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Super-Resolution Based on Fast Registration
and Maximum a Posteriori Reconstruction

Giannis K. Chantas, Nikolaos P. Galatsanos, and Nathan A. Woods

Abstract—In this paper, we propose a maximum a posteriori
framework for the super-resolution problem, i.e., reconstructing
high-resolution images from shifted, rotated, low-resolution de-
graded observations. The main contributions of this work are
two; first, the use of a new locally adaptive edge preserving prior
for the super-resolution problem. Second an efficient two-step
reconstruction methodology that includes first an initial registra-
tion using only the low-resolution degraded observations. This is
followed by a fast iterative algorithm implemented in the discrete
Fourier transform domain in which the restoration, interpolation
and the registration subtasks of this problem are preformed
simultaneously. We present examples with both synthetic and real
data that demonstrate the advantages of the proposed framework.

Index Terms—Maximum a posteriori (MAP), registration, spa-
tially varying regularization, super-resolution.

I. INTRODUCTION

THE problem of super-resolution is defined as obtaining
an image with enhanced resolution from a set of lower

resolution degraded images. The super-resolution problem
has a long history. In this paper, we will not attempt to fully
overview it; for this purpose, the interested reader is referred
to the recent surveys articles [1] and [2] and the edited books
[3] and [23]. Many methodologies have been applied to the
super-resolution problem. An important category of them
formulates this problem as an ill-posed image reconstruction
problem [6] and introduces prior information (regularization)
to find the super-resolved image [1]. However, super-resolution
viewed as learning problem has also been recently proposed
[4] and [5].

Recent efforts after the surveys in [1] and [2] based on the
regularized reconstruction methodology for the super-resolu-
tion problem are the works in [7]–[13]. The work in [9] uses
a methodology based on the theory of projections onto convex
sets [19]. In the rest of this work, we will concentrate on the reg-
ularized reconstruction point of view. Regularized reconstruc-
tion can be also viewed as a maximum a posteriori (MAP) ap-
proach by assuming an appropriate probability density for the
error in the assumed imaging model and an appropriate prior
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for the image [6]. Thus, in what follows we will not distinguish
between these two approaches.

In [7], the problem of reconstructing high-resolution frames
from compressed video is examined using a Bayesian formula-
tion based on a Gaussian simultaneously autoregressive (SAR)
stationary image prior. In [10], color images and demosaicing
are considered, and regularization (image priors) based on the

-norm which is proposed in order to avoid the shortcomings
of -norm based regularization. Furthermore, non-Gaussian
measurement errors are considered. More specifically, it was
also shown that -norm minimization yields better results in
the case of inaccuracies in the imaging model. In [8], a computa-
tionally fast method is proposed based on the -norm assuming
known integer pixel displacements between frames. However, in
[8] and [10] the parameters that define the regularization term
are chosen empirically. In [11], an expectation-maximization
(E-M) algorithm and a MAP algorithm are presented for simul-
taneous registration, restoration and interpolation for super-res-
olution. Nevertheless, a stationary SAR prior is used in both for-
mulations in [11]. In [12], different degradations are assumed in
each low-resolution observation. However, -norm-based sta-
tionary regularization is used. In [13], an interesting statistical
performance analysis is presented that offers insight into the
fundamental bottlenecks limiting the performance of super-res-
olution algorithms.

The first contribution of this work is that we utilize for the first
time for the super-resolution problem a new image prior, which
is based on a hierarchical two-level model. The first level of this
model captures the correlations while the second level provides
a description of the local image edge structure in different direc-
tions. Thus, it is possible using this prior model to reconstruct
the images without smoothing edges or ringing artifacts in the
vicinity of edges. Furthermore, this prior has been applied suc-
cessfully to the image restoration problem in [14] and [15].

It is interesting also to note that an algorithm similar to
the herein proposed MAP algorithm can be obtained using
a completely different deterministic principle; half-quadratic
regularization [18], with the appropriate potential function and
parameters selected [15]. In [18], a very elegant theory and a
convergence proof for this class of algorithms are given. How-
ever, it is not specified how to select the appropriate potential
function and parameters for a given data set.

