figure 1(b) shows the

same image corrupted by zero mean white Gaussian noise. Because image contrast is what we are

most interested in for quantifying the segmentation, we define the signal to noise ratio (SNR) as [16]:

SNR =
mean inter-class contrast

standard deviation of the noise

Thus, for the image in figure (1)(b) we haveSNR = 1.0.

We also define the measure of correct classification ratio (CCR):

CCR =
K∑

j=1

|GTj
⋂

Segj |
|GT | (22)

whereGTj is the ground truth for thejth cluster,Segj describes the pixels the algorithm classified

to clusterj andGT =
K⋃

j=1

GTj .

Figure 2 shows the segmentation of the corrupted image in fig. 1(b) obtained by the SVFMM (fig.

2(a)) with a fixed regularization parameter and the variants of our approach: the A-SVFMM (fig.

2(b)), the CA-SVFMM (fig. 2(c)) and the the DCA-SVFMM (fig. 2(d)). The best results are obtained

with the final refinement of our model, with the consideration of neighborhood directions jointly with

the class adaptive prior. Table I presents the percentage of correctly classified pixels (CCR metric)

for the different methods. Finally, the robustness of our approach is illustrated in table II where the

statistics of the CCR measure for 30 realizations of the noise configuration are shown.

In order to demonstrate the limits of location based features in image segmentation and support the

use of a spatially variant mixture model we present the segmentation of the image in fig. 1(a) using

location as a feature. Each pixel is represented by a three dimensional vector whose components are

the pixel intensity and the two image coordinates. The image was segmented by the standard FMM

algorithm without any prior assumption on spatial variations. As can be seen in fig. 1(c), location

based features have the tendency to produce clusters with erroneous spatial arrangements because they

assign the same weight to image intensity and coordinates.

In a second experiment we evaluate our method in a more difficult configuration. We have modified

the values of the original image (fig. 1) in order to decrease the inter-class distances. We have fixed
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(a) (b) (c)

Fig. 1. (a) The 3-class test image used in the experiments described in the text. Intensity means are 30, 125 and 220.

The contextual mixing proportions are 0.37, 0.30 and 0.33 respectively. (b) The image in (a) degraded by zero mean white

Gaussian noise with SNR=1.0. (c) Segmentation of the image in (a) combining intensity and location features. Each pixel

is represented by a three dimensional vector whose components are the pixel intensity and the two image coordinates. The

segmentation algorithm is the standard FMM without spatial prior.

(a) (b) (c) (d)

Fig. 2. Three class segmentation of the image presented in figure 1(b) using (a) SVFMM, (b) A-SVFMM, (c) CA-SVFMM

and (d) DCA-SVFMM.

TABLE I

Percentage of correctly classified pixels (CCR) for the segmentation of the degraded image in figure 1.

3-class CCR (%) - Problem 1

SNR=2.0 SNR=1.0

FMM 77.3 64.5

SVFMM 86.5 80.7

A-SVFMM 93.3 89.8

CA-SVFMM 96.3 96.1

DCA-SVFMM 98.4 97.5

the three classes to gray levels of 110, 130 and 150 respectively and added white Gaussian noise to the

image. Thus, we have obtained images with signal to noise ratios of2.0 and1.0. We then applied our

algorithm to those images and compared the segmentation results with respect to the performance of

the SVFMM. The results are summarized in table III where the superior performance of our method

is underpinned.

A last experiment was conducted in order to illustrate how the variance of the noise affects the
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TABLE II

Statistical behavior of the CCR. The experiment presented in table I was repeated 30 times with different realizations of

the noise. The median, mean and standard deviation of the CCR for the DCA-SVFMM is presented.

3-class CCR statistics - Problem 1

Median Mean S. dev.

SNR=2.0 97.0% 96.9% 1.3%

SNR=1.0 95.8% 96.1% 1.8%

TABLE III

Percentage of correctly classified pixels for the segmentation of degraded versions of the image in figure 1 with decreased

inter-cluster contrast. The original values of the cluster means areµ1 = 110, µ2 = 130 and µ3 = 150.

