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Variational Bayesian Image Restoration Based on a
Product of t-Distributions Image Prior

Giannis Chantas, Nikolaos Galatsanos, Aristidis Likas, and Michael Saunders

Abstract—Image priors based on products have been recognized
to offer many advantages because they allow simultaneous enforce-
ment of multiple constraints. However, they are inconvenient for
Bayesian inference because it is hard to find their normalization
constant in closed form. In this paper, a new Bayesian algorithm is
proposed for the image restoration problem that bypasses this dif-
ficulty. An image prior is defined by imposing Student-t densities
on the outputs of local convolutional filters. A variational method-
ology, with a constrained expectation step, is used to infer the re-
stored image. Numerical experiments are shown that compare this
methodology to previous ones and demonstrate its advantages.

Index Terms—Constrained variational inference, image restora-
tion, product prior, Student’s-t prior, Variational Bayesian Infer-
ence.

I. INTRODUCTION

I MAGE restoration is a well known ill-posed inverse
problem that requires regularization. Regularization based

on Bayesian methodology is very popular since it provides a
systematic and rigorous framework for estimation of the model
parameters. Regularization in a Bayesian framework corre-
sponds to the introduction of a prior for the image statistics [1],
which enforces prior knowledge for the image.

Initially, stationary Gaussian priors were used; see for ex-
ample [2] and [3]. Such priors are convenient from an imple-
mentation point of view because they require only one param-
eter; however, they have the drawback of not being able to pre-
serve edges and they smooth noise in flat areas of the image. To
avoid this problem, there has been a very large body of work in
the last 20 years. A number of methods have been introduced to
regularize in a spatially variant manner, or equivalently, many
edge-preserving priors have been proposed. A detailed survey
on this topic is beyond the scope of this paper. In what follows,
we selectively reference work that is pertinent to the herein pro-
posed approach.
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Priors based on robust Huberov statistics and Generalized
Gaussian pdfs have also been used; see, for example, [4] and
[5]. Recently, such a prior was used along with the majorization
minimization framework to derive an edge-preserving image
restoration algorithm that can be implemented very efficiently
using the fast Fourier transform [6]. The main shortcomings of
such priors are that their normalization constant is hard to find.
The parameters of such models have to be adjusted empirically.

Another class of algorithms, which have been very popular
in certain image processing circles designed for edge-preserving
restoration, is based on the total variation (TV) criterion [8]. Al-
though TV-based regularization has been popular, till recently
it involved ad hoc selection of certain parameters. Recently,
though, a Bayesian framework was proposed that allows esti-
mation of these parameters in a rigorous manner. Nevertheless,
improper priors were used in these works, and as a result these
methodologies contain an element of subjective selection [9],
[10] and [11].

Priors based on wavelet decompositions and heavy-tailed
pdfs have been used for edge-preserving image restoration in
[12] and [13] along with the EM algorithm. In [7] and [14],
the denoising problem was addressed with heavy-tailed priors
in the wavelet domain. Image denoising involves a simpler
imaging model; as a result Bayesian inference is easier in this
case. A Gaussian scale mixture (GSM) was used to model
the wavelet coefficients in [7] and a one-step algorithm for
inference. In [14], Hirakawa and Meng used the Student-t pdf
to model the statistics of the wavelet coefficients, and derived
an EM algorithm for inference. The Student’s-t pdf is a special
case of a GSM.

Product-based image priors have also been proposed in [15].
Such priors combine in product form multiple probabilistic
models. Each individual model gives high probability to data
vectors that satisfy just one constraint. Vectors that satisfy only
this constraint but violate others are ruled out by their low
probability under the other terms of the product model. Image
priors based on this idea have been used in image recovery
problems [15] and [16]. However, such priors were learned
using a large training set with images and stochastic sampling
methods and used in a number of image recovery problems
based on “empirical” maximum a posteriori approaches and
gradient descent minimization [15]. This differs from the herein
proposed approach where the product prior is learnt only from
the observations. The term “empirical” is used because the PoE
priors used were not normalized; thus, the parameters of the
recovery algorithm cannot be estimated or inferred rigorously
but were adjusted rather empirically.