The second contribution of this work is a new two-step
reconstruction algorithm. In the work in [11], the imaging
model assumed only shifts and did not incorporate rotations. In
spite of this, the registration task was extremely slow because
registration was performed using the high-resolution image
as it was iteratively reconstructed. Furthermore, it was based
on a method that used only 1st derivatives. The first stage of
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the herein proposed methodology is a preprocessing step that
approximately registers the degraded low-resolution observa-
tions. These “almost-registered” low-resolution observations
are used subsequently by an iterative algorithm which simulta-
neously reconstructs the high-resolution images and finds their
registration parameters. We propose this suboptimal two-stage
approach in order to speed up the super-resolution algorithm.
Thus, the MAP functional is maximized based on coarse esti-
mation of rotation and translation between image pairs. We have
found that such coarse estimation provides enough accuracy
to effectively remove the rotational and coarse (super-pixel)
translational motion between image pairs. This algorithm is
implemented entirely in the discrete Fourier transform (DFT)
domain. Furthermore, the registration subtask is based on the
Newton–Raphson (NR) algorithm that utilizes analytically
calculated first and second derivatives and converges rapidly
since NR algorithms display quadratic convergence [16]. The
purpose of the preprocessing step is to also ameliorate one of
the main difficulties of NR methods which are known to diverge
unless initialized close to the solution.

The rest of this paper is organized as follows. In Sections II
and III, we present the imaging model and the proposed image
prior models, respectively. In Section IV, we describe the
preregistration step. In Section V, we present the MAP based
restoration algorithm. In Section VI, we present experiments
with synthetic and real data that demonstrate the properties of
our algorithm. Finally, in Section VII, we provide conclusions
and thoughts for future research.

II. IMAGING MODEL

A linear imaging model is assumed. We denote as the in-
teger decimation factor. In other words, the imaging model as-
sumes a high-resolution image of size , where

. This model also assumes as observations low-resolution
images of size by applying the degradation
operator to the high-resolution image. Then, white noise is
added at each observation. Let be a vector, containing
the low-resolution observed images

where is a vector, representing a low-resolution image.
Using this notation, the observations are given by

(1)

where the (unknown) original high-resolution image
to be estimated, is a degradation matrix and

a vector consisting of
additive white noise vectors. We assume Gaussian statistics for
the noise given by where
is a vector with zeros, the identity matrix, re-
spectively, and are the noise variances of the
observations that are assumed unknown and statistically inde-
pendent with each other. The degradation operator is given
by

where for . The matrix is
the known decimation matrix. are the
shift-invariant blurring convolutional operators, and

, for are the shift-invariant shifting
operators. Each is a scalar which represents translation (with
respect to the first image) and is assumed unknown. The shift
operator, , is the Shannon interpolation operator which is
shift invariant [3]. The impulse response of the shift operator is
given by

The shift invariant operators are assumed circulant. This is very
useful for computational purposes because such matrices can
be easily diagonalized in the DFT domain. One difficulty that
arises in the super-resolution problem is the decimation operator
which is not square and, thus, not circulant. In this work, we
take advantage of the simple form of this matrix, and, despite
its noncirculant nature, we obtain tractable calculations in the
DFT domain.

Last, the matrix represents the rotation of
each observation relative to the unknown ideal image x. The
imaging model assumes that image is a rotated (as well as
shifted) version of the first image, with angle . Using all the
above definitions, (1) can be rewritten as such

for (2)

III. IMAGE PRIOR MODEL

Since we utilize a MAP algorithm, a prior for the image is
necessary. The prior used here is nonstationary and has been
used with success in other image processing problems [14] and
[15]. This image prior model assumes that the first-order differ-
ences of the image in four directions, , and 9 respectively,
are given by

(3)

with , the difference residuals for the image lo-
cation . The above equations can be also written in matrix
vector form for the entire image as where

are the directional difference operators for
images. Without loss of generality, in what follows, for conve-
nience, we will use 1-D notation; in other words, we assume

. We also assume that the differences
have Gaussian statistics according to , for

and where is the inverse variance of
.
For the inverse variances (i.e., the s), we introduce the no-

tation a diagonal ma-
trix, a diagonal matrix and

a vector, consisting of two vec-
tors . Also, for the differences we use
the notation . We assume that the differences
in each direction and at each pixel location are independent. This
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assumption makes subsequent calculations tractable. Thus, the
joint density for the errors is Gaussian and is given as

