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Abstract—In this paper, we present two watermarking ap-
proaches that are robust to geometric distortions. The first
approach is based on image normalization, in which both water-
mark embedding and extraction are carried out with respect to
an image normalized to meet a set of predefined moment criteria.
We propose a new normalization procedure, which is invariant to
affine transform attacks. The resulting watermarking scheme is
suitable for public watermarking applications, where the original
image is not available for watermark extraction. The second
approach is based on a watermark resynchronization scheme
aimed to alleviate the effects of random bending attacks. In this
scheme, a deformable mesh is used to correct the distortion caused
by the attack. The watermark is then extracted from the corrected
image. In contrast to the first scheme, the latter is suitable for
private watermarking applications, where the original image is
necessary for watermark detection. In both schemes, we employ a
direct-sequence code division multiple access approach to embed
a multibit watermark in the discrete cosine transform domain of
the image. Numerical experiments demonstrate that the proposed
watermarking schemes are robust to a wide range of geometric
attacks.

Index Terms—Code division multiple access (CDMA) water-
marking, digital watermarking, geometric attacks, image normal-
ization, mesh modeling, watermark resynchronization.

1. INTRODUCTION

ITH THE ever-growing expansion of digital multimedia

and the Internet the problem of ownership protection
of digital information has become increasingly important.
Although significant progress has been made in watermarking
of digital images, many challenging problems still remain in
practical applications. Among these problems is the resilience
of watermarking to geometric attacks. Such attacks are easy to
implement, but can make many of the existing watermarking
algorithms ineffective. Examples of geometric attacks include
rotation, scaling, translation, shearing, random bending, and
change of aspect ratio (e.g., [1]-[3]). Such attacks are effective
in that they can destroy the synchronization in a watermarked
bit steam, which is vital for most of the watermarking tech-
niques. This is problematic, especially in applications where
the original image is not available for watermark extraction.
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In the literature, several approaches have been proposed to
combat geometric attacks. Ruanaidh and Pun [4] proposed a
scheme based on the invariant properties of Fourier—Mellin
transform (FMT) to deal with attacks such as rotation, scaling,
and translation (RST). This approach was effective in theory,
but difficult to implement. Aimed to alleviate the implementa-
tion difficulty of this approach, Lin et al. [5] proposed to embed
the watermark in a one-dimensional (1-D) signal obtained
by projecting the Fourier—-Mellin transformed image onto the
log-radius axis. This approach was intended to embed only one
bit of information, i.e., presence or absence of the watermark.

In [6], Pereira and Pun proposed another approach in which an
additional template, known as a “pilot” signal in traditional com-
munication systems, besides the watermark was embedded in
the DFT domain of the image. This embedded template was used
to estimate the affine geometric attacks in the image. The image
first corrected with the estimated distortion, and the detection
of the watermark was performed afterwards. A theoretical anal-
ysis was provided in [7] on the bit error rate for this pilot-based
approach under a number of geometric attacks. This approach
requires the detection of both the synchronization pattern and the
watermark. A potential problem arises when a common template
is used for different watermarked images, making it susceptible
to collusion-type detection of the template [8].

In [9], Bas et al. proposed a watermarking approach that is
adaptive to the image content. In this approach salient feature
points, extracted from the image, were used to define a number
of triangular regions. A 1-bit watermark was then embedded
inside each triangle using an additive spread spectrum scheme.
This approach requires robust detection of the salient points in
the image in order to retrieve the watermark.

In [11], a watermarking scheme was proposed using moment-
based image normalization, a well-known technique in com-
puter vision and pattern recognition applications [10]. In this
approach, both watermark embedding and extraction were per-
formed using a normalized image having a standard size and
orientation. Thus, it is suitable for public watermarking where
the original image is not available. The approach in [11] was
used to embed a 1-bit watermark.

In this paper, we propose two watermarking approaches to
alleviate the problem of geometric distortions. The first is a
multibit public watermarking scheme based on image normal-
ization, aimed to be robust to general affine geometric attacks.
Our scheme is different from the one in [11] in that 1) we address
more general affine distortions, where shearing in the = and y
directions are allowed rather than simple scaling and rotation
attacks and 2) we use a multibit watermarking system based on
direct-sequence code division multiple access (DS-CDMA).
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The second watermarking approach that we propose is based
on a watermark resynchronization scheme, aimed to be robust
to random geometric distortions and to be used in the context of
private watermarking where the original image is known. This
scheme uses a deformable mesh model to correct the distortion
so that resynchronization is achieved. We present and compare
two variations of this scheme, which were first reported in our
previous work in [13] and [22], respectively.

The rest of this paper is organized as follows. In Section II,
we present the public watermarking scheme based on image nor-
malization. In Section III, we describe the private watermarking
scheme based on deformable mesh modeling. In Section IV, we
present numerical experiments to demonstrate the effectiveness
of the proposed algorithms. Finally, we give our conclusions in
Section V.

