
Stochastic Methods for Joint Registration, Restoration, and 
Interpolation of Multiple Under Sampled Images 

 
by 

 
Nathan A. Woods1, Nikolas P. Galatsanos2*, and Aggelos K. Katsaggelos3 

 
 

1Binary Machines, Inc. 
1320 Tower Rd. 

Schaumburg, IL 60173 
nathan@BinaryMachinesInc.com 

 
2Department of Computer Science  

University of Ioannina 
PO Box 1186 – GR 45110 

Ioannina, Greece 
galatsanos@cs.uoi.gr 

 
3Department of Electrical and Computer Engineering 

Northwestern University 
2145 Sheridan Rd. 
Evanston, IL 60208 

aggk@ece.northwestern.edu 
 
 

EDICS  2-REST 
 
 

Abstract 
 

Using a stochastic framework, we propose two algorithms for the problem of obtaining a single 

high-resolution image from multiple noisy, blurred, and under-sampled images. The first 

algorithm is based on a Bayesian statistics formulation that is implemented via the expectation 

maximization (E-M) algorithm, in which the desired high-resolution image is considered to be a 

hidden variable and is integrated out over the prior. The second algorithm is based on a 

maximum a posteriori (MAP) formulation. In both of our formulations, the registration, noise, 

and image statistics are treated as unknown parameters. These unknown parameters and the 

high-resolution image are estimated jointly based on the available observations. We present an 

efficient implementation of these algorithms in the frequency domain that allows their application 

to large images. Simulations are presented that test and compare the proposed algorithms. 

 

* Corresponding author. 



 

I.   Introduction 
     The problem of obtaining a high-resolution image from a sequence of aliased low-resolution images, 

also known as the super-resolution problem, has been a very active area of research over the last several 

years. Tsai and Huang [1] were the first to demonstrate that unique information in a sequence of translated 

and aliased images can be exploited to produce an enhanced resolution image. Kim et al. extended this 

work to include additive noise [2] and blur [3] by formulating the problem as a restoration problem and 

solving it using a weighted least-squares algorithm. In [4], Irani and Peleg suggested a solution to the super-

resolution problem based on iterative back-projection adapted from computer-aided tomography. 

      Another approach proposed by Stark and Oskoui [5] used a projection onto convex set (POCS) 

algorithm to reconstruct the high-resolution image. This method was later extended by Tekalp et al. [6] to 

include noise. Patti and Tekalp [7] extended the formulation again to account for time-varying motion blur 

and various video sampling patterns.  Elad and Feuer [8] proposed a hybrid maximum a posteriori 

(MAP)/POCS super-resolution algorithm that combines the ML solution with non-ellipsoidal constraints. 

      Stevenson and Shultz [9], and [10] presented a MAP formulation to the super-resolution problem with 

an edge-preserving image prior. They addressed the more difficult problem of independent object motion in 

a video sequence, as opposed to the simple cases of global displacement or rotation. Later, Borman and 

Stevenson [11] extended the same approach to include spatio-temporal priors to improve the robustness of 

the reconstruction to errors in the motion estimation.       

In [12], Hardie et al. presented a solution to the super-resolution problem wherein the registration and 

restoration was performed jointly using a MAP formulation.     Recently, He and Kondi [13] proposed an 

extension to the algorithm in [12] in which the regularization parameters (one per observed frame) were 

also estimated jointly with the registration parameters and high-resolution image using the derivation of the 

regularization parameter estimate assumed the motion was restricted to integer displacements as measured 

on the high-resolution grid. 

     In [15], [16], and [17], Tom et al. formulated the super-resolution problem as a restoration problem. In 

particular, in [17] a solution was presented utilizing the E-M algorithm, in which the registration parameters 

and noise variance were estimated jointly. Our proposed Bayesian solution, is also implemented using the 

E-M algorithm, and was originally inspired by the approach in [17]. More specifically, in [17], the high-

resolution image was first decimated, then blurred and shifted. We believe that our imaging model is more 

realistic, with blurring and shifting preceding decimation. Also, due to their formulation, the authors in [17] 

chose to truncate the shift and blur operators for practical run-time considerations, which reduced the 

quality of the reconstructions. 



     More recently, Lee and Kang [20] proposed a regularized least-squares solution solved via gradient 

decent. This method treats the registration parameters as fixed during restoration, requiring a separate 

registration step during pre-processing. 

     Nguyen et al. [18] presented a solution based on Tikhonov regularization of a least-squares formulation. 

The regularization parameter was obtained using generalized cross-validation. Registration parameters were 

estimated during a pre-processing step under the assumption of smooth translational motion using the 

simple Taylor series approximation proposed in [4]. For recent surveys of super-resolution techniques, the 

reader is referred to [21], [22], [23], and [24]. 

     In this paper, we solve the super-resolution problem in which the registration parameters, noise, and 

image statistics are unknown. We restrict our model to the special case of global translational motion 

among low resolution frames, common space-invariant blur, additive white noise, and common integer 

decimation. In our solution, all unknown parameters are estimated jointly along with the restored high-

resolution image using all of the available data. We present two solutions derived within a stochastic 

framework. The first solution is based on a Bayesian formulation in which the desired high-resolution 

image is modeled as a latent, or hidden, variable and is marginalized (i.e. integrated out) over the image 

prior. The second solution is based on the popular maximum a posteriori (MAP) formulation in which the 

desired high-resolution image is taken as the mode of the posterior density function. One of the objectives 

of this paper was to compare these methodologies for the super-resolution problem. Both of our proposed 

solutions can be efficiently implemented in the frequency domain and therefore can be applied to large 

images. 

      The rest of the paper is organized as follows. The imaging model is described in Section II. In Section 

III, we present the stochastic estimation framework used in the rest of the paper. In Section IV, we derive 

the Bayesian solution to the super-resolution problem, based on the E-M algorithm, in the spatial domain. 

The efficient calculation of the E-M iterations in the frequency domain is described in Section V, 

supplemented by detailed calculations in Appendix A. In Section VI, we derive our MAP solution to the 

super-resolution problem. Experimental results comparing the approaches are presented in Section VII, and 

Section VIII concludes the paper. 