In [17], [18], and [19], some of us proposed a new hierarchical
image prior for image restoration, image super-resolution, and
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blind image deconvolution problems, respectively. This prior
is Student-t based, is in a product form, and is able to cap-
ture the local image discontinuities and thus provide edge-pre-
serving capabilities for those problems. Its main shortcomings
are that both the normalization constant and the hyper-param-
eters of the prior were found heuristically. Furthermore, image
models based on Student-t statistics have been used with success
in other than image reconstruction applications. For example, in
[21], such models were used with success for watermark detec-
tion.

Inspired by our previous work, we now propose a new
Bayesian inference framework for image deconvolution using
a prior in product form. This prior assumes that the outputs
of local high-pass filters are Student-t distributed. The main
contribution of this work is a Bayesian inference methodology
that bypasses the difficulty of evaluating the normalization
constant of product type priors. The methodology is based on
a constrained variational approximation that uses the outputs
of all the local high pass filters to produce an estimate of the
original image. More specifically, a constrained expectation
step is used to capture the relationship of the filter outputs of the
prior to the original image. In this manner, the use of improper
priors is avoided and all the parameters of the prior model are
estimated from the data. Thus, the “trial and error” parameter
“tweaking” required in [17]–[19] and other state-of-the-art
recently proposed restoration algorithms, which makes their
use difficult use for nonexperts, is avoided. Furthermore, the
proposed restoration algorithm provides competitive perfor-
mance compared with previous methods.

In this work, we also propose an efficient Lanczos-based
computational framework tailored to the calculations required
in our Bayesian algorithm. More specifically, a very large
linear system is solved iteratively and the diagonal
elements of a matrix are simultaneously estimated in
an efficient manner.

The rest of this paper is organized as follows. In Section II, the
imaging and image model are defined. In Section III, the varia-
tional restoration algorithm is derived. In Section IV, we present
the computational methodology used to implement our algo-
rithm. In Section V, numerical experiments are demonstrated.
Finally, Section VI gives conclusions and thoughts for future
work.

II. IMAGING AND IMAGE MODEL

A. Imaging Model

A linear imaging model is assumed. For convenience but
without loss of generality, we use 1-D notation. The
vector represents the observed degraded image obtained by

(2.1)

where is the (unknown) original image, is an known
convolution matrix and is additive white noise. We assume
Gaussian statistics for the noise given by
where is an vector of zeros, is the identity
matrix and is the noise precision (inverse variance), which is
assumed unknown.

Aiming at the definition of the image prior we first define
operators for and use them to define filter
outputs

(2.2)

where . The matrices rep-
resenting the operators are of size and the filter outputs

are of size . These operators are zero mean convolu-
tional high-pass filters and each one of them is used to impose
a particular constraint on the restored image.

B. Image Prior Model

We assume that for are i.i.d zero mean
Student-t distributed, with parameters and

(2.3)

where

The Student-t implies a two-level generation process [22].
More specifically, is first drawn from a Gamma dis-
tribution, . Then,
the is generated from a zero-mean Normal distribu-
tion with precision , according to

. The probability density function of
(2.3) can be written as an integral

The variables are called “hidden” (latent) because they
are not apparent in (2.3), since they have been integrated out.
There are two extremes in this generative model, depending
on the value of the “degree of freedom” parameter . As this
parameter goes to infinity, the pdf from which the ’s are
drawn has its mass concentrated around 1. This in turn reduces
the Student-t to a Normal distribution, because all are
drawn from the same Normal with precision , since

. The other extreme is when and the prior becomes
uninformative. In general, for small values of the probability
mass of the Student-t pdf is spread, rendering the Student-t more
“heavy-tailed”.

