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Abstract—In this paper, we investigate an approach based
on support vector machines (SVMs) for detection of microcal-
cification (MC) clusters in digital mammograms, and propose a
successive enhancement learning scheme for improved perfor-
mance. SVM is a machine-learning method, based on the principle
of structural risk minimization, which performs well when applied
to data outside the training set. We formulate MC detection as
a supervised-learning problem and apply SVM to develop the
detection algorithm. We use the SVM to detect at each location
in the image whether an MC is present or not. We tested the
proposed method using a database of 76 clinical mammograms
containing 1120 MCs. We use free-response receiver operating
characteristic curves to evaluate detection performance, and
compare the proposed algorithm with several existing methods.
In our experiments, the proposed SVM framework outperformed
all the other methods tested. In particular, a sensitivity as high
as 94% was achieved by the SVM method at an error rate of one
false-positive cluster per image. The ability of SVM to outperform
several well-known methods developed for the widely studied
problem of MC detection suggests that SVM is a promising
technique for object detection in a medical imaging application.

Index Terms—Computer-aided diagnosis, kernel methods, mi-
crocalcifications, support vector machines.

I. INTRODUCTION

I N THIS paper we propose the use of support vector machine
(SVM) learning to detect microcalcification (MC) clusters

in digital mammograms. SVM is a learning tool originated in
modern statistical learning theory [1]. In recent years, SVM
learning has found a wide range of real-world applications,
including handwritten digit recognition [2], object recognition
[3], speaker identification [4], face detection in images [5], and
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text categorization [6]. The formulation of SVM learning is
based on the principle of structural risk minimization. Instead
of minimizing an objective function based on the training
samples [such as mean square error (MSE)], the SVM attempts
to minimize a bound on the generalization error (i.e., the error
made by the learning machine on test data not used during
training). As a result, an SVM tends to perform well when
applied to data outside the training set. Indeed, it has been
reported that SVM-based approaches are able to significantly
outperform competing methods in many applications [7]–[9].
SVM achieves this advantage by focusing on the training
examples that are most difficult to classify. These “borderline”
training examples are calledsupport vectors.

In this paper, we investigate the potential benefit of using
an SVM-based approach for object detection from medical im-
ages. In particular, we consider the detection of MC clusters in
mammograms. There are two main reasons for addressing this
particular application using SVM. First, accurate detection of
MC clusters is itself an important problem. MC clusters can be
an early indicator of breast cancer in women. They appear in
30–50% of mammographically diagnosed cases. In the United
States, women have a baseline risk of 5%–6% of developing
cancer; 50% of these may die from the disease [10]. Second,
because of the importance of accurate breast-cancer diagnosis
and the difficulty of the problem, there has been a great deal
of research to develop methods for automatic detection of MC
clusters. Therefore, the problem of MC cluster detection is one
that is well understood, and provides a good testing ground
for comparing SVM with other more-established methods. The
strong performance of SVM in our studies indicates that SVM
indeed can be a useful technique for object detection in medical
imaging.

In the proposed approach, MC cluster detection is accom-
plished through detection of individual MCs using an SVM clas-
sifier. MCs are small calcium deposits that appear as bright
spots in a mammogram (see Fig. 1). Individual MCs are some-
times difficult to detect due to their variation in shape, orien-
tation, brightness and size (typically, 0.05–1 mm), and because
of the surrounding breast tissue [11]. In this paper, an SVM is
trained through supervised learning to classify each location in
the image as “MC present” or “MC absent.”

A difficult problem that arises in training a classifier for MC
detection is that there are a very large number of image loca-
tions where no MC is present, so that the training set for the
“MC absent” class can be impractically large. Thus, there arises
an issue of how to select the training examples so that they
well represent the class of “MC absent” locations. To solve this
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Fig. 1. (left) Mammogram in craniocaudal view. (right) Expanded view showing MCs.

problem we propose a solution that we callsuccessive enhance-
ment-learning(SEL) to select the training examples. SEL se-
lects iteratively the “most representative” MC-absent examples
from all the available training images while keeping the total
number of training examples small. Numerical results demon-
strate that this approach can improve the generalization ability
of the SVM classifier.

We developed the proposed SVM approach using a database
of 76 clinical mammograms containing 1120 MCs. These
mammograms were divided equally into two subsets, one used
exclusively for training and the other exclusively for testing.
Compared to several other existing methods, the proposed
approach yielded superior performance when evaluated using
free-response receiver operating characteristic (FROC) curves.
It achieved sensitivity as high as 94% with only about one
false-positive MC cluster per mammogram. This figure of merit
is difficult to compare with previous reports in the literature
because, as we will show, the sensitivity measure depends
strongly on the way MC clusters are defined. However, within
each of our studies we maintained a uniform definition for
clusters to allow for meaningful comparisons.

The rest of the paper is organized as follows. A brief review
of the literature on MC detection is provided in the remainder
of this section. A background on SVM learning is furnished in
Section II. The use of an SVM for MC detection is formulated
in Section III. An evaluation study of the proposed SVM ap-
proach is described in Section IV, and the experimental results
are presented in Section V. Finally, conclusions are drawn in
Section VI. A proof of convergence of the proposed SEL scheme
is given in the Appendix.

There exist many methods for MC detection (a thorough
review of various methods can be found in Nishikawa [12]).
There is also a commercial computer-aided diagnosis system
developed (e.g., high detection sensitivity is claimed in

[13]). The following is a brief review of some representative
methods for detection of MCs. Karssenmeijer [14] developed
a statistical Bayesian image analysis model for detection
of MCs. Nishikawaet al. [15] investigated a method based
on a difference image technique followed by morphological
post-processing. Wavelet-based approaches have been pro-
posed in [16]–[18]. In [16], a decimated wavelet transform and
supervised learning are combined for the detection of MCs,
while in [17] and [18] an undecimated wavelet transform and
optimal subband weighting are used. A detection scheme is
proposed in [19] for the automatic detection of clustered MCs
using multiscale analysis based on the Laplacian-of-Gaussian
filter and a mathematical model describing an MC as a bright
spot of a certain size and contrast. Dengleret al. [20] used
methods based on a weighted difference-