 

II.  Image Model 
     In this section, we present a generative, stochastic imaging model. We first approximate the underlying, 

or actual, scene as a discrete, high-resolution image of size MH x NH. Let x be an H HM N  x 1 vector 

containing the discrete intensity values, arranged lexicographically, of the underlying scene. We model the 

intensity values as samples from a Gaussian random process given by, 



 ( ) ( )
1

2 2 22| exp
2

H HM N T T

p α α α
−  

∝ − 
 

x Q Qxx  (1) 

where Q is the Laplacian operator matrix, α2 an unknown covariance parameter and ( )T denotes matrix 

transposition. For this model the covariance matrix is given by 2 1( )T T
x E α − = = Λ xx Q Q .  This image 

model is termed simultaneously autoregressive (SAR) and has been used successfully in image restoration 

[29], [30].  The observations, yi, are related to the underlying image x using the linear model 

 for 0,1, , 1i i i i P= + = −y B x n …  (2) 

where yi, i = 0, 1, …, P-1, is an L LM N  x 1 vector containing the discrete intensity values of the ith observed 

image arranged lexicographically, Bi is a linear degradation operator of size L LM N x H HM N , and ni is an 

L LM N  x 1 noise vector. The noise is modeled as a realization of a white Gaussian random process with 

zero mean 

 ( )~ ,i nNn 0 Λ  (3) 

where 2
n σ=Λ I , σ2 is the unknown noise variance, and I is the identity matrix. We assume that the noise is 

uncorrelated with the underlying scene. 

          The linear degradation operator, Bi, blurs, spatially shifts, and decimates x. Therefore, we decompose 

Bi as follows, 

 ( )i i i i=B D S δ H  (4) 

where Di is the ith  decimation operator of size L LM N  x H HM N , S is the shift operator of size H HM N  x 

H HM N  parameterized by the ith shift vector δi, and Hi is the ith  blur operator also of size H HM N  x 

H HM N . We define the ith shift vector to be a 1 x 2 vector, , ,i i x i yδ δ =  δ , containing the horizontal and 

vertical shifts, measured in pixels of x, of the ith image relative to the 0th image.  

     In this paper, we restrict ourselves to integer vertical and horizontal decimation factors, dy and dx, given 

by 

 andH H
y x

L L

M Nd d
M N

= =  (5) 

With this restriction, the decimation matrix Di can be obtained from an H HM N  x H HM N  identity matrix 

by copying from the identity matrix to the Di matrix only those rows that satisfy both of the following 

constraints, 
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where j is the row index of the identity matrix, mod is the integer modulus operator, and x    rounds x to 

the nearest integer towards minus infinity. 

     The shift operator, ( )iS δ , is the Shannon 2-D interpolation operator which is shift invariant [28]. The 2-

D impulse response of the shift operator is given by 
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for 0,1, , 1, and  0,1, 1.H Hm M n N= − = −… …  In this paper, we shall assume that ( )iS δ  and H can be 

approximated as doubly circulant matrices, which commute since they have the same eigenvectors [19]. 

     Note that our image model does not account for global rotation since, as we describe later, in order to 

improve the computational efficiency of our approach we employ the Discrete Fourier Transform (DFT) to 

diagonalize circulant matrices.  Since rotation is spatially variant, the DFT provides no computational 

advantage here.  

     Now, let us represent the entire sequence of observed images as a single L LPM N x 1 vector, given by 

 0 1 1

TT T T
P− =  y y y y"  (8) 

Likewise, the noise vector and degradation matrix can be written as 

 0 1 1

TT T T
P− =  n n n n"  (9) 

 ( )blockdiag 0,1,..., 1i i P= = −B B  (10) 

where blockdiag( ) returns a block diagonal matrix from the supplied component matrices. Written 

compactly, the model is now 

 = +y Bx n  (11) 

We further restrict the model to the case where all of the observations are degraded by the same blur and the 

same decimation, so that Di = Dj and Hi = Hj , , .i j∀ With this restriction, substituting (4) into (10) and (11) 

yields 

 = +y DSHx n  (12) 

where D is the L LPM N  x H HM N  block diagonal decimation matrix, 



 ( )blockdiag 0,1,..., 1i i P= = −D D  (13) 

S is a H HPM N  x H HM N  matrix containing the shift operators stacked on top of one another, 
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and H is a common spatially invariant H HM N  x H HM N  blur matrix.. 

     Equation (12) is the spatial-domain version of the model. It relates a discrete, high-resolution image to P 

low-resolution blurred, shifted, and noisy images. In addition, each observed image, yi, can be degraded by 

aliasing due to decimation. In this paper, we produce an estimate of x from the observation vector y, given 

the decimation factors dx and dy, the blur matrix H, and the Laplacian matrix Q. All other model parameters 

are considered unknown, including the covariance parameter α, the noise variance, σ2, and the P-1 shift 

vectors δi. 

     Estimating x from y requires the inversion of B, which is a well-known ill-posed problem. To ameliorate 

the effects of the noise and the ill-posedness of the problem, we regularize the solution by choosing a 

particular Q that determines (to within a scalar) the covariance in our statistical model of the image. In other 

words, we regularize the solution by exploiting prior knowledge of the second order statistics of x.  

 

III. Stochastic Frameworks for Super-resolution 
     In this section, we present two stochastic estimation frameworks, the Bayesian and the maximum a 

posteriori (MAP) frameworks, and discuss their relative merits. 

A. Bayesian Framework 

     Perhaps the most popular approach for parameter estimation is maximum likelihood. In this approach, 

the most probable parameters that gave rise to the data are estimated.  That is, the parameters of our image 

model are estimated by 

 ( ) ( )2 2

2 2 2 2

, ,
, , arg max | , ,

ML
p

α σ
α σ α σ=

δ
δ y δ  (15) 

However, in many cases the direct assessment, in closed form, of the likelihood function that captures the 

statistical relation between the unknown parameters and the observations, ( )2 2| , ,p α σy δ , is either difficult 

or impossible.  