The use of heavy-tailed priors on high-pass filters of the
image is a characteristic of most modern “edge preserving”
image priors used for regularization in a stochastic setting; see
for example [4]–[6], [11], [14], [15], and [19]. The main idea
behind this assumption is that at the few edge areas of an image
the filter outputs will be large in absolute value. Thus, it
is important to model them with a heavy-tailed pdf in order to
allow the prior to encourage formation of edges. The downside
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of many such models is that most heavy-tailed pdfs are not
amenable to Bayesian inference. For example, the Generalized
Gaussian and the Alpha Stable pdfs can be also heavy tailed.
However, unlike the Student-t where Bayesian inference is
possible [27], moment-based estimators have to be used for
their parameters; see for example [24] and [25].

We now define the following notation for the variables .
We denote by a vector, where

. Also, for the filter outputs we use
the notation . We assume that
the filter outputs are independent not only in each pixel location
but also in each direction. This assumption makes subsequent
calculations tractable. Thus, the cumulative density for the filter
outputs conditioned on is

(2.4)

where and is a diagonal ma-
trix with elements the components of the vector .

At this point, the marginal distribution yearns for a
closed form, using the relation between the image and the filter
outputs, (2.2). However, this prior is analytically intractable
because one cannot find in closed form its normalization con-
stant. This problem stems from the fact that it is not possible
to find the eigenvalues of the matrix because
it is very large and the product does not have a
structure that is amenable to efficient eigenvalue computation.
One contribution of this work is that we bypass this difficulty by
exploiting the commuting property of convolutional operators
and derive a constrained variational algorithm for approximate
Bayesian inference. This algorithm is described in detail next.

III. VARIATIONAL ALGORITHM

Since, as explained above, it is difficult to infer a solution
for the image from the Bayesian model previously defined, a
transformed imaging model is introduced in Section 3.1.

A. Variational Algorithm for the Equivalent Imaging Model

The imaging model of (2.1) can be written as

(3.1)

Setting for and using (2.2), we can
utilize the commuting property of the convolutional operators
and write the imaging model as

(3.2)

where are the observations of the newly defined model and
the additive noise is

In this model, we assume that the filter outputs of our filters
are the unknowns. Thus, the algorithm will infer instead

of . In this manner we bypass the need to define a prior for

. For this reason, we must initially define the posterior of the
observations given . This is equal to the product of Normal
distributions, since the observations are assumed indepedent :

The prior for the residuals has been already defined in (2.3).
Working in the Bayesian framework, we define as latent

(hidden) variables the residuals and the inverse variances .
Hence, the complete data likelihood is

where .
Estimation of the model parameters ideally could be obtained

through maximization of the marginal distribution of the obser-
vations

(3.3)

However, in the present case, this marginalization is not pos-
sible. Furthermore, since the posterior of the hidden variables
given the observations is not known explicitly, infer-
ence via the Expectation-Maximization (EM) algorithm is not
possible [29].

For this reason, we resort to the variational methodology [22],
[28] and [29]. According to this methodology, we introduce a
lower bound on the logarithm of the marginal likelihood, which
is actually the expectation of the logarithm of the complete data
likelihood with respect to an auxiliary function of the hidden
variables minus the entropy of

(3.4)

The inequality holds because the functional is also equal to
the logarithm of the marginal likelihood minus the always non-
negative Kullback–Leibler divergence between the true poste-
rior distribution of the hidden variables and ;
see for example [22].

Equality holds in (3.4) when , or equiv-
alently

(3.5)

because in this case the Kullback–Leibler divergence becomes
zero.
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In the variational Bayesian framework, instead of maximizing
the unobtainable marginal likelihood, we maximize the bound

, (3.4), with respect to both and in the variational E
and M steps, respectively. In other words, the unknown posterior

is approximated by . One difficulty in this
approach is that the maximization with respect to is hard
to obtain in closed form, although we can bypass it by using
the so-called Mean Field approximation [29]. According to this
approximation, if we assume that

(3.6)

then unconstrained optimization of the functional
with respect to all yields Normal distributions

(3.7)

with parameters and
.