II. WATERMARKING BASED ON IMAGE NORMALIZATION

The key idea of this watermarking scheme is to use a normal-
ized image for both watermark embedding and detection. The
normalized image is obtained from a geometric transformation
procedure that is invariant to any affine distortions of the image.
This will ensure the integrity of the watermark in the normalized
image even when the image undergoes affine geometric attacks.
A functional diagram of this watermarking scheme is illustrated
in Fig. 1. It is noted that the cover image is not needed for the
watermark extraction. Thus, this scheme is suitable for public
watermarking applications.

We describe the components that define this scheme in de-
tail. We begin with some background on image moments and
geometric affine transforms, which are the necessary tools for
image normalization.

A. Image Moments and Affine Transforms

Let f(z,y) denote a digital image of size M x N. Its
geometric moments mp, and central moments |[ipq,D,q
0,1,2,... are defined, respectively, as

M—-1N-1
Mpg = > Y "y f(z,y) 6))
=0 y=0
and
M-1N-1
g =Y > (x—2)(y—5)"f(z,y) )
=0 y=0
where
B= o = T 3)
moo moo

An image g(z,y) is said to be an affine transform of f(x,y)

( air a2 )
a22

that g(z,y) = f(%a,ya), Where

()=2(})-

It is readily seen that RST are all special cases of affine trans-
forms. Other examples of affine transforms include: 1) shearing

if there is a matrix A = and vectord = ( dl ) such
2

“

in the « direction, which corresponds to A = ((1) ? ) 2 A,
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Fig. 1. Image normalization-based watermarking system.

in (4); 2) shearing in the y direction, which corresponds to A =

1
(1
corresponds to A = (

) 2 A; and 3) scaling in both x and y directions, which

a 0
0 ¢ )
ward to show that any affine transform A can be decomposed
as a composition of the aforementioned three transforms, e.g.,
A=A, A, A, provided that a1; # 0 and det(A) # 0.

In addition, one can derive the following results (the deriva-
tion is omitted for brevity).

Lemma 1: If g(z,y) is an affine transformed image of
( ail  a12 )

a1 @22

2 A ;. Moreover, it is straightfor-

f(z,y) obtained with affine matrix A = and

d = 0, then the following identities hold:

P q
p q i —i ]
mZ,q:ZZ<i> <j>a11~a71’21~a121

i=0 j=0
q—J
97 Mitjptg—i—j o)
P q » .
r i p—i _J
Hp,q = ZZ (L) (J) a1 - Gpp - Gy
1=0 5=0
q—j
T Q99" Hitj,ptq—i—j (6)

where m,,,, m,, are the moments of g(z,y), and m,,, m,, are
the moments of f(z,y).

B. Image Normalization

In this section, we describe a normalization procedure
that achieves invariance under affine geometric distortions.
The general concept of image normalization using moments
is well-known in pattern recognition problems (e.g., see
[15]-[17], where the idea is to extract image features that are
invariant to affine transforms). In this application, we apply a
normalization procedure to the image so that it meets a set of
predefined moment criteria.

The normalization procedure consists of the following steps
for a given image f(z,y).

1) Center the image f(x,y); this is achieved by setting in (4)

the matrix A = ( ! 0) and the vector d = (31 ) with
2

0 1
mio mo1

dy= 2, dy= -2 7
! moo 2 moo

where m1g, mo1, and Mmoo are the moments of f(x,y) as
defined in (1). This step is aimed to achieve translation
invariance. Let fi(z,y) denote the resulting centered
image.
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Fig. 2.

2) Apply a shearing transform to fi(x,y) in the z direction

with matrix A, = ( so that the resulting image,

0 1)
denoted by fo(z,y) = A,[f1(x,)], achieves ug%) =0,
where the superscript is used to denote fo(z,y).

3) Apply a shearing transform to fo(z,y) in the y direction

with matrix A, = (’y 1) so that the resulting image,

denoted by f(x,y) = Ay [fa(z,y)], achieves uﬁ) =0.

4) Scale f3(x,y) in both z and y directions with
A, = (g g) so that the resulting image, denoted

by fa(z,y) = As[fgga:,y)], achieves 1) a prescribed
standard size and 2) u;) > 0 and Moi > 0.

The final image f4(z,y) is the normalized image, based on
which subsequent watermark embedding or extraction is per-
formed. Intuitively, the above normalization procedure can also
be explained as follows: The discussion following (4) points to
the fact that a general affine transformation attack can be decom-
posed as a composition of translation, shearing in both x and ¥y
directions, and scaling in both = and ¥ directions. The four steps
in the normalization procedure are designed to eliminate each
of these distortion components. More specifically, step 1) elim-
inates the translation of the affine attack by setting the center
of the normalized image at the density center of the affine at-
tacked image, steps 2) and 3) eliminate shearing in the x and y
directions, and, finally, step 4) eliminates scaling distortion by
forcing the normalized image to a standard size. It is important
to note that each step in the normalization procedure is readily
invertible. This will allow us to convert the normalized image
back to its original size and orientation once the watermark is
inserted.