3-class CCR (%) - Problem 2

SNR=2.0 SNR=1.0

FMM 67.8 61.3

SVFMM 82.2 70.2

A-SVFMM 95.3 88.7

CA-SVFMM 95.3 90.3

DCA-SVFMM 96.5 95.6

intra-class variances of the priors for the pixel probability labelsβj , j = 1, 2, 3. We have corrupted

the three regions of the image in fig. 1 with different amounts of noise and applied the class-

adaptive segmentation algorithm which implies one variance per cluster (CA-SVFMM). The results

are presented in table IV. Looking at such results one has to keep in mind that parametersβj do

not refer directly to the noise in the observations but to the probability of the pixel belonging to the

respective cluster taking into account its neighbors. However, we observe that parametersβj may vary

across different clusters by orders of magnitude. This demonstrates the ability of the model to adapt

to the data.

B. Application to texture segmentation

We have also evaluated and compared the proposed algorithms for the segmentation of multidi-

mensional images. This type of images may be obtained directly from sensors, such as multispectral

satellite images or RGB color television images. Also, they may be created through preprocessing in

order to extract significant features characterizing the image content (e.g. textural features). Here, we

present an example from both cases.

A first experiment concerns the segmentation of a textured image. Fig. 3(a) shows a composite
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TABLE IV

The mean and standard deviation for each cluster estimated by the CA-SVFMM for the 3-class segmentation of image of

figure 1 when different amount of noise is added to each class. The values of the estimated class variancesβj , j = 1, 2, 3

of the contextual mixing proportions are also presented. The CCR was97%. The original values of the cluster means are

µ1 = 30, µ2 = 125 and µ3 = 220 and the image was degraded with noise variances of30, 60 and 90 respectively.

3-class segmentation - Problem 3

µ1 σ1 β1 µ2 σ2 β2 µ3 σ3 β3

Simulated 30.9 29.8 − 124.2 59.4 − 218.7 88.9 −
CA-SVFMM 28.5 33.8 30× 10−3 126.0 62.6 117× 10−3 222.5 90.8 44× 10−3

image of 4 natural textures from the Brodatz collection [27]. We have degraded the textured image

with Gaussian noise in order to make segmentation more challenging and obtained two different

images of SNR of 1.0 and 0.5 respectively (fig.3(b)-(c)). We have extracted textural features using

a filter bank of 40 bandpass Gabor filters for 8 equally spaced angles and 5 different radial lengths

[28]. Eight features were used for segmentation. These features were created by selecting 8 from

the available 40 Gabor filter responses and then processed them as in [29]. This approach has been

also successfully evaluated for texture segmentation in [30]. For segmentation with multidimensional

features we used a diagonal covariance matrix for the mixture of the Gaussian distributions.

(a) (b) (c)

Fig. 3. (a) A composite 4-texture image and its noisy versions with (b) SNR=1 and (c) SNR=0.5.

(a) (b) (c) (d)

Fig. 4. Four class segmentation of the images presented in fig. 3(b)-(c) by applying the (a)-(b) SVFMM and (c)-(d)

DCA-SVFMM methods to the dyadic Gabor filter bank responses of the original images.
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The segmentation results for the degraded textured images are summarized in table V where the

CCR percentage is presented for each method. Also, fig. 4 shows that the DCA-SVFMM approach

performs very well even in the presence of significant amount of noise. Notice how the cross-like

separation is preserved in fig. 4(d) which is not the case in fig. 4(b).

TABLE V

Percentage of correctly classified pixels for the segmentation of the degraded images of figure 3.

4-class texture CCR (%)

SNR=1.0 SNR=0.5

FMM 62.1 50.8

SVFMM 93.8 85.4

A-SVFMM 93.8 86.9

CA-SVFMM 95.2 87.1

DCA-SVFMM 95.5 92.2

C. Application to RGB image segmentation

Moreover, we have experimented on the segmentation of RGB natural images. We present two

examples from the Berkeley data base [26]. Fig. 5(a)-(d) shows a color image and its RGB components.

The image consists mainly of three color components: the white church wall, the red cupola and the

dark blue sky. Other red and dark blue regions are also present (mainly on the windows). We have

added to the image zero mean white Gaussian noise with different standard deviation for each color

component leading to SNRs of2dB, 4dB and3dB for the R, G and B components respectively. The

degraded images are shown in fig. 5(e)-(h). We have applied the SVFMM and the DCA-SVFMM

algorithms to obtain a 3-class segmentation of the degraded RGB image. At first, we applied the

segmentation algorithms to the noise-free image in order to obtain a baseline of their behavior. As

depicted in fig. 6 (a)-(b), the DCA-SVFMM method segments better the red component by preserving

the sharp edge between the cupola and the sky. Furthermore, the bottom right red window is more

accurately extracted by our method. Also, we can observe that the narrow shadows on the wall right

at the bottom of the cupola are slightly better preserved by the SVFMM. However, this was obtained

after manual tuning of the parameterβ of the Gibbs distribution (4) as mentioned at the end of the

section.