To relate with the image we define the operator
. Then, the relation between the image

and the differences is . Based on this relation and
we can define an improper prior (one that does not integrate to
1) for the image [15]. This prior is given by

(4)

The role of the parameters is to capture the directional vari-
ation structure of the image. More specifically, a large variance
(small ) indicates the presence of a large variation along the
direction of the difference, in other words an edge perpendic-
ular to this direction. The introduction of the spatially varying

scales down the differences of adjacent pixels in regions of
image discontinuities. As a result this prior maintains edges and
suppresses noise in smooth areas of the image.

The drawback of this prior, as described thus, far is that it in-
troduces parameters that have to be estimated from
observations. This is clearly not a desirable situation from an es-
timation point of view. To address this, we employ the Bayesian
paradigm and consider as random variables (instead of pa-
rameters) and introduce Gamma hyper-priors for them. In the
case of a stationary model where all are equal, the over-pa-
rameterization problem does not exist, and it is rather straight-
forward to obtain good estimates for the unknown parameters
using maximum likelihood (ML).

We consider the following parameterization for the Gamma
hyper-prior:

(5)

For such a representation, the mean and variance of the
Gamma pdf are given by , and

respectively. This representa-
tion is used because the value of the parameter can be also
interpreted as the level of confidence to the prior knowledge
provided by the Gamma hyper prior. More specifically, as

and . In other words,
the prior becomes very informative and restrictive, resulting
in . In contrast, when then both

and , thus, in this case, the prior
becomes uninformative and does not influence the values of the

s.

IV. PREPROCESSING STEP OF THE SUPER-RESOLUTION

ALGORITHM

For this imaging model, the noncirculant nature of the ro-
tation matrix R renders computationally impractical simulta-
neous registration and restoration for large images. In contrast,
all other matrices used in both the imaging and image prior
model have characteristics that can be exploited in the DFT do-
main to render both tasks computationally very efficient. Partic-
ularly, the blurring and shift matrices are circulant, hence,
diagonal in the DFT domain. As mentioned before, the decima-
tion matrix , which is not circulant, has a convenient structure
in the DFT domain that helps bypass computational difficulties.
Finally, matrices and of the image prior are circulant and
diagonal, respectively. For this combination, one can exploit the
diagonal structure by alternating calculations in the DFT and
spatial domain.

To bypass the problems with the rotation, a preprocessing step
is performed before the super-resolution algorithm. In this step,
we estimate the registration parameters between the low-resolu-
tion observations. At this point it is important to notice that the
rotations between the degraded low-resolution and the high-res-
olution images of the imaging model in (2) are the same. How-
ever, the shifts of the low-resolution images must be also mul-
tiplied by the decimation factor. Thus, these parameters in the
preprocessing step will be called and for
translation and rotation, respectively. Using this notation, we
assume that image resulted by applying both translation and
rotation with respect to the first image (or the reverse). In
other words, we have

or

where and are the rotation and shift matrices
respectively, smaller than their respective matrices

and . Thus, image is considered as the reference image.
We define the vector that represents the difference between

the registered image and the reference image to be

for

In this registration preprocessing step, we aim to estimate the
registration parameters by minimizing the quantity in the fol-
lowing equation:

for

The minimization is achieved using the simplex search method
[17]. Having computed the registration parameters and , at
the end of the preprocessing step the low-resolution observa-
tions are replaced by the “almost-registered” low-resolution
images given by

where denotes the integer part of the real number. This is
intentional because low-resolution images that are shifted by a
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fraction of a pixel are required in order to achieve super-resolu-
tion reconstruction [3]. For the rest of the paper, we assume as
observations the registered versions of the initially observed
images . We also define as the vector that contains all the
as

In this way, the rotation is removed from the observations. Thus,
the rotation matrices can be omitted from the imaging model
used for super-resolution reconstruction, described in the next
section.