Of course, we need to determine in the above procedure the
parameters associated with the transforms A, A,, and A ;. We
will address this issue in the next subsection. In the following
theorem we present the invariant property of the normalized
image f4(z,y) to affine transforms.

Theorem 1: Animage f(z,y) and its affine transforms have
the same normalized image.

The proof of this result is deferred to the Appendix.

To demonstrate this normalization procedure, we show in
Fig. 2(a) an original image “Lena.” In Fig. 2(b), we show this
image after an affine distortion; both of these images yield the

(a) Original Lena image. (b) Lena image in (a) after distortion. (¢) Normalized image from both (a) and (b).

same normalized image, shown in Fig. 2(c), when the above nor-
malization procedure is applied.

C. Determination of the Transform Parameters

In this section, we show how to determine the parameters
associated with the transforms A, A, and A, so that they
achieve their respective normalization goals.

1 p
0 1)
From identity (6), we have

Hio = s +3Busy +36°uiy) + Bouly ®)
(1

where 1,4 are the central moments of fi(z,y).

Setting u:(,,%) = 0, we obtain

1) Sheering matrix A, = (

S +38u8Y + 362y + A2uY) = o. ©)

The parameter (3 is then found from (9).

Note that (9) can have up to three roots in the case
that ;J,E]? # 0 (which is generally true for most natural
images). In particular, we may have the following two
scenarios: 1) one of the three roots is real and the other
two are complex, and 2) all three roots are real. In the
former case, we simply set 3 to be the real root; in the
latter case, we pick (3 to be the median of the three real
roots. As demonstrated in the Appendix, this choice of 3
ensures the uniqueness of the resulting normalized image.

Of course, under some very unusual conditions, the
number of roots of (9) may vary. For example, when all
the moments involved in (9) are zero, it will have infinite
number of solutions. This can happen when the image is
rotationally symmetric, such as a disk or a ring. We refer
to [16] and [17] for more details on general normalization
procedures.

2) Sheering matrix A, =( 1 (1))

From identity (6), we have

uiY = ysy + sy (10)
Setting uﬁ) = 0, we obtain
(2)
y =t (11)

=L
ligo)



DONG et al.: DIGITAL WATERMARKING ROBUST TO GEOMETRIC DISTORTIONS

Thus, the parameter « has a unique solution.
a 0
0 ¢ )-

The magnitudes of scaling parameters « and 6 are determined
by resizing the image f3(z,y) to a prescribed standard size in
both horizontal and vertical directions. Their signs are deter-
mined so that both /Lgé) and ug? are positive (which can be
changed by flipping either horizontally or vertically).

3) Scaling matrix A, = (

D. Effect of the Watermark

It is noted that, for watermark embedding, the normalization
is applied with respect to the original image, while, for water-
mark extraction, it is applied with respect to the watermarked
image. Thus, it is important to design the watermark signal so
that it has minimal effect on the normalized image.

Let w(z, y) denote the watermark signal added to the original
image f(z,y). Let mj(;;’) denote the moments of ng, y). Then,
from (7), one can see that it is desirable to have m %) = m{") =
0, so that w(z,y) has no impact on the centering step of the
normalization procedure.

In addition, from (8)~(11), it is desirable to have m}>) = 0
for p+q = 2 and 3, so that the watermark does not affect the rest
of the normalization transforms. It is assumed here that w(z, y)
and f(x,y) are statistically independent, so their second- and
third-order central moments are additive.

As will be discussed later, the watermark w(z, y) is a CDMA
signal generated from a zero-mean Gaussian or uniform source
that is added to the mid-frequency DCT coefficients of the
image. As will be seen from our numerical examples, such a
watermark nearly satisfies all the desirable properties described
above, and will have little impact on the normalized image.

E. Alternative Normalization Procedures

The normalization procedure described above consists of
a sequence of elementary affine transforms (i.e., shearing
and scaling operations). We point out that other transform
procedures can also be constructed in a similar fashion to
achieve affine-transform invariance in a normalized image. For
example, one such procedure is the following:

[ cos¢p sing a 0 1 p
A_<—Sin¢ cosgb)(O 6) <0 1) 12

which consists of 1) shearing in the = direction, 2) scaling in
2 and y directions, and 3) rotation by angle ¢. The parameters
in the procedure described in (12) can then be determined by
enforcing a set of predefined moments for each step. Interested
readers can refer to [15] for details.

F. Watermarking Algorithm

The image normalization procedure described above yields a
normalized image that is invariant to any affine geometric trans-
forms. It is on this normalized image that we perform water-
mark embedding and detection. In this paper, we chose to use the
spread spectrum-based DS-CDMA watermarking scheme [19],
which is well known for its robustness to common signal pro-
cessing attacks, even though other watermarking schemes can
be used as well.
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1) Watermark Embedding: The watermark embedding pro-
cedure is demonstrated in Fig. 3 and summarized as follows. To
embed a watermark into an image:

1) Apply the normalization procedure to obtain the normal-
ized image.