The difficulty that we encounter with the above posteriors,
which were obtained by unconstrained optimization, is that they
do not provide a method to infer from , and they do not
capture their common origin from , (2.2).

In order to bypass this difficulty we make the assumption
that each of the posteriors is Normal; however, it is con-
strained so that it captures the common origin of all from ,
as dictated by (2.2). In other words, we assume that

(3.8)

where and are actually parameters representing the mean
and covariance of the image , from which all originate. In
other words

Thus, and are parameters that are used in our model and es-
timated during the restoration algorithm. Actually, the restored
image is taken to be the estimate of .

B. Variational Update Equations

The general variational algorithm using the Mean Field
approximation [29] for approximate inference of a sta-
tistical model with as observation, hidden variables

and parameters denoted by , aims to max-
imize the bound

This is achieved by iterating between the two following steps,
where is the iteration index:

Thus, in the E-step of the variational algorithm, optimization
of the functional is performed with respect to the auxiliary func-
tions. However, in the present case, the functions

, are assumed to be Normal distributions with partially
common mean and covariance [see (3.8)]; therefore, this bound
is actually a function of the parameters and and a func-
tional w.r.t. the auxiliary function . Using (3.6), the varia-
tional bound in our problem becomes

(3.9)

where and .
Thus, in the VE-step of our algorithm the bound must be opti-
mized with respect to and

Taking the derivative of w.r.t to and (see Ap-
pendix), we find that the bound is maximized w.r.t. these pa-
rameters when

(3.10)

(3.11)

(3.12)

where and . Notice
that since each is a Gamma pdf of the form
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, its expected value
is

(3.13)

where denotes the expectation w.r.t. an arbitrary distri-

bution . This is used in (3.10) and (3.11), where is a
diagonal matrix with elements

At the variational M-step the bound is maximized with re-
spect to the model parameters

where
is calculated using the

results from (3.10)–(3.13).
The update for is obtained after taking the derivative and

equating to zero

(3.14)

In the same way, the maximum is attained for

(3.15)

Finally, taking the derivative with respect to and equating
to zero, we find the “degrees of freedom” parameter of the Stu-
dent-t by solving the equation

(3.16)

for , where

is the digamma function and is the value of at the pre-
vious iteration used to evaluate the expectations in (3.13)
during the VE-step.

IV. COMPUTATIONAL IMPLEMENTATION

In our implementation, the variance of the additive noise is
estimated in a preprocessing step and is kept fixed. The EM al-
gorithm with a stationary Gaussian prior [3] and one output (the
Laplacian operator) was used for this purpose. Furthermore, the
EM-restored image was used to initialize our algorithm. For all
experiments, four filter outputs were used for the prior.
We show the magnitude of the frequency responses of these fil-
ters in Fig. 2. The operators and correspond to the hori-
zontal and vertical first order differences. Thus, these filters are
used to model the vertical and horizontal image edge structure,
respectively. The other two operators and are used to
model the diagonal edge component contained in the vertical
and horizontal edges, respectively. These filters are obtained
by convolving the previous horizontal and vertical first order
differences filters with fan filters with vertical and horizontal
pass-bands, respectively. In our experiments, the fan filters in
[26] were used.

We solve (3.10) and (3.16) iteratively. For (3.16), we employ
the bisection method, as also proposed in [27]. In the next few
paragraphs, we analyze how (3.10) is solved by a method based
on the Lanczos process [29], [30].

Omitting the subscripts and superscripts for convenience,
we regard (3.9) as the linear system , where

is symmetric and positive definite, ,
and products can be obtained efficiently for any given .
In addition, we have the linear algebra problem of estimating
the diagonals of matrix in (3.13). The matrix

is very large; for example for 256 256 images it is
of dimension with and clearly an iterative
method must be used.