The results for the degraded images are presented in fig. 6 (c)-(d). Due to absence of ground truth,

the evaluation of the segmentation is only qualitative. As in the single-dimensional case, our new

method provides a better segmentation, especially in the red component which underwent the most
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significant degradation. In the case of the SVFMM, many pixels of the cupola were classified as sky

or wall which is not the case for the DCA-SVFMM approach.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. (a) A color image and (b)-(d) its RGB components. (e) The color image reconstructed after having corrupted its color

components by zero-mean white Gaussian noise with different standard deviation for each component. The corresponding

SNR are2dB, 4dB and3dB for the R, G and B components respectively. (f)-(h) The degraded RGB components.

(a) (b) (c) (d)

Fig. 6. Three class segmentation of the noise-free image presented in fig. 5(a) by applying the (a) SVFMM and (b)

DCA-SVFMM methods to the RGB components of the image. Three class segmentation of the degraded image presented

in fig. 5(e) by applying the (c) SVFMM and (d) DCA-SVFMM methods to the RGB components of the image.

An interesting property of the proposed prior is that it can take into account intra-cluster statistics.

For the segmentation problem, this property seems interesting and eventually well suited to take into

account, to a certain extent, the so-calledshading effectsometimes found in real world images (e.g.

regions with globally smooth shading variations, gradually changing color, such as sky, lake, wall

etc.). This is the case at the top of the red copula where we can observe reflections as well as at

the wall where the color is not constantly white due to shadows 5(a). This effect generally induces

inappropriate and undesirable over-segmentation which is not the case here. The directional and class

adaptive parametersβj,d are summarized in table VI which illustrates that these effects were taken
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into account by assigning relatively larger variances to these regions.

TABLE VI

The parametersβj,d, j = 1, 2, 3, d = 0o, 45o, 90o, 135o for the segmentation of the noise free image in fig 5(a) by the

DCA-SVFMM.

βj,d × 10−3

Direction d = 0o d = 45o d = 90o d = 135o

β1,d (cupola) 139 293 155 293

β2,d (sky) 30 39 10 38

β3,d (wall) 119 279 161 280

We have to notice that in all of the experiments, in the case of the SVFMM algorithm, we

have presented the results for thebestregularizationβ parameter of the Gibbs distribution (4). This

parameter was obtained after a tedious search performed heuristically since there is no trivial method

to estimate this parameter from the data for this model. More precisely, the best parameterβ varies

between 2.1 and 2.5 for the 3-class images and between 1.8 and 2.2 for the 4-class (textured images)

and 5-class cases. In contrast, for the herein proposed approach all the parameters of the prior are

estimated automatically from the data and this is one of the main strengths of our approach.

Finally, it is important to bring to notice the faster convergence of the proposed approach as

compared to SVFMM in [15], [18]. The different variants of our model required approximately 10-30

iterations as compared to the previous SVFMM, that required over 100 iterations for convergence.

D. Evaluation with the Berkeley image segmentation data base

Finally, we have compared the results of our algorithm to the manual segmentations provided by

the Berkeley image segmentation data base [26]. This benchmark consists of a set of images along

with their ground truth segmentation maps which were provided by different individuals. Evaluation

of a segmentation algorithm when multiple ground truths are available is a non trivial task. However,

a probabilistic evaluation can be achieved by the probabilistic Rand (PR) index [31]. This index

was conceived for the case of hard segmentation maps and was used in [32] for the comparisons of

segmentations of the Berkeley data base.

The PR index, between a segmentation mapStest to be evaluated and a set ofM ground truth

imagesSg = {S1, S2, ..., SM} is given by:

PR (Stest, Sg) =
2

N(N − 1)

∑

i,j
i<j

[cijpij + (1− cij)(1− pij)] (23)
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wherecij = 1 if pixels i and j belong to the same cluster andcij = 0 if pixels i and j belong to

different clusters. The normalization term is the inverse of the number of all possible unordered pairs

of N pixels andpij is the ground truth probability that pixelsi and j belong to the same cluster,

computed as the mean pixel pairrelationshipamong all the ground truth images. The termrelationship

implies a binary valuetrue or false meaning that the pixels of the pair belong or not to the same

cluster.