Create a two-dimensional (2-D) watermark with the
same size as the normalized image. This is accom-
plished by the following steps. a) Generate M 1-D
binary pseudo-random sequences p;,t = 1,...,M, as
signature patterns using the private key as seed, where
M is the number of bits in the watermark message. Each
of these sequences has zero mean and takes values from
a binary alphabet {—1,1}. b) Create a 1-D DS-CDMA
watermark signature W; by modulating the water-
mark message with the patterns generated in a), i.e.,
W, = 2™ (2m; — 1)pi, where m; is the ith bit (i.e.,
0 or 1) in the watermark message. c) Convert the 1-D
signature W into a 2-D signature W in a pre-selected
zigzag scan (e.g., mid-range DCT coefficients). d) Apply
the inverse discrete cosine transform (IDCT) to the 2-D
signature W to produce wy.

Create a mask image, which is a binary image of the same
size as the normalized image. This image has 1s within
the support of the normalized image and Os elsewhere.
Generate the watermark signature w from w; using the
mask image by masking off the boundary area. Signature
w is the actual final watermark signature.

Apply the inverse of the normalization procedure
in step 1) to the watermark signature w so that it has the
same size as the cover image.

The final watermark signature is embedded into the orig-
inal image additively with desired watermarking strength.
This produces the watermarked image.

2)

3)

4)

5)

6)

The whole procedure is equivalent to embedding the water-
mark signature w into the DCT domain of the normalized image.
We note here that in this procedure we choose to transform the
watermark signature to fit the cover image instead of embedding
the watermark into the normalized image. This has the advan-
tage that it avoids any distortion which might otherwise have
incurred to the cover image. Another remark is that the masking
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Images to demonstrate the watermarking process. (a) Watermarked image with PSNR = 38.4 dB. (b) Attacked watermarked image. (c) Difference

between (a) and (b). (d) Regular mesh and mesh generated from (b). (e) Deformation compensated watermarked image. (g) Difference between (a) and (e).

step (i.e., discarding the part of the watermark signature out-
side the support of the normalized image) is for the ease of im-
plementation. It will not weaken the correlation property of the
watermark signature, because the normalized image is simply
zero outside its support.

2) Watermark Extraction: The following steps are taken to
decode the embedded watermark in an image.

1) Apply the normalization procedure to obtain the normal-
ized image.

2) Decode the watermark message in the normalized image.
This is accomplished in the following steps. a) Regenerate
the watermark patterns p;,7 = 1, ..., M, using the same
key and following the same procedure as in step 2) of
watermark embedding. b) Apply DCT to the normalized
image from step 1). c) Convert the DCT coefficients where
the watermark signature is embedded into a 1-D vector,
denoted as c,,, through inverse zigzag scan. d) Decode the
watermark message bit-by-bit using a correlation detector.
That is, the ¢ th bit of the watermark message is decoded

as
=4 b
(2 0’

where corr(c,,, p;i) is the correlation of the two vectors.

corr(cy, pi) > 0

otherwise (a3

IITI. WATERMARK RESYNCHRONIZATION THROUGH
DEFORMABLE MESH MODELING

In practice, it may very well happen that a watermarked image
undergoes a geometric attack that cannot be simply described
by RST or more general affine transforms. In such a case, it
is no longer feasible, if not impossible, to describe the actual
image distortion by a global geometric transformation model.
Such geometric attacks may cause hardly noticeable perceptual

distortion, but can have catastrophic effects to many existing
watermarking algorithms.

As an example, in Fig. 4(a), we show the Lena image em-
bedded with a watermark; in Fig. 4(b), we show this image after
attack with StirMark [12]. In Fig. 4(c), we show the difference
between the two images. In Fig. 4(d), we show the effect of this
same distortion on a rectangular grid corresponding to the image
(dashed—before distortion; solid—after distortion). Indeed, the
distortion in the image is barely visible, though the actual geo-
metric distortion is rather severe. The actual attack in this case
follows the pattern of an elastic sheet, which is deformed by
forces of random magnitude and directions at different loca-
tions. Such distortions can easily destroy the synchronization
(registration) between the watermark in the attacked image and
that at the detector.

A. Watermarking Scheme Based on Mesh Modeling

In this section, we propose to use a deformable mesh model
to describe the complex geometric distortion in a watermarked
image. The deformable mesh serves as a resynchronization tool
between a distorted image and its original image for watermark
detection. A functional block diagram of a watermarking system
based on such a deformable mesh model is shown in Fig. 5. Un-
like the scheme in Section II, this watermarking scheme requires
the knowledge of the original image. Thus, it is suitable for pri-
vate watermarking applications.

B. Distortion Correction With a Mesh Model

The concept of mesh modeling is rooted in the field of finite
element methods. In a mesh model, the domain of an image is
divided into a collection of nonoverlapping polygonal patches,
called mesh elements. In a deformable mesh, the mesh elements
are allowed to deform between two image frames (e.g., one be-
fore distortion, and the other after distortion). The deformation
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Fig. 5. Mesh model-based watermarking system.

of a mesh element is through the displacement of its vertices
(called mesh nodes).