The Lanczos process is an iterative procedure for trans-
forming to tridiagonal form [32]. Given some starting vector

, it generates vectors and scalars as follows.
1. Set (meaning and but

exit if ).
2. For set

.
After steps, the situation can be summarized as

(4.1)

. . .
. . .

. . .
(4.2)

where is the th unit vector, has theoretically or-
thonormal columns, and is tridiagonal and symmetric. In
practice, unless is reorthogonalized with
respect to previous vectors, but relation (4.1) remains accurate
to machine precision. This permits and to be used to
solve accurately in a manner that is algebraically
equivalent to the conjugate-gradients method, as described in
[30] (It also leads to reliable methods for solving
when is indefinite [30]). Note that must be proportional
to as shown.
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TABLE I
ISNR RESULTS COMPARING THE PROPOSED ALGORITHM WITH THE ALGORITHMS IN [9], [10], AND [11] USING THREE IMAGES, THREE NOISE LEVELS, AND

GAUSSIAN SHAPED BLUR. THE ISNR RESULTS FOR THE BFO1, BFO2, BMK1, AND BMK2 ALGORITHMS ARE OBTAINED FROM [11]

When is positive definite, each is also positive definite
and we may form the Cholesky factorization (with

lower-triangular) by updating . The conjugate-gradient
method computes a sequence of approximate solutions to

in the form , where is defined by the equation
. Since exactly for all n, we

see from (4.1) that , where the residual vector
becomes small if either is small

(unlikely in practice) or the last element of is small.
In practice, we do not compute itself because every el-

ement differs from . Instead, we compute two quantities
and by applying forward substitution to the lower-tri-

angular systems and , where

(4.3)

so that can be updated according to
. Since is bidiagonal, only the most

recent columns of need to be retained in memory. Thus,
the previous equation is the update rule for the image estimate
in the algorithm.

In order to estimate elements of , we can make use of the
same vectors in (4.3). If we now assume that exact arithmetic
holds, we see that

If we further assume that the Lanczos process continues for
iterations, we have , so that .
On this basis, if we define , we have the se-
quence of estimates . To esti-
mate its th diagonal, we form the sum .
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TABLE II
ISNR RESULTS COMPARING THE PROPOSED ALGORITHM WITH THE ALGORITHMS IN [9], [10], AND [11] USING THREE IMAGES, THREE NOISE LEVELS, AND

UNIFORM BLUR. THE ISNR RESULTS FOR THE BFO1, BFO2, BMK1, AND BMK2 ALGORITHMS ARE OBTAINED FROM [11]

Thus, we can obtain monotonically increasing estimates for all
diagonals at very little cost,1 in the manner of LSQR [33].

Similarly, for the matrix , whose diagonals we wish to es-
timate, we have

where can be formed at each Lanczos iteration and
then discarded after use. This is how we evaluate in
(3.12).

Element estimation of inverses of large matrices is also re-
quired in many other recently developed Bayesian algorithms

1See http://www.stanford.edu/group/SOL/software/cgLanczos.html for
Matlab code.

(see for example [11], [19], and [23]) and presently to the best
of our knowledge are handled either by inaccurate circulant or
diagonal approximations of the matrix or by very time-con-
suming Monte-Carlo approaches.