     The computation of this likelihood is greatly facilitated by the introduction of “hidden” variables that are 

subsequently integrated out, or marginalized. The choice of hidden variables is problem dependent. 



However, in the super-resolution problem the choice is clear; the high-resolution image, x, is the 

appropriate hidden variable. With this choice, both ( )2| , ,p σy x δ and ( )2|p αx  are known and the 

marginal likelihood is obtained from the integral  

 ( ) ( ) ( ) ( )2 2 2 2 2 2| , , , | , , | , , |p p d p p dα σ α σ σ α= =∫ ∫y δ y x δ x y x δ x x . (16) 

     Despite the introduction of the hidden variables, in many cases the above integral is either impossible to 

compute in closed form or yields a marginal likelihood that is complicated so that its direct maximization is 

difficult. In such cases, iterative algorithms can be used to maximize either the marginal likelihood or a 

lower bound of it. Algorithms that do the latter are the Expectation Maximization (E-M) algorithms, and 

algorithms that do the former are the so-called variational E-M algorithms (see, for example [34], [35], and 

[36]). Both of these algorithms are guaranteed to converge—to a local maximum of the marginal likelihood 

in the case of the E-M, and to a local maximum of a strict lower bound on the marginal likelihood in the 

case of the variational E-M. 

     Once the marginal likelihood and the ML estimates of the parameters are obtained, the posterior with 

respect to the hidden variables can be computed according to 

 ( ) ( ) ( )
( )

2 2
2 2
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p p
p

p
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α σ

α σ
=

y x δ x
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If the posterior is available, its mean can be used as an estimate of the hidden variables. One pleasing side 

effect of the standard E-M algorithm and the variational E-M algorithm is that the mean of the hidden 

variables is calculated during the E-step of these algorithms [25],[36]. 

     More specifically, using the model in Section II, we have  
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Thus, the Bayesian integral in (16) is  
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Completing the square in the exponential of (19) and using the multidimensional Gaussian integral one can 

easily show that  
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where 2
2

T
Tα

σ
= +B BC Q Q , and det( ) denotes the determinant of a matrix. Clearly, the marginal likelihood 

above is difficult to maximize with respect to the parameters α2, σ2, and δ. It is hard to obtain derivatives 

for these parameters and the parameters α2 and σ2 must be positive. This is the main motivation for resorting 

to the E-M algorithm in this paper. 

 

B. MAP Framework 

     The MAP estimates of the parameters are obtained by maximizing 

 ( ) ( ) ( )2 2

1
2 2 * 2 * 2

MAP , , 0

, , arg max | , , |
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with  
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p p pα σ σ α
−

=
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where we have used in (22) the fact that in Bayes’ law for p(x|y) the denominator is independent of x. 

Clearly, if both α2, σ2, δ, and x have to be estimated, we have to iterate between (21) and (22). However, 

unlike the E-M, there is no proof in the general MAP case (e.g. for any p(y,x,α2,σ2,δ)) that guarantees 

convergence of this iteration. Instead, this burden is placed on the user who must prove this on a case-by-

case basis. For example, if it can be shown that the joint density function 

( ) ( ) ( )2 2 2 2, , , , | , , |p p pα σ σ α=y x δ y x δ x  is strictly convex with respect to α2, σ2, δ, and x, then 

convergence follows from the properties of cyclic coordinate decent. 

 

C. Comparison of the Bayesian and MAP Frameworks 

     Comparing the Bayesian and MAP approaches, we see that for the former in order to obtain the 

estimates of the unknown parameters, α2, σ2, and δ, we marginalize the hidden variables, while for the latter 

we use the mode of the hidden variables. We also see that to estimate the hidden variables, in the Bayesian 

approach we use the mean of the posterior while in the MAP approach we use the mode of the posterior. In 

principle, the Bayesian approach offers the advantage of more reliable parameter estimates since all of the 

information that is known about the hidden variables is incorporated into the estimation process. In other 

words, the mode of the posterior of the hidden variables may not be representative of the density 

function[34].  

 



IV.  Bayesian Super-resolution Using the E-M Algorithm 
     In this section, we derive a Bayesian algorithm for super-resolution, based on the E-M-algorithm, in the 

spatial domain. In this paper, we use the maximum-likelihood (ML) criterion to find the best estimate of the 

parameters of the image model. Direct maximization of the likelihood function is difficult, however, due to 

the high non-linearity of the likelihood function with respect to those parameters [25]. Instead, an iterative 

approach called the Expectation-Maximization (E-M) algorithm, originally proposed by Dempster et al. 

[26], is employed to find the ML estimate of the model parameters and x. 

     In the E-M approach, instead of maximizing the likelihood of the observations with respect to the model 

parameters, one maximizes the expectation of the complete data conditioned on the incomplete data. The 

incomplete data is the set of observations. The user must choose the complete data, denoted herein as z, 

properly. Let us denote by θ  the set of the unknown parameters and by ( ; )zf θz  the probability density 

function (PDF) of the complete data. In the E-step of the E-M algorithm, the conditional expectation 

of log ( ; )zf θz , conditioned upon the observed data y and the current estimate of the model parameters, is 

computed. In the M-step, this expectation is maximized. In mathematical form, the E-M is given by the 

alternate computation of 

 ( )( ) ( ); log ( ; ) | ;p p
zQ E fθ θ θ θ =  z y  (23) 

where E[a | b ] denotes expectation of a with respect to b, and 

 { }( 1) ( )arg max ( ; )p pQ
θ

θ θ θ+ =  (24) 

where ( )pθ  is the estimate of θ  at the p-th iteration. It was shown in [25] and [37] that choosing z =
 
 
 

x
y

 as 

the complete data permits the simultaneous identification of the system matrix (i.e., B in our model) and the 

image parameters and the restoration of the image. With this choice of complete data the negative of the 

conditional log likelihood, dropping the constant term, is equal to [25],[37] 
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where ( )H⋅  denotes the Hermitian (complex conjugate transpose) of a matrix, [ ]| |x y E=µ x y , and 

| |T
x y E  =  Λ xx y . It is well-known for random vectors related by y=Bx+n, where Λx =E[xxT] and n~N(0, 

Λn), that 
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−
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Equations (26), and (27) constitute the E-step of the E-M algorithm in the spatial domain. However, 

computation of the E-step in the spatial domain is impractical due to the matrix inversion required in the 

updates of the conditional mean in (26) and conditional covariance in (27).  As will be shown in the next 

section, by transforming the E-M iterations to the frequency domain, the matrix inversion becomes 

manageable. 