Mesh modeling has recently found many important appli-
cations in image processing, including image compression,
motion tracking and compensation, image processing through
geometric manipulation, and medical image analysis (see, for
example, [14] and [23]).

1) Mesh Model of the Image Distortion Field: In the fol-
lowing, we assume that we have a pair of images: One is the
original image denoted by f(z,y), and the other is f(z,y) un-
derwent a geometric distortion, denoted by f(4) (z,y). We want
to characterize the point-wise relative displacement between the
two images.

Let vector d(p) denote the relative displacement of a point
p £ (z,y) in the original image. With a mesh model, we first
partition the image domain D into M nonoverlapping mesh
elements, denoted by D,,,, withm = 1,2,..., M. Over each
element D,,, we model the displacement d(p) as

N
d(p) = > ¢a(p)d, (14)
n=1

where d,, is the displacement vector at the nth element node,
and ¢, (p) is the interpolation basis function associated with
node n, and N is the total number of mesh nodes.

In practice, polygonal elements (such as triangles or quadran-
gles) are usually used in mesh models because of the geometric
simplicity and ease of manipulation of these shapes. In this
paper, triangular mesh elements with liner interpolation basis
functions are used as in (14).

2) Determination of the Mesh Deformation: The nodal vec-
tors d,, in the mesh model in (14) are unknown, and have to be
determined from the image data. The basic idea is to displace
the mesh nodes so that the two images achieve the best match
in terms of their intensity on an element-by-element basis. As a
matching criterion, the following objective function is used:

M

[/D (1 +d(p)) - f(1o))2 dp:| 4By
’” (15)

where the first term is the matching error accumulated over all
M mesh elements between the two images, same as the one
proposed by Wang and Lee [14]. The second term F; is used to
prevent the mesh from being overly deformed. In this paper, we
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consider two definitions for £;: One is based on mesh regularity
as in [14], which is defined as

1Y
_ - 2
Ba= 5 Dl

where t,, = EleTn (Pn — P1), and T, is the set of all the neigh-
boring nodes of node p,,; the other is defined on deformation
regularity, which is based on

(16)

1 .
Ei= > lldn — dal? (17)
n=1

where N the total number of mesh nodes in the image, and
d,, is the average of the displacement vectors of all the neigh-
boring mesh nodes connected to node n.. This term is used to en-
force the local smoothness in the distortion field. In what follows
we will refer to these two different forms as variation I and II,
respectively.

In (15), p is a regularization parameter used to control the
tradeoff between matching accuracy and deformation regularity.
The nodal vectors d,, are determined by numerical minimiza-
tion of the objective function in (15). In our experiments, a gra-
dient descent algorithm with a line search was used [18].

Once the nodal vectors d,, are found, the distortion can be
computed for each point in the image according to the deforma-
tion model in (14). The distorted image can then be corrected as

f@) = fDp+d(p))).

Afterward, watermark detection is performed with respect to
this corrected image.

As an example, we show in Fig. 4(e) the corrected image
from the distorted image in Fig. 4(b) using the procedure de-
scribed above. As in Fig. 4(c), the difference between this cor-
rected image and the predistortion image in Fig. 4(a) is shown in
Fig. 4(f). One can see that the geometric distortion has been cor-
rected effectively in Fig. 4(e). The regular mesh structure shown
in Fig. 4(d) was used, in which mesh nodes were placed reg-
ularly every 64 pixels along both dimensions. In addition, the
distorted image was extended at the boundaries using the mean
image value to avoid the boundary effect during the gradient
search step.

(18)

IV. EXPERIMENTAL RESULTS
A. Image Normalization-Based Watermarking

We present two separate experiments to demonstrate the
performance of the proposed watermarking scheme: one on
multibit watermarking, and the other on 1-bit watermarking. In
the first experiment, a 50-bit watermark was embedded into a
set of test images (ten of them in total, including “Airplane,’
“Boat,” “House,” “Peppers,” “Splash,” “Baboon,” “Couple,’
“Lena,” “Elaine,” and “Lake”) using the proposed algorithm.
The watermarked images were then distorted by a variety of
geometric and common signal processing attacks (listed later
in detail). The proposed algorithm was applied afterwards to
decode the embedded watermark messages in these distorted
images. The decoding bit-error rate (BER), defined as the ratio
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between the number of incorrectly decoded bits and the total
number of embedded bits, was then computed and averaged
over all the test images.

The second experiment was designed to test the proposed wa-
termarking scheme for detection of the presence or absence of
a watermark under the following geometric attacks: 1) aspect
ratio changes of (1.1, 1.0), which is test case 3(c) in the distor-
tion list given later; 2) shearing of (5%, 5%), test case 5(f) from
the list; and 3) general affine transform, test case 6(a) from the
list. In this experiment, 20 different watermarks were generated,
and embedded into each of the test images separately, resulting
in a total of 200 watermarked images; in addition, 20 different
white noise patterns were created and added into each of the test
images, resulting in a total of 200 invalid watermarked images.
These images were then distorted using the three geometric at-
tacks. The proposed algorithm was then applied to detect the
presence of watermarks in these 400 images under each of the
geometric attacks.