V. MAXIMUM A POSTERIORI (MAP) RECONSTRUCTION

The super-resolution image is estimated from the obser-
vations , (after the preprocessing step), utilizing a MAP ap-
proach in which we estimate simultaneously and

where the registration parameters have changed
to according to . At this point, we must note that
even in the absence of noise

for

To correct this, we make the assumption that the coarsely reg-
istered , using rotation and translation, satisfies the equation

where is an error term. Thus, the
imaging model that is finally solved by the MAP algorithm is

for

where the new error term which is assumed WGN
with precision .

MAP estimation is based on maximization of the posterior
probability. Thus, based on Bayes’ theorem, we have

where

Maximizing the quantity with respect to
and is equivalent to minimizing the negative logarithm

(6)

To minimize the above function with respect to and , we
adopt an iterative scheme that sets alternatively the gradient with
respect to and equal to zero.

Setting yields

(7)

The observation of the previous section that the parameters
express the degree of confidence to the prior can be viewed

from another point when looking (7), the MAP estimates of the
. More specifically, when ;

thus, the are equal, and the image model becomes sta-
tionary. In contrast, when ; thus,
the s are completely unaffected from the moderating effect
of the Gamma hyper-prior and only follow the data. In this case,
the image model can be viewed as the “most nonstationary.”

Setting yields

(8)

Equation (8) cannot be solved in closed form since analytical in-
version of is not
possible due to the noncirculant nature of the matrices and

. Thus, we resort to a numerical solution using a conjugate
gradient algorithm [16]. In this algorithm, the space and DFT
domains are alternated when expressions with circulant and di-
agonal matrices are computed. More specifically, multiplica-
tions with circulant matrices (convolutions) are performed in
the DFT domain while multiplications with diagonal matrices
are performed in the space domain.

In the case of the registration parameters, it is not possible
to find in closed form the that make the gradient
equal to zero, or equivalently to minimize the quantity
with respect to

which can also be written as

(9)

where denotes the part of that depends
on . Since cannot be found in closed form we resort to
the NP algorithm. This method is chosen due to its convergence
speed [16]. Registration is equivalent to the minimization task
in (9). By the definition of the matrix with in (9)
is

(10)

The DFT domain is used to evaluate (10), since it allows easy
analytic calculations of the first and second derivatives of the
objective function. Since the shift parameters are independent
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with each other, it is sufficient to demonstrate the derivatives
for one . The details of the derivative calculation of
are given in the Appendix. With the derivatives calculated, the
update scheme of the NR algorithm is

(11)

The shift parameters are initialized as , where
are the shift parameters estimated in the

preprocessing step (Section IV) and is the decimation factor.
This initialization provides starting values close to the solution,
which is essential for the convergence of the NP algorithm to
the correct solution [16].

The shift parameters are initialized as , where
are the shift parameters estimated in the

preprocessing step (Section IV) and is the decimation factor.
This initialization provides starting values close to the solution,
which is essential for the convergence of the NR algorithm to
the correct solution [16].

VI. EXPERIMENTS

In order to test the proposed methodology, we used both ar-
tificially generated and real data. We compared the new MAP
super-resolution algorithm with the nonstationary prior with the
E-M super-resolution algorithm in [11] that uses a stationary
prior. We also compared our super-resolution algorithm with
one that uses total variation (TV) regularization [8]. For this
comparison, a gradient descent algorithm was used given by

(12)

where the superscript denotes the iteration number,
, with and , the first-order hor-

izontal and vertical differences of the image, the regulariza-
tion parameter and the step of the algorithm. In the following
experiments, the and parameters were selected by trial and
error to provide the best possible results. This is a difficult task.
However, in general, as increases the image becomes blurrier
and the algorithm converges for smaller step . For all methods,
we used the same registration algorithm. The results generated
by (12) are not a comparison with the methodology presented
in [8] since although similar priors are used the other aspects
of the super-resolution algorithm (registration, chosen PSF) are
different. Nevertheless, the authors of [8] have published results
with the herein used data sets in [21] and [22] where the inter-
ested reader can resort. In the preprocessing step of the herein
proposed algorithm, the interpolation algorithm in [20] was used
for rotation in order to handle boundary artifacts.