An iteration of the variational EM algorithm consists of the
update steps given by (3.9)–(3.12) and (3.14)–(3.15). In our im-
plementation, the parameter is estimated in a preprocessing
step, as described above. During the variational M-step the bi-
section method is used for the update of the parameters with
termination criterion , where is the
value of at the th iteration of the bisection method. The
linear system in (3.10) is solved by the iterative Lanczos proce-
dure. The termination criterion for this algorithm is
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Fig. 1. (a) Degraded “Cameraman” image by uniform 9� 9 blur and noise with BSNR = 40 dB, (b) restored image using a stationary Gaussian prior [3]
ISNR = 4:57 dB, (c) restored image using TV�TE ISNR = 9:07 dB, (d) restored image using proposed algorithm ISNR = 9:53 dB.

where denotes the iteration index of the Lanczos process
(hence, ). Thus, is the image estimate at
the -th Lanczos iteration and at the -th iteration of the overall
variational algorithm. Lastly, denotes the Frobenius
norm. As criterion for termination of the variational algorithm
we used . In other words, we terminate
the overall algorithm when the residual of the Lanczos process
at iteration is larger than that of the iteration .

The overall algorithm is summarized in the following three-
step procedure.

1. Initialize using a stationary model [3].
2. Repeat until convergence:

-th iteration:
• VE-step: Update, and using (3.10),

(3.12) and (3.13), respectively. For the last equation,
and also need to be calculated. Also, calculate

the expected value of from (3.13), need for the
VM-step and the next VE-step in the th iteration.

• VM-step: Update using (3.15) and by solving
(3.16) for each .

3. Use as the restored image estimate.

V. NUMERICAL EXPERIMENTS

We demonstrate the value of the proposed restoration ap-
proach by showing results from various experiments with

three 256 256 input images: “Lena,” “Cameraman,” and
“Shepp–Logan” phantom. Every image is blurred with two
types of blur; the first has the shape of a Gaussian function with
shape parameter 9, and the second is uniform with support a
rectangular region of 9 9 pixels. The blurred signal to noise
ratio (BSNR) defined as follows was used to quantify the noise
level:

where is the variance of the additive white Gaussian noise
(AWGN). Three levels of AWGN were added to the blurred im-
ages with 40, 30, and 20 dB. Thus, in total 18 image
restoration experiments were performed to test the proposed al-
gorithm.

As performance metric, the improvement in signal-to-noise
ratio (ISNR) was used

where and are the original, observed degraded and re-
stored images, respectively.

We present ISNR results comparing our algorithm with four
total-variation (TV) based Bayesian algorithms in [10] abbrevi-
ated as BFO1, in [9] abbreviated as BFO2, and [11] abbreviated
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Fig. 2. Magnitude of frequency responses of the filters used in the prior: (a) horizontal differences (Q ), (b) vertical differences (Q ), (c)Q and (d)Q .

TABLE III
ISNR RESULTS COMPARING THE PROPOSED ALGORITHM WITH THE ALGORITHMS IN [9] USING 3 IMAGES, 3 NOISE LEVELS AND BLUR

[1 4 6 4 1] [1 4 6 4 1]=256

as BMK1 and BMK2. For comparison purposes we also imple-
mented a restoration algorithm based on TV regularization [8].
This algorithm minimizes the function with respect to the
image

where and are the directional differences vectors of
the image along the horizontal and vertical direction respec-
tively. A conjugate gradient algorithm is used to minimize

with a one-step-late quadratic approximation [8]. The
parameters and were kept fixed during the iterations of this
algorithm and were selected by trial-and-error (TE) to optimize
ISNR assuming knowledge of the original image. Since this
algorithm assumes knowledge of the original it is not a realistic
one. However, it provides the performance bound of the TV
algorithm with fixed parameters. In Tables I and II, we present
ISNR results comparing our algorithm with the above-men-
tioned methods in 18 experiments. The ISNR results for BFO1,
BFO2, BMK1, and BMK2 were obtained from [11]. In these
tables for reference purposes we also provide ISNR results for
the stationary simultaneously autoregressive prior in [3].

In Fig. 1, restoration results are shown for the “Cameraman”
image with dB noise and uniform blur. In this
experiment the restored image by the proposed algorithm is su-
perior in ISNR, and is visually distinguishable from the TV-TE
approach, which was optimized using the original image.