The following is a list of attacks used to distort the images in
the experiments (note that not all of them are affine transforms).

1) Line and column removal: (a) (1, 1), (b) (1, 5), (¢) (5, 1),
(d) (5, 17), and (e) (17, 5), where each pair of numbers
indicate the number of columns and rows removed, re-
spectively. The removed columns/rows were equidistant.

2) Scaling by different factors: (a) 0.5, (b) 0.75, (c) 0.9,
(d) 1.1, (e) 1.5, and (f) 2.

3) Aspect ratio change: (a) (0.8, 1.0), (b) (0.9, 1.0), (c) (1.1,
1.0), (d) (1.2, 1.0), (e) (1.0, 0.8), (f) (1.0, 0.9), (g) (1.0,
1.1), and (h) (1.0, 1.2), where each pair of numbers in-
dicate the amount of scaling in the = and y directions,
respectively.

4) Rotation with different angles: (a) —15°, (b) —°10, (c) 5°,
(d) 25°, (e) 35°, (f) 45°, and (g) 80°.

5) Shearing: (a) (0, 1%), (b) (0, 5%), (c) (1%, 0), (d) (5%,
0), (e) (1%, 1%) and (f) (5%, 5%), where each pair of
numbers indicate the amount of shearing in the x and y
directions, respectively.

6) General geometric affine transformation with ma-
1.1 0.2 0.9 -0.2

rix: @ (5, g9k ® (5] 49 ) and
~1.01 —0.2
©( 9o o8 )

7) Horizontal and vertical flipping: (a) horizontal and
(b) vertical.
8) StirMark random bending attack (RBA) [12].
9) Common signal processing attacks: (a) median filtering
2 x 2, (b) median filtering 3 x 3, (c) median filtering
0o -1

0
4 x 4, (d) sharpening by kernel (-1 5 —1), (e)
0 -1 0
1 21
Gaussian filtering by kernel (1/16)(2 4 2), and (f)
1 1 1

frequency mode Laplacian removal (FMLR) attack.
10) JPEG compression with different quality factors: (a) 10,
(b) 15, (c) 20, (d) 25, (e) 30, (f) 35, (g) 40, and (h) 50.
The test results from the first experiment are summarized in
Table I. We see from these results that the proposed algorithm
achieves very low decoding BER for all the geometric attacks
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TABLE 1

DECODING PERFORMANCE OF THE PROPOSED ALGORITHM (IN BER)
Attacks\Cases @ @® @© @ @€ @O @ @
1. Removal 0 0004 0 0004 0

2. Scaling 0 0 0 0 0 0.048

3. Aspect ratio 0 0 0 0 0 0 0 0
4. Rotation 0 0 0 0 0 0 0

5. Shearing 0 0 0 0 0002 0

6. Linear transform. 0 0 0

7. Flip 0 0

8. StirMark RBA 0.506

9. Common signal proc. 0.066 0.23 0232 0064 0 0.018

10. JPEG 0.052 0.052 0.004 0.006 0.004 0.004 0 0

[] Watermarked
Il Unwatermarked

50 M
40

30

L L

01 0 0.1 02 03 04 0.5 06

Detection value

(@

[] Watermarked
60 B Unwatermarked

50

Frequency of occurrence

o

40

30

*: .Hﬂﬂﬁ\

-0.05 0 0.05 0.1 0.15 0.2

Detection value

(b)

| [ Watermarked
45 Il Unwatermarked

Frequency of occurrence

lnﬂﬂﬂn _ 10

025 03 035 04

Frequency of occurrence

L

0.05 0.1 0.15 0.2

Detection value

©

HHHH

035 04

)

05 0 025 03

Fig. 6. Histogram of the values of the test statistic (Normalized cross
correlation) used for detection (a) under aspect ratio change, (b) under shearing
geometric, and (c) under general affine transformation attacks for (left) 200
watermarked images and (right) 200 unwatermarked images.

except the StirMark random bending attack (test case 8). It is
also robust to filtering attacks [test case 9(b) and 9(c)] except
for median filtering.

For the second experiment, the histograms of the values of
the test statistic (correlation) used for detection from the 200
watermarked and 200 unwatermarked images are plotted in
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Fig. 7. BER versus random bending strength. (a) Lena. (b) Boat. Note:
Gridstep of 64 means the mesh nodes are placed 64 pixels apart uniformly.

Fig. 6(a)—(c), respectively, for the three different geometric
attacks used. We notice that the proposed algorithm results in
perfect detection for all testing images; the histograms for the
watermarked and unwatermarked cases do not overlap.

‘We want to mention that the proposed algorithm is not robust
to overcropping, which is a common problem for the moment-
based watermarking algorithms.