 

V. Efficient Computation of the E-M Iterations in the Frequency Domain 

     The computation of (26) and (27) requires the inversion of the matrix H
x n+BΛ B Λ , which for P = 4 and 

ML = NL = 256 is of size 262,144 x 262,144. Direct inversion of a matrix of this size is impractical. This 

matrix due to the decimation matrix D is not doubly circulant; thus, unlike the classical restoration problem, 

this matrix cannot be diagonalized by the 2-D DFT [27]. 

     Nonetheless, let us define an interlaced observation vector, ′Y , in the frequency domain as follows: 

 [ ](0) (1) ( 1) T
L LM N′ ′′ ′′ ′′= −Y Y Y Y"  (28) 

where [ ]0 1 1( ) ( ) ( ) ( ) T
Pn n n n−′′ =Y Y Y Y" and Yi(n) is the nth element of the 2-D DFT of the intensity 

values of yi arranged lexicographically. With this definition, it is shown in Appendix A that the conditional 

mean and conditional covariance are given in the frequency domain respectively by 

 |x y x yd d − ′= 1M UV Y  (29) 

 1 H
|x y x

−= −S S UV U  (30) 

where V and U are defined in Appendix A, and V is a block diagonal matrix composed of P x P 

submatrices. This decoupling of the system is the key to the frequency domain approach, as clearly, the 

system in (29) is far easier to compute than the equivalent system in (26). Equations (29) and (30) constitute 

the E-step of the E-M algorithm in the frequency domain.  

     We are now ready to compute the M-step of the E-M algorithm in the frequency domain.  In the M-step, 

we must minimize the likelihood function given by (25) with respect to the unknown parameters, α2, σ2, 

and δ. This is conveniently computed in the frequency domain. After significant algebra, the frequency 

domain equivalent of (25) is given by 
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where [ ] ,m n
A selects the (m,n)th element of matrix A; ( )*⋅  denotes complex conjugate; HD, ( )D iS δ , and SX 

are diagonal matrices and are the frequency domain equivalent of H, ( )iS δ , and xΛ  as defined in 

Appendix A in equations (55), (56), and (66), respectively; and for notational convenience we have defined 

as a function of the summation indices in (31)  

 ( )L H Lu jM k N mN x= + + +  (32) 

 ( )L H Lv lM k N nN x= + + +  (33) 

To minimize (31) with respect to the unknown covariance parameter, α2, we substitute (66) into (31), 

differentiate the result with respect to α2, set it equal to 0, and solve for α2. The result of this procedure 

yields the following update equation for α2: 
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where Q�  is the diagonal frequency domain version of the matrix Q. Repeating the same procedure with 

respect to σ2 yields the following update equation for the noise variance: 
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If we repeat the procedure for δ, we find that the equation expressing the root of the partial derivative is a 

transcendental form. Therefore, we must resort to numerical methods to minimize (31) with respect to δ. 

Gradient decent methods can be employed here since closed-form expressions exist for the first partial 

derivatives. However, in this paper, we employed direction set methods [32] to find δ. 

 

VI.  MAP Super-resolution 
     Our second proposed approach is based on the joint MAP estimation of the unknown parameters and the 

high-resolution image. In this section, we derive our MAP algorithm. From Bayes’ law, the posterior 

required for the MAP estimate is 

 ( ) ( ) ( )2 2
2 2

2 2

| , , |
| , , ,

( , , , )
p p

p
p

σ δ α
σ α

σ α
=

y x x
x y δ

y δ
 (36) 

where we assume ( )2|p αx  is distributed according to (1), and ( )2| , ,p σy x δ  is distributed according to 

(18). Thus, to compare the Bayesian and MAP estimation methods on equal footing we employ in our MAP 

method the same imaging model and the same prior model of x used in our Bayesian method. The MAP 

estimate of the high-resolution image and the unknown parameters is given by 

 { } ( ) ( )2 2

2 2 2 2
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MAP
p p

σ α
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Substituting (1) and (18)  into (37) and maximizing with respect to each unknown separately yields 
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where ( )(p) indicates the value at the pth iteration. Our MAP algorithm requires the iterative computation of 

(38) through (41) and thus maximizes the joint probability by cyclic coordinate descent. This algorithm is 

very similar in spirit to the algorithm in [12]. Note that for simulation purposes, the minimization required 

in (41) was computed numerically using direction set methods, although gradient descent methods can also 

be employed. We note that the update for x is equivalent in our particular MAP and Bayesian formulations. 

Finally, the MAP solution presented above has an equivalent version in the frequency domain, the 

derivation of which is straightforward and is omitted here. 

 

VII.  Experimental Results 
     A number of simulations have been performed using the proposed algorithms on a set of images. To 

present a case for the joint estimation of the parameters, we also compare our approaches to a third 

approach in which the registration parameters are estimated independently from the other parameters and 

the restored high-resolution image.  