In the first experiment, eight 128 128 low-resolution im-
ages were generated by performing translation and rotation to
the well-known “Cameraman” image of size 256 256, before
blurring and then down-sampling by a factor of 2. The PSF
of the blur was uniform 5 5. Last, noise was added, corre-
sponding to (the same for all images). This metric is

Fig. 1. Low-resolution degraded observation.

defined as where is the vari-
ance of the additive noise and is the size of the image .

The mean square error (MSE) metric between the re-
stored image and the original was used to evaluate the
performance of the algorithm. The MSE is defined as

, where and are the orig-
inal and estimated images, respectively.

Fig. 1 shows one of the observed low-resolution degraded
image.

In Fig. 2(a)–(c), we show the super-resolved images and the
corresponding MSEs, using the stationary prior in [11], TV
regularization as implemented in (12), and the new algorithm
based on the nonstationary prior, respectively. Also, to demon-
strate the robustness of the proposed registration methodology,
we show the true and the estimated registration parameters in
Table I. We observed in all the experiments we performed with
simulated data that the proposed preprocessing step estimated
the rotation parameters with an accuracy of almost four decimal
digits in degrees. The reconstructed super-resolved images
assuming knowledge of the registration parameters are almost
identical to their reconstructed counterparts using the esti-
mated parameters. From these experiments, we can draw two
conclusions. First, the proposed nonstationary prior improves
the reconstruction of the high-resolution images. Indeed, the
MSE using the nonstationary model is significantly lower apart
from the difference in the visual quality of the images. Second,
the proposed two step registration methodology seems very
accurate (when the image formation model is correct).

We also used the proposed super-resolution algorithm on two
real data sets. The first contains 20 low-resolution degraded im-
ages. In Fig. 3, one of these images is shown. Their original
size was slightly smaller than 64 64, so they were padded
with zeros, extending their size exactly to 64 64 pixels. In this
data set the low-resolution images were only translated and did
not contain any rotations. Super-resolved images of double size

are shown in Fig. 4(a)–(c) using the stationary, TV regu-
larization and the nonstationary priors, respectively.

The second set includes four low-resolution degraded images
that contain both translations and rotations and one of them
is shown in Fig. 5(a). Each low-resolution image is of size
128 128. In order to test the ability of the proposed priors
to reconstruct beyond the resolution of the available data, we
quadrupled the size of the reconstructed super-resolved
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Fig. 2. (a) Stationary 2x [11], (MSE = 195:2); (b) total variation, (12) (MSE = 182:1); (c) nonstationary MAP 2x super-resolved image (MSE = 162:4).

TABLE I
ORIGINAL AND ESTIMATED PARAMETERS FOR

THE ARTIFICIALLY GENERATED IMAGES

Fig. 3. Sample of low-resolution observation.

images. The super-resolved images with the stationary,
TV regularization, and nonstationary prior are shown in
Fig. 6(a)–(c), respectively.

In estimating the shape of the blur for the real data sets, a
Gaussian-shaped blur was assumed. This choice was motivated
by the observation that Gaussian shaped functions are smooth
and have good approximation properties. The width of each blur
was experimentally estimated using trial and error experiments.
The width is captured by the variance of Gaussian PSF. For the
first set, the values of the variances of the Gausian shaped PSFs
were found in the range [2.5–4] pixels and for the second the
variance was set equal to 4.

To facilitate learning the proposed image model, we used
equal for all (additive noise variances) and equal for
all obtained by learning a stationary SAR model [11]. The pa-
rameters were obtained as where
the image model parameter of the stationary SAR model. The
parameters were selected to be equal to for the recon-
struction of both the real data and synthetic data. This value was
found by trial and error experiments. We observed that as
the reconstructed images assume a “cartoon” like appearance
where large edges are preserved and areas with small variations
are flattened out. When , as also explained previously,
the reconstructed images assume the appearance of images that
were reconstructed by a stationary prior model. In other words,
at the expense of ringing in edges and noise amplification in
smooth areas, textured areas can be better reconstructed. The
selection of reflects our subjective choice between these
two opposing trends. For the case of the TV regularization, the
algorithm’s parameters were also found by trial and error. We
set for the first experiment , for the second

, and for the last one .
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Fig. 4 Super-resolved images: (a) 2x stationary [11]; (b) 2x total variation, (12); (c) 2x MAP nonstationary.