At this point we note that the proposed algorithm performed
very well compared with the TV-based methods in [9], [10],
and [11]. More specifically, for the high dB case it
gave the best results from all methods (excluding TV-TE since
it is unrealistic) in 5 out of 6 experiments. For the midlevel

dB case it gave the best performance in 5 out of 6
experiments. Finally, in the low dB case it gave the
best result in 3 out of the 6 experiments. Overall the proposed al-
gorithm gave the best ISNR results in 13 out of 18 experiments,
compared to 3 out of 18 for BFO1 and 2 out of 18 for BFO2.

We also compared our method with BFO1 [9], which based
on the above experiments was the most competitive TV based
method. We used the same three images and noise levels as
above. We also used a 5 5 pyramidal blur with impulse re-
sponse given by . The ISNR results
for this experiment are given in Table III. For the implementa-
tion we used the code provided by the authors.2 The ISNR re-
sults from this experiment are consistent with the previous ones.

VI. CONCLUSIONS AND FUTURE RESEARCH

We presented a new Bayesian framework for image restora-
tion that uses a product-based Student-t type of priors. The
main theoretical contribution is that by constraining the ap-
proximation of the posterior in the variational framework, we
bypass the need for knowing the normalization constant of this

2http://www.lx.it.pt/~jpaos

Authorized licensed use limited to: University of Patras. Downloaded on February 12,2020 at 11:47:38 UTC from IEEE Xplore.  Restrictions apply. 



1804 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 10, OCTOBER 2008

prior. Thus, we avoid having to use improper priors, i.e., priors
whose normalization constant is empirically selected; see,
for example, [9]–[11], [17], [18], and [19]. Furthermore, the
proposed methodology does not require empirical parameter se-
lection as in the MAP methodology that uses a similar-in-spirit
prior in [17] and [18]. We also presented a Lanczos-based
computational scheme tailored to the computations required by
our algorithm.

We demonstrated by the ISNR results in Tables I–III that
the proposed method is competitive with the very recently
proposed TV-based Bayesian algorithms in [9], [10], and [11].
More specifically, it appears that this approach is more com-
petitive in the higher BSNR cases. Thus, it seems that in such
cases the proposed Student-t model has the ability to capture
more accurately than TV-based priors subtle features of the
image present in the observations. However, in the presence
of high levels of AWGN this does not seem to be the case and
the advantage of our proposed prior compared to TV priors
seems to diminish. We believe that this is the case because high
levels of noise “wipe out” the subtle features that our model
can capture.

We found empirically that modeling explicitly the diagonal
edge structure contained in the vertical and horizontal edge (the
use of operators and ) improved the performance of the
proposed algorithm, for a wide range of images, blurs and SNRs.
Selecting optimally such operators according to the image is a
topic of current investigation.

Another topic of current investigation is image models that
capture the spatial correlation between the outputs of the con-
volutional filters used in the prior. We plan to address this point
by assuming a similar-in-spirit prior that uses a neighborhood
around each pixel and multidimensional Student-t pdfs. Another
point that we plan to investigate is the use of generalized Stu-
dent-t pdfs. These pdfs depend on and the “classical” Stu-
dent-t used herein is just a special case with .

APPENDIX

In the VE-step the bound must be optimized with respect to
and . With the mean field approximation (3.6) the

bound becomes

where and .

Because at this point we aim to optimize with respect to ,
we operate on the function , which includes only the terms
that depend on the parameters

(A.1)

The first sum is further analyzed

(A.2)

where is a diagonal matrix with elements

The second integral is the entropy of a Gaussian function,
which is proportional to

(A.3)

Setting the derivative of w.r.t equal to zero using
(A.1)–(A.3) yields the equation shown at the bottom of the
page.

Similarly, using (A.2), we find that the optimum for the mean

The final part of the VE-step is the optimization w.r.t. the
function . It is straightforward to verify that this is achieved
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when

The product form is due to

Hence, each is a Gamma distribution

where and .
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