     In order to measure parameter estimation and image restoration performance, a synthetic set of degraded 

images were computed from a single high-resolution image. In all of our simulations, we employed the 

following model for the blurring operator H, which we assumed to be known.  We decomposed H into two 

circulant matrices, 1 2=H H H , where H1 is a doubly circulant approximation to a 2D linear convolution 

matrix assembled from the following 2D impulse response 

 ( ) ( )2 2 2
1 2 2

1 1, ; exp
2 2

h m n m nβ
πβ β

 
= − + 

 
 (42) 

     This component of the blur model approximates the combined effects of diffraction, geometric blur, and 

atmospheric blur. The second component of the blur, H2, models the integration of photons by the sensor 

and is a doubly circulant approximation to a 2D linear convolution matrix assembled from the following 2D 

kernel 
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     After blurring the high-resolution image by applying H, the blurred images were shifted in the spatial 

domain using a truncated 2-D separable sinc function, where the support of the sinc function was equal to 

the data support of the high-resolution image. Per simulation trial, the shifting process was repeated with 

different random shift vectors for 0,1, , 1i i P= −δ … , with ,i xδ  and ,i yδ  samples from uniform 

distributions ( ),x xU d d− +  and ( ),y yU d d− + , respectively. In all of our experiments, we set x yP d d= . In 

order to preserve their aspect ratio, blurred and shifted images were decimated by equal integer decimation 

factors in the horizontal and vertical directions. Finally, white Gaussian noise with zero mean was added to 

the blurred and shifted low-resolution images. 

     We initialized our iterative algorithm using random values. The shift vector estimate was set randomly 

from the same uniform distributions as the shifts used to produce the degraded images. The noise variance 

was initialized to a random value drawn from U[300, 600]. The covariance parameter was initialized to a 

random value drawn from U[0.03, 0.20]. The regularization matrix Q was set to correspond to linear 

convolution with the following filter mask: 
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For all experiments, the E-M and MAP iterations were terminated when the criterion 
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was satisfied. This criterion was motivated by the desire to stop both the E-M and MAP iterations at a 

similar point. Were it not for this constraint, a more natural choice for the E-M algorithm would be to 

threshold the value of the conditional log likelihood, which is guaranteed to increase monotonically [26]. As 

a quantitative measure of image restoration performance, we used the peak signal-to-noise ratio (PSNR) 

given by 

 
2

10
2

25510log 1 ˆ
H H

PSNR

M N

 
 
 =
 − 
 

x x
 (46) 



       We compared the performance of our two proposed joint estimation algorithms to a third algorithm. 

This third algorithm was based on an independent estimation of the registration parameters (i.e., the 

registration parameters were estimated separately from the restoration.) We chose the sub-pixel registration 

method in [33], based on the phase correlation matrix, to estimate the registration parameters directly from 

the low-resolution observations.  The registration parameters estimated using the method in [33] were then 

supplied to our proposed Bayesian technique, modified to treat the registration parameters obtained from 

the registration step as known. We denote this approach as Algorithm 1. We denote our MAP approach 

described in Section VI as Algorithm 2, and our Bayesian approach described in Sections IV and V as 

Algorithm 3. 

     For our experiments, we chose the 256 x 256 resolution chart image shown in Fig. 1. Henceforth, we 

shall refer to this image as the ideal high-resolution image. In our experiments, we set dx = dy = 2 and 

created four observations per trial (i.e. P = 4). 

     A number of experiments were performed with varying amounts of noise and blur. The noise variance 

was set to 315.8, 31.58, 3.158, and 0.3158, corresponding to a SNR of approximately 10, 20, 30, and 40 dB, 

respectively, relative to the power in the zero mean version of the image. In other words, we have defined 

SNR in terms of the zero mean version of the high-resolution image as ( )2 2
1010log H HSNR M N σ= −x x  

with x  equal to the mean of x. This is a convenient measure for simulation, as in our formulation the 

estimation of the noise variance is performed on images with zero mean. In order to measure and compare 

the performance of the proposed parameter estimation algorithm, ten realizations of the noise were 

generated for each noise level. Since the same uniform blur modeled by H2 was present in all trials, our blur 

model was parameterized by a single parameter, β2. We experimented with several different values for β2 

with 40 trials (10 per SNR) for each value of blur variance. We report the results for β2 = 0.0 and β2=0.5 as 

representative results and denote the experiments with β2 = 0.0 as Experiment 1 and experiments with 

β2=0.5 as Experiment 2. 

     To measure the quality of registration parameter estimation, we calculated the mean of the magnitude of 

the registration error averaged over both components, in units of the number of high-resolution pixels, 

defined as  
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where ( )
,
k

i jδ is the true shift and ( )
,

ˆ k
i jδ  is the estimated shift in the kth trial. We also calculated the standard 

deviation of the magnitude of the registration error, again over both translational components of the shift 

vector and over all ten realizations of the noise, as follows 
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The results for β2=0.0 are displayed in Table I, and the results for β2=0.5 are displayed in Table II. The table 

entries are blank for the 10 dB case for Algorithm 2 because the MAP method did not converge in any of 

the trials for the 10 dB SNR case in either experiment. This highlights one of the key advantages of the 

Bayesian approach utilizing the E-M algorithm over the MAP approach—convergence of the E-M is 

guaranteed.  

     The results show that both of the proposed approaches produce superior registration estimates as 

compared to independent estimation of motion followed by restoration. This is true even in the very high 

SNR case of 40 dB where one would expect the chosen separate registration method to perform well. The 

performance improvement is particularly pronounced at high noise levels. The algorithm in [33] requires 

the user to specify values of two parameters, ρ and α, the purpose of which is to separate “reliable” phase 

estimates from “unreliable” phase estimates so that only reliable estimates are included in the calculation of 

the subpixel shift. In our experiments, we chose 1.0ρ =  and 0.1α = , as this combination yielded the best 

performance across all SNRs. From these results, we conclude that the proposed joint estimation approach 

is both more accurate and more robust than the method in [33]. The Bayesian method produces more 

accurate registration parameter estimates than the MAP approach.   

     Tables I and II also list the mean and standard deviation of the estimates of the noise variance, σ2, and 

covariance parameter, α2. The results of Algorithm 1 confirm that poor registration estimates hamper the 

estimation of the other parameters, providing additional justification for a joint estimation procedure. 

Comparing the Bayesian and MAP methods, we see that the Bayesian approach consistently provides 

superior noise variance estimates as compared to our MAP algorithm, as evidenced by the significantly 

smaller average mean-square error of the Bayesian noise variance estimates. 