The PR index takes values between 0 and 1. A score of 0 indicates that every pixel pair in the

machine segmentation has the oppositerelationshipas every pair in the ground truth segmentations

while a score of 1 indicates that every pixel pair in the machine segmentation has the samerelationship

as every pair in the ground truth images. If two pixels are in the same region in most of the ground truth

images they are penalized accordingly for not being in the same region in the machine segmentation

and vice versa. As a consequence, the PR index is robust to segmentation maps that result by splitting

or merging segments of the ground truth which is a desirable property [33].

The CA-SVFMM algorithm was applied to a set of 30 color images of the Berkeley segmentation

data base with several configurations for the number of clusters (parameterK) for each image. We

have chosen both textured and non textured images in order to evaluate the algorithm. The PR indices

for a subset of the data with the value of parameterK that provided the maximum index is presented

in table VII. For comparison purposes, we present, in the same table, for the same parameterK, the

PR index for the SVFMM algorithm [18], withβ = 2.0 which is a good compromise according to the

performed experiments. In all cases, the proposed class adaptive algorithmic approach outperforms

the standard SVFMM algorithm. Some segmentation examples from the application of CA-SVFMM

to images of the Berkeley data base, including the segmentation maps with the bestK, are shown in

fig. 7.

VI. CONCLUSION AND FUTURE WORK

We have presented a hierarchical and spatially constrained mixture model for image segmentation.

This model takes into account spatial information by imposing distinct smoothness priors on the

probabilities of each cluster and pixel neighborhoods. Experimental results have shown that our

approach improves significantly not only standard FMM segmentation but also its spatially variant

version. Moreover, the number of iterations of the EM algorithm is reduced significantly compared

to the SVFMM [15], [18].

Important open questions for FMM-based clustering are how the number of model components

can be selected automatically and which features (in the multidimensional case) should be used.
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232038 K = 5, PR = 0.57 K = 10, PR = 0.62 K = 15, PR = 0.59

102061 K = 7, PR = 0.68 K = 12, PR = 0.70 K = 15, PR = 0.73

108073 K = 3, PR = 0.44 K = 4, PR = 0.49 K = 5, PR = 0.45

247085 K = 5, PR = 0.54 K = 6, PR = 0.61 K = 7, PR = 0.64

118020 K = 9, PR = 0.67 K = 12, PR = 0.70 K = 15, PR = 0.66

310007 K = 7, PR = 0.70 K = 8, PR = 0.68 K = 9, PR = 0.67

Fig. 7. Image segmentation results from the Berkeley segmentation data base [26]. The first column presents the original

color images and the rest of the columns present the segmentation maps of our CA-SVFMM method along with the

predetermined number of clustersK and the PR index for each case.
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TABLE VII

The maximum PR index and the corresponding number of clusters for 30 images of the Berkeley segmentation data base

[26] when the CA-SVFMM algorithm is applied. For comparison purposes, the PR index for the SVFMM algorithm, with

β = 2.0, for the same parameterK is presented.

PR index

Image # K CA-SVFMM SVFMM

102061 15 0.73 0.70

80099 2 0.81 0.78

108073 4 0.49 0.43

118035 3 0.65 0.63

134008 2 0.63 0.62

135069 2 0.87 0.81

188091 4 0.65 0.59

207056 5 0.64 0.60

232038 10 0.62 0.54

310007 7 0.70 0.62

323016 10 0.67 0.63

238011 3 0.84 0.82

299091 5 0.58 0.54

314016 5 0.52 0.45

368016 6 0.77 0.75

271031 5 0.63 0.57

253036 4 0.72 0.66

247085 7 0.64 0.60

28075 6 0.63 0.56

113044 5 0.62 0.61

12003 3 0.46 0.44

106024 4 0.68 0.64

183055 3 0.51 0.48

118020 12 0.70 0.63

90076 5 0.52 0.49

41044 5 0.74 0.66

163014 5 0.60 0.58

42049 7 0.62 0.58

112082 4 0.62 0.58

124084 3 0.56 0.50

Mean 0.64 0.60

S. dev. 0.09 0.10

Median 0.65 0.60
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These questions are still the subject of on going research [34], [35], [36]. For FMM-based image

segmentation these questions are also very important for certain segmentation scenarios. For example,

in texture segmentation selecting the appropriate subset of responses from the Gabor filter bank is

an important question. However, the use of smoothness priors makes the FMM even more complex.

Thus, addressing such questions is out of the scope of this paper and subject of future research.
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