B. Mesh Model-Based Watermarking

For this experiment, we used Lena and Boat as test im-
ages. A watermark message with 200 bits was embedded into
the mid-frequency DCT coefficients of these images using
the CDMA algorithm. The watermarked images were then
distorted using the StirMark random bending attack [12]. A
number of experiments were performed to test the proposed
watermarking system. In all experiments, the original nonwa-
termarked image was used as a reference for the distortion
correction. The following different sizes were used for the
mesh elements: 32 x 32 pixels, 64 x 64 pixels, and 128 x 128
pixels. Furthermore, both variations of the penalty term in (16)
and (17) were tested; the value of the regularization parameter
was chosen empirically for each test.

1) BER Versus Bending Strength: In this experiment, the
watermark strength is fixed at A = 0.5. The test results are
shown in Fig. 7(a) and (b). From these results, we can see that
the BER is rather insensitive to the number of mesh nodes used,
especially when the bending strength is not very high.

2) BER Versus Watermarking Strength: The bending
strength is fixed at 5 in this experiment, and watermarking

2147

0.6

0.5

—#— No unbending

= w = Variation |, gridstep=128

=——A— Variation II, gridstep=128

- = Variation |, gridstep=64

=8 \ariation |l gridstep=64

~ = ® = Variation |, gridstep=32
s —&— Variation I, gridstep=32

0.4

0.3

Bit error rate

0.2

0.1

0 0.2 0.4 0.6 0.8 1
Watermarking strength
()
0.6

0.5 = 5 =

=& No unbending

= w = Variation |, gridstep=128
== \/ariation ||, gridstep=128
- = Variation |, gridstep=64
—&— Variation ||, gridstep=64
= @ = Variation |, gridstep=32
== \/ariation Il, gridstep=32

0.4

0.3

Bit error rate

0.2

0.1

0 0.2 0.4 0.6 0.8 1
Watermarking strength

(b)

Fig. 8. BER versus watermark strength. (a) Lena. (b) Boat.

strength A is varied from 0.1 to 1.0. The test results are shown
in Fig. 8(a) and (b). With the proposed correction, zero error
decoding can be achieved when the watermarking strength A
is close to 1.0 for both images. These results indicate that the
best performance was obtained with mesh elements of 64 x 64
pixels.

The minimization of (15) requires about 10 s per iteration on
Pentium 4 at 1.7 GHz. This is for image size of 512 x 512 and
regular mesh structure at 64 pixel nodal separation. A typical
run takes about 10-20 iterations.

V. CONCLUSION

In paper, we proposed a new public watermarking algorithm
that is robust to general affine geometric transformation attacks.
The proposed algorithm achieves its robustness by both embed-
ding and detecting the watermark message in the normalized
images. By numerical experiments we demonstrate that the pro-
posed algorithm can achieve very low decoding BER when used
with multibit watermarks and perfect detection of the presence
or absence of the watermark when used with single bit water-
marks under various affine attacks.

We then proposed a watermark resynchronization scheme
based on a mesh model to combat nonlinear geometric attacks.
The original image and the potentially attacked watermarked
image are used to estimate a mesh model of the unknown
geometric distortion. This approach can be used for private
watermarking where the original image is known. We tested
this algorithm against random bending attacks generated by
StirMark. Numerical experiments demonstrate that the pro-
posed methodology works well.
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APPENDIX
PROOF OF THEOREM 1

As pointed out in Section II-A, an affine transform can be de-
composed into a composition of the following elementary trans-
forms: 1) translation, 2) shearing in the x direction, 3) shearing
in the y direction, and 4) scaling in both x and y directions.
Therefore, it is sufficient to demonstrate that the normalization
procedure is invariant to these elementary transforms, i.e., it will
yield the same normalized image for a given f(z, y) undergoing
each of these elementary transforms.

It is readily seen that the normalization procedure is invariant
to the translation transform. This is because any translation in
f(z,y) is removed by the centering step in the normalization
procedure.

Next, we demonstrate the normalized image of f(x,y) is
invariant for each of the other three elementary transforms.
Without loss of generality, we will assume that f(z,y) is
already centered. We will use g(x,y) to denote the distorted
image from f(z,y) after an affine transform. In addition, we
will use p1pq and gy, to denote the moments of g(z,y) and
f(z,y), respectively.

From the normalization procedure described in Section II-B,
the coordinates of the normalized image of g(z,y) can be

written as
( ) T < . ) '
Yn Ya

The parameter 3 in the matrix A, in (A1) is solved from the
normalization condition in (8), i.e.,

(AL)

uSo +30usy + 3070 + BPuy =0, (A2)

Also, the parameter v in the matrix A, in (Al) is solved from
the normalization condition in (11), i.e., it is determined as

2 1 1
iy ube + 2808 + B2uly
A. Shearing in the x Direction
In this case, g(z,y) = f(%a,Ya), Where
Ta ) _ z\ (1 fBo T
<v> _A(y> - (0 1 ) <y>' (A9

Based on this relation, we can write the moments u,(ffl) in (A2)in
terms of /1,4 using (6), and, after some algebra, we can rewrite
(A2) as

1130+ 3(B+Bo) a1 +3(B+B0)? ma2+(B+60)* 1os = 0. (AS5)

Let 3 2 [ 4 f. One can see that 3’ satisfies the equation

of the shearing parameter [ for normalizing the original image

f(z,y). Let Al denote the corresponding shearing transform,
/

1
H A
that is, A/, = (0 1 ).
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Observe that

(1 B 1 B (1 B+ A/
s (3 D) )= 1) -

(AO6)

Thus, the shearing normalization on g(z, y) will yield the same
image as the shearing normalization transform on f(z,y).