     Table III and Table IV show the PSNR results (averaged over the trials) of Experiment 1 and 

Experiment 2, respectively. In all cases, the proposed joint estimation approaches produce superior 

restorations with higher PSNR compared to the restorations produced by the two-step procedure consisting 

of first, the separate registration estimation step, and second, the restoration. From this, we conclude that the 

joint estimation approach is superior to the independent estimation approach. Finally, the Bayesian 

approach provides a small PSNR gain over the MAP approach.  

    We therefore conclude that the Bayesian approach produces superior parameter estimates and slightly 

improved restorations compared to the MAP approach. From the fact that the MAP approach did not 

converge for the 10 dB case in either experiment, we conclude that our Bayesian approach is more robust 

than our MAP approach, as well. 



     We display a reconstruction for the 30 dB case in Experiment 1 in Fig. 2 for all three algorithms. For 

display purposes, we have chosen the trial that resulted in the most visible difference between Algorithm 1 

and the other two algorithms. Similarly, Fig. 3 shows the reconstructions produced by the three methods for 

the 20 dB case in Experiment 2. In this case, we show the best result of Algorithm 1 of the ten trials. In this 

experiment, the restoration produced by the Bayesian algorithm is sharper than the restoration produced by 

the MAP algorithm. This can be attributed to the more accurate estimation of the noise variance. 

     Figure 4 shows the evolution of the PSNR for Algorithm 2 and Algorithm 3 versus the number of 

iterations for a typical trial in Experiment 1 with the noise level set at 40 dB. We have chosen to display the 

worst-case (i.e., the trials with SNR of 40 dB required the largest number of iterations). Note that most of 

the improvement was obtained in the first few iterations. Each iteration took an average of about 75 seconds 

and 90 seconds for Algorithm 2 and Algorithm 3, respectively, on an Intel 2.4 GHz Pentium 4 CPU. In both 

cases, the vast majority of execution time was devoted to the numerical search for the registration 

parameters within the M-step of the Bayesian method and the calculation of (41) in the MAP method. 

Figure 5 shows the evolution of the convergence criterion versus the number of iterations for the same 

experimental trial. Note that the vertical axis is plotted on a logarithmic scale. From these plots, it is clear 

that both algorithms converge rapidly and that the PSNR increases monotonically. 

 

VIII.  Conclusions 
     We have presented two iterative super-resolution algorithms, one based on a Bayesian formulation and 

employing the E-M algorithm, and another based on a MAP formulation solved iteratively by cyclic 

coordinate decent. Our proposed approaches are novel in that the noise variance, regularization, and 

registration parameters are all treated as unknowns and are estimated jointly using all of the available data. 

Our numerical experiments show that the proposed joint estimation approaches offer significantly more 

accurate and robust estimation of the unknown registration parameters, leading to improved estimates of the 

other unknown model parameters as compared to conventional approaches that employ registration as an 

independent estimation procedure during pre-processing. Our numerical experiments also show that the 

Bayesian approach provides measurable advantages over the MAP approach, including improved 

estimation of the model parameters and improved restorations.  

The issue of the sensitivity to errors in the blur is still an open question for the super-resolution 

problem. However, initial experiments suggest that it is an issue that can be addressed using similar 

methods as in “classical image restoration”, see for example [38] and [39]. 

 



Appendix A 
     In this Appendix, we derive the expressions for the E-step of the E-M algorithm in which the conditional 

mean and conditional covariance of x are updated in the frequency domain. Let us define the following 2-D 

DFT matrices: 

 
H Hi N M′ = ⊗Α A A  (49) 

 
L Li N M′′ = ⊗A A A  (50) 

where AK is a 1-D DFT of size K x K and ⊗  represents the Kronecker product. For example, 
HNA  is a 1-D 

DFT matrix of size NH x NH, and ′A  is the 2-D DFT matrix of size H HM N  x H HM N . Let us define the 

block diagonal matrices 

 ( )blockdiag 0,1,..., 1i i P′= = −A A  (51) 

 ( )blockdiag 0,1,..., 1i i P′′= = −A A  (52) 

From (11) and (12), 

 =B DSH  (53) 

Using (49), (51), and (52), let us transform the degradation matrix B to the frequency domain as follows: 

 1 1 1 1− − − −′ ′ ′ ′=ABΑ ADA ASA A HA  (54) 

The blur matrix H is a 2-D convolution matrix and therefore can be written as a doubly circulant matrix. 

Therefore, 

 D
−′ ′ =1A HA H  (55) 

where HD is a diagonal matrix containing the frequency domain samples of the blur matrix. The shift matrix 

S consists of P 2-D convolution submatrices stacked vertically and therefore can be written as a matrix of P 

doubly circulant submatrices. Therefore, 

 

( )
( )

( )

0

1
D

1

( )

D

D

D P

−

−

 
 
 ′ = = 
 
  

1

S δ
S δ

ASA S δ

S δ
#

 (56) 

where ( )D iS δ  is a complex, diagonal matrix containing the frequency domain samples of the ith shift 

matrix. Note that since δ0=[0 0], SD(δ0) = I. Furthermore, let us define 



 1−=F ADA  (57) 

We call the matrix F the “folding” matrix because it describes how the frequency domain version of the 

high-resolution signal folds over on itself due to the decimation operation. The folding matrix has the 

following form: 

 ( )blockdiag 0,1,..., 1i i P= = −F F  (58) 

where 

 0 1 1
1

yi d
x yd d −

 ′ ′ ′=  F F F F"  (59) 

 ( )blockdiag 0,1,..., 1j i Li M′ ′′= = −F F  (60) 

 0 1 1xk d −′′  =  F I I I"  (61) 

The identity matrices in (61) are NH x NH. Substituting (55), (56), and (57) into (54) yields, 

 1
D D( )−′ =ABA FS δ H  (62) 

from which it follows that 

 H * * T
D D ( )x yd d−′ =1A B A H S δ F  (63) 

where * denotes the complex conjugate. The frequency-domain versions of the observation vector, noise 

covariance, and underlying scene covariance are given by 

 =Y Ay  (64) 

 2
n n σ−= =1S AΛ A I  (65) 

 ( ) [ ] 21

2 2,

1 1 ( )T
x x m m

m
α α

−−
= ⇒ =-1S A Q Q A S Q�  (66) 

where ( )mQ� are the eigenvalues of the regularization matrix Q. Note that the matrices on the left-hand side 

of (65) and (66) are diagonal. 