Fig. 5. Sample of low-resolution observations.

The super-resolution estimates of and were found
by iterating between (7), (8), and (11) till convergence. In
the presented experiments, the convergence criterion was

where denotes
the iteration number and is the average of the inverse noise
variances .

Finally, we would like to note that the MAP function in (6),
although derived using a completely different principle, can be
viewed as a half-quadratic function that is generated using a

-like potential function [18, Table II, pp. 302] with appro-
priate choice of parameters, for details see [15]. The conver-
gence of alternating direction minimization of half quadratic

functions has been rigorously shown in [18]. It has been shown
that if the generating potential function is strictly convex, and
the null spaces of matrices and do not intersect, the MAP
function is convex. However, the -like potential function
used herein is not convex; thus, the proposed alternating di-
rection minimization converges to a local minimum. For this
reason, good initialization of the algorithm is important.

VII. CONCLUSIONS AND FUTURE WORK

Inspection of the super-resolved images in Figs. 2(a)–(c),
4(a)–(c), and 6(a)–(c) reveal that the resolution in every case has
significantly been improved. The letters in the super resolved
images [Figs. 4(a)–(c) and 6(a)–(c)] are now easily legible.

Furthermore, the images reconstructed using the proposed
nonstationary prior, Figs. 2(c), 4(c), and 6(c), are visually more
pleasant and display less ringing at the edges as compared to
both stationary and TV based super-resolution reconstruction.
The MSE for the reconstructed images using nonstationary
prior is also smaller than both the stationary and the TV based
models. It is worth noticing that for the first experiment, the
MSE results when using the real registration parameters are
almost identical to that when the registration parameters are
estimated. This demonstrates the robustness of the proposed
algorithm regarding the registration parameters.

In what follows, we report implementation times for the
“Cameraman” experiment. Registration in the preprocessing
step requires 26 min. One iteration of the stationary model
based algorithm requires 4–5 s with almost 4 s the time for fast
subpixel registration. One iteration of the nonstationary MAP
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Fig. 6 Super-resolved images: (a) 4x stationary [11]; (b) 4x total variation, (12); (c) 4x MAP nonstationary.

algorithm requires about 38 s, out of which 4 s are required for
fast subpixel registration, and the rest for 40 iterations of the
conjugate gradient algorithm in (8). The TV algorithm requires
about 1 s per iteration of the gradient algorithm in (12). These
times we obtained using a Pentium 4 3.4-GHz PC and a Matlab
implementation.

In the future, we plan to include a PSF estimation step in the
formulation of this problem, as well as faster rotation estimation
in the preprocessing step. Furthermore, methodologies to better
model the statistical nature of the errors if the imaging model is
not accurate will be considered.

APPENDIX

DERIVATIVES OF IN THE DFT DOMAIN

Assume the DFT matrix and the
DFT matrix . Then and are the
DFTs of the vectors and , respectively. The matrices

and are diagonal due to the

circulant nature of the matrices and . It can also be
shown that

(A1)

is a block matrix that contains identity matrices of
size . Then, we can write

(A2)

where the symbol denotes the Hermitian and * denotes the
conjugate. For simplicity, the diagonal element of a matrix is
denoted as . Then, we can write

(A3)
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where are the elements of the vector and they
are

(A4)

The evaluation of the first and second derivatives of (A2) is
very convenient in the DFT domain since the parameter is
only in the diagonal elements of the matrix . These elements,
see for example [3], are equal to

for

where . The remaining elements are a “mirrored” ver-
sion of the previous ones; in other words

for

The first and second derivatives for the first half are, respectively

for (A5)

for (A6)

and for the second half

for

(A7)

for (A8)

The derivative of the terms in (A2) are given by applying
(A5)–(A8)

From the definition of , it is

and

Similarly, the second derivative is

To be precise, in our application, we deal with 2-D
signals where here are two translations parameters per
image . Thus, in the NR update equation,
(10) is a 2 1 gradient vector and

a 2 2 Hessian matrix involved.
However, the inversion of a matrix is easily found in
closed form; hence, the 2-D version of the registration algo-
rithm is also very fast.
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