B. Shearing in the y Direction
In this case, g(z,y) = f(%a,ya), where

G)=2()=( 0) G-

As above, we write the moments u,(,‘;') in (A2) in terms of 1,4,

and rewrite the normalization condition as

2
M30+3< p )/L21+3< p )
1+ B0 1+ B0

3 3
=0.
12 + (1 _1_570) o3

Letf £ (8/1 4+ B70)- One can see that 3’ satisfies the equation
of the shearing parameter 3 for normalizing the original image
[z, y).

Next, we write the moments u](f;) in the normalization condi-
tion in (A3) in terms of 1,4, and obtain

(AT)

(A8)

o = = 00+ Br0)uzo + L+ 200)par + Broz o

(1 + B70)%p20 + 26(1 + Byo)pa1 + B2 1oz

(1 0\ (1 B\/1 0O
A= (00 G 1) G )

_ 1+ B 0
_(7+%(1+/37) 1+ﬂv>' (410)

Upon some algebraic manipulation, (A10) can be rewritten as

Hence

1+ 0
A'yA"I’A = < 0/870 1480 )
(14+870)2 n20+281+B~0 ) 11462 o2

X < ! 4 > (A1)
—pa1 — B’z p2o + Bpan )
Observe the following. 1) The second matrix term in (A11)
corresponds to an affine transform that is independent of the pa-
rameter 7yp, and 2) the first matrix term in (A11) corresponds to
a scaling transform, which will be later absorbed into the scaling
matrix A, in (Al) to achieve a standard size. Therefore, the
resulting normalized image of g(z,y) is invariant to the affine
transformation A which is parameterized by .

C. Scaling in Both x and y Directions
In this case, g(z,y) = f(%a,ya), where

()=2()=(% 2) ()

(A12)
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Again, we write the moments M,(DZ) in terms of yi,,4, and rewrite

the normalization condition (A2) as

8o s \°
H30 + 3 <—/3> H21 + 3 <—ﬂ>
(7)) (1)

5 3
[z + <—°ﬁ) fi03 = 0. (A13)
ag

Let 3’ 2 (6y/ap)3. One can see that 3’ satisfies the equation
of the shearing parameter (3 for normalizing the original image

f(x,y).
Next, we write the moments M,(DZ) in the normalization condi-
tion (A3) in terms of ji,4, and obtain

agbopirr + B3 1oz

= — . Al4
7 a0 + 2Baobopir + S22 1oz (A1
Hence
_ 1 0 1 ,3 (0%)) 0
amea=(30) 6 V(T 8)
Qg Bdo
= . Al5
<om 50(1+ﬂ7)> (A1>)

Upon some algebraic manipulation, (A15) can be rewritten as

o 0
AAA= (] _ s
agp20+206a0bop11+8263 o2
B

t2o + B p11

1

<—M11 — B 1 > . (Al6)

Again, the second matrix term in (A16) corresponds to an
affine transform that is independent of the parameters «y, o,
and the first matrix term in (A16) corresponds to a scaling trans-
form. Therefore, the resulting normalized image of g(z,y) is
invariant to the affine transformation A which is parameterized
by g, 60.

D. Uniqueness Under a General Affine Transforms

Finally, consider the case that the image f(x,y) undergoing
a general affine transformation. We decompose the transform

matrix A as
A — (o7} 0 1 0 1 ﬁo .
0 (50 Yo 1 0 1
Similar to (A5), (A8), and (A13), we can derive 3 =
(1/(x0/608) + v0) + Bo, where 3’ is a root of the normal-
ization condition (A2) that corresponds to the original image

f(z,y), and (3 is a root corresponds to the affine transformed
image. Therefore

(A17)

X

f=—2 . (A18)

=8, 10
From (A18), we see that 3 is real if, and only if, 4’ is real. Thus,
if (A2) has only one real root (or three real roots) for the original
image f(z,y), then it also has only one real root (or three real
roots) for any of its affine transforms.
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Furthermore,  is a monotonic function of 3’ for |#/| <
[(1/70) + Bol. In such a case, if 3’ has three real roots, then
its median will correspond to the median of .

We note that the condition that |#'| < |(1/70) + ol is not
restrictive in practice. For example, for meaningful distortions,
we will likely have |G| < 0.2, and |yo| < 0.2 (less than 20%
shearing in the z or y direction). In such a case, |(1/70) + SBo| >
4.8. This, of course, leaves enough room for the shearing param-
eter (3.
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