     With the above definitions, we are ready to express the E-step of the E-M algorithm in the frequency 

domain. Starting with the conditional mean, 
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 (67) 

From inspection of (67), it appears as though transforming the problem to the frequency domain has not 

made the inversion of H
x n+BΛ B Λ  any easier. However, by decomposing the block diagonal matrices into 

their sub-matrices, one obtains 

 

* * * * * *
| 0 1 1

2 2 22 * *
1 1

2 2 22 *
1 1 1 1

2

1

0 1 1

0 0 0 1 0 1

1 1 1 1

1 0

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( )

x y x y x D D x D D x D D P

x D x D D x D D P

T T
x D x D D x D D P

x D D P

T T T
P

T T T
P

T
D D

P

d d

σ

σ

−

−

−

−

−

−

−

=

+

+

  M S H S δ F S H S δ F S H S δ F

F S H F I F S H S δ F F S H S δ F

F S H S δ F F S H S δ F I F S H S δ S δ F

F S H S δ F

" i

"

"
# # % #

2 2* 2
1 1 1

1

0

1

11 1 1 1( ) ( ) ( )x D D P D x D D P
T T T PP P P σ− −

−

−− − − +

   
   
   
   
   
     F S H S δ S δ F F S H S δ F I

Y
Y

Y"

#

 (68) 

where each matrix of the form 2 *
x D D ( ) ( ) T

i i D j jFS H S δ S δ F  is a diagonal matrix of size L LM N  x L LM N . By 

performing row and column operations, we can convert the P x P collection of diagonal L LM N  x L LM N  

submatrices into a block diagonal matrix consisting of L LM N  P x P submatrices. 

     Let us define a set km consisting of the integers generated by 
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where 
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Now, we define the P x P matrix Vm 

 
2 2 22 * *

1 1

2 2 2 22 *
1 1 1 1

2 2 *
1 1

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) (

m m m

m m m

m

x
i i i

i i i

i

D x y x D D x D D P
i k i k i k

x D D x D D x y x D D D P
i k i k i km

x D D P x D D P D
i k

d d

d d

S

σ

σ

−
∈ ∈ ∈

−
∈ ∈ ∈

− −
∈

+

+
=

          

          

  

∑ ∑ ∑

∑ ∑ ∑

∑

S H I S H S δ S H S δ

S H S δ S H S δ I S H S δ S δ

S H S δ S H S δ δ

V

"

"

# # % #
2 2 2

1 1) ( )
m m

i i
x D D P x y

i k i k
d d σ−

∈ ∈
+

 
 
 
 
 
 
 
         

∑ ∑ S H S δ I"

 (71) 



In (71), the notation [A]i selects the ith diagonal of matrix A. Let V be a block diagonal matrix consisting of 

the P x P submatrices defined as, 

 ( )blockdiag 0,1, , 1i L Li M N= = −V V …  (72) 

Now, let us define a matrix U recursively as follows: 
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where 

 ( ),blockdiag 0,1, 1i i j Lj M= = −U U� �� …  (74) 
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 (75) 

 ( ), , , , ,diag 0,1, 1i j k i j k m Lm N= = −U U��� ���� …  (76) 

 * * * *
, , , 0 1 1( ) ( ) ( )i j k m x D D D D Pn n n n−

        =         U S H S δ S δ S δ���� "  (77) 

and diag( ) forms a diagonal matrix and 

 ( )L H Ln iM j N kN m= + + +  (78) 

With these definitions, the conditional mean in the frequency domain is given by 

 |x y x yd d − ′= 1M UV Y  (79) 

and the conditional covariance in the frequency domain is given by 

 1 H
|x y x

−= −S S UV U  (80) 

This completes the derivation of the E-step in the frequency domain. 
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Fig. 1 Original resolution chart image, 256 x 256 pixels 

 
Fig. 2a Experiment 1, Zero-order hold of one of the 128 x 128 observations, σ2=3.158, β2=0.0 
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Fig. 2b Experiment 1, Worst restoration produced by Algorithm 1, PSNR = 30.24 dB 

 

 
Fig. 2c Experiment 1, Restoration produced by Algorithm 2 (MAP), PSNR = 33.22 dB 



 
Fig. 2d Experiment 1, Restoration produced by Algorithm 3 (Bayesian), PSNR = 34.97 dB 

 

 
Fig. 3a Experiment 2, Zero-order hold of one of the 128x128 observations, σ2=31.58, β2=0.5 

 



 
Fig. 3b Experiment 2, Best restoration produced by Algorithm 1, PSNR = 31.75 dB 

 
Fig. 3c Experiment 2, Restoration Produced by Algorithm 2 (MAP), PSNR = 31.61 dB 

 



 
Fig. 3d Experiment 2, Restoration Produced by Algorithm 3 (Bayesian), 32.06 dB  
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Fig. 4 PSNR evolution versus the number of iterations, Experiment 1, SNR = 40 dB 
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Fig. 5 Convergence Criterion versus the number of iterations, Experiment 1, SNR = 40 dB 



TABLE I 
EXPERIMENT 1: UNIFORM 2X2 BLUR 
PARAMETER ESTIMATION RESULTS 

 

 SNR: 10 dB SNR: 20 dB SNR: 30 dB SNR:40 dB 
Algorithm 1  

Mean magnitude of registration error, ˆ| |µ −δ δ  0.4291 0.0807 0.0982 0.0139 

Algorithm 1  
Standard dev. of magnitude of registration 

error, ˆ| |σ −δ δ  
0.4266 0.1001 0.1308 0.0090 

Algorithm 1 
Mean of estimated noise variance 425.72 37.35 14.180 2.6108 

Algorithm 1 
Standard dev. of estimated noise variance 131.12 7.518 21.037 0.8380 

Algorithm 1 
Mean of estimated covariance parameter 0.0238 0.0237 0.0282 0.0310 

Algorithm 1 
Standard dev. of estimated covariance 

parameter 
0.0060 0.0005 0.0012 0.0014 

Algorithm 2  
Mean magnitude of registration error, ˆ| |µ −δ δ  -- 0.0108 0.0141 0.0173 

Algorithm 2  
Standard dev. of magnitude of registration 

error, ˆ| |
σ

−δ δ  
-- 0.0076 0.0123 0.0101 

Algorithm 2 
Mean of estimated noise variance -- 25.80 1.885 0.9079 

Algorithm 2 
Standard dev. of estimated noise variance -- 1.176 0.5777 0.3539 

Algorithm 2 
Mean of estimated covariance parameter  -- 0.0890 0.0476 0.0495 

Algorithm 2 
Standard dev. of estimated covariance 

parameter 
-- 450.3 10−⋅  459.7 10−⋅  442.3 10−⋅  

Algorithm 3 
Mean magnitude of registration error, ˆ| |

µ
−δ δ  0.0144 0.0098 0.0137 0.0144 

Algorithm 3 
Standard dev. of magnitude of registration 

error, ˆ| |σ −δ δ  
0.0228 0.0194 0.0184 0.0200 

Algorithm 3 
Mean of estimated noise variance  304.41 30.48 4.602 2.413 

Algorithm 3 
Standard dev. of estimated noise variance 2.4964 0.8406 0.8066 0.7407 

Algorithm 3 
Mean of estimated covariance parameter 0.0183 0.0230 0.0283 0.0310 

Algorithm 3 
Standard dev. of estimated covariance 

parameter 
41.555 10−⋅  44.828 10−⋅  49.415 10−⋅  410.68 10−⋅  

 



TABLE II 
EXPERIMENT 2: CASCADE OF UNIFORM 2X2 BLUR AND GAUSSIAN BLUR WITHβ2=0.5 

PARAMETER ESTIMATION RESULTS 
 

 SNR: 10 dB SNR: 20 dB SNR: 30 dB SNR:40 dB 
Algorithm 1,  

Mean magnitude of registration error, ˆ| |µ −δ δ  0.6154 0.1353 0.0212 0.0169 

Algorithm 1,  
Standard dev. of magnitude of registration 

error, ˆ| |σ −δ δ  
0.5568 0.1311 0.0195 0.0193 

Algorithm 1, 
Mean of estimated noise variance 422.86 42.669 4.8648 2.0399 

Algorithm 1, 
Standard dev. of estimated noise variance 88.90 12.276 0.6773 0.4744 

Algorithm 1, 
Mean of estimated covariance parameter 0.0235 0.0196 0.0212 0.0254 

Algorithm 1, 
Standard dev. of estimated covariance 

parameter 
0.0048 0.0010 0.0007 0.0033 

Algorithm 2  
Mean magnitude of registration error, ˆ| |

µ
−δ δ  -- 0.0194 0.017 0.0197 

Algorithm 2  
Standard dev. of magnitude of registration 

error, ˆ| |σ −δ δ  
-- 0.0086 0.0109 0.0101 

Algorithm 2 
Mean of estimated noise variance -- 43.16 3.5438 1.2310 

Algorithm 2 
Standard dev. of estimated noise variance -- 1.1114 0.5285 0.4267 

Algorithm 2 
Mean of estimated covariance parameter -- 0.1748 0.0750 0.0607 

Algorithm 2 
Standard dev. of estimated covariance 

parameter 
-- 432.71 10−⋅  439.77 10−⋅  459.47 10−⋅  

Algorithm 3,  
Mean magnitude of registration error, ˆ| |µ −δ δ  0.0228 0.0194 0.0184 0.0199 

Algorithm 3,  
Standard dev. of magnitude of registration 

error, ˆ| |
σ

−δ δ  
0.0160 0.0092 0.0105 0.0097 

Algorithm 3, 
Mean of estimated noise variance  314.62 32.33 4.638 1.951 

Algorithm 3, 
Standard dev. of estimated noise variance 2.0908 0.4147 0.6738 0.6007 

Algorithm 3, 
Mean of estimated covariance parameter 0.0168 0.0186 0.0211 0.0228 

Algorithm 3, 
Standard dev. of estimated covariance 

parameter 
42.403 10−⋅  41.509 10−⋅  47.040 10−⋅  410.81 10−⋅  

 



TABLE III 
EXPERIMENT 1, PSNR RESTORATION RESULTS AVERAGED OVER ALL TRIALS 

 
 

 SNR = 10 dB SNR = 20 dB SNR = 30 dB SNR = 40 dB 
Algorithm 1 26.11 dB 31.27 dB 33.38 dB 35.49 dB 
Algorithm 2 -- 31.54 dB 33.91 dB 35.27 dB 
Algorithm 3 27.56 dB 31.74 dB 34.57 dB 35.68 dB 

Gain Provided by Algorithm 3 over 
Algorithm 1, Experiment 1 1.45 dB 0.47 dB 1.19 dB 0.19 dB 

Gain Provided by Algorithm 3 over 
Algorithm 2, Experiment 1 -- 0.20 dB 0.66 dB 0.41 dB 

 

TABLE IV 
EXPERIMENT 2, PSNR RESTORATION RESULTS AVERAGED OVER ALL TRIALS 

 
 

 SNR = 10 dB SNR = 20 dB SNR = 30 dB SNR = 40 dB 
Algorithm 1 24.54 dB 29.84 dB 32.14 dB 33.14 dB 
Algorithm 2 -- 28.40 dB 32.49 dB 33.37 dB 
Algorithm 3 26.54 dB 30.30 dB 32.46 dB 33.36 dB 

Gain Provided by Algorithm 3 over 
Algorithm 1 2.0 dB 0.46 dB 0.32 dB 0.23 dB 

Gain Provided by Algorithm 3 over 
Algorithm 2 -- 1.90 dB ~ 0 dB ~ 0 dB 

 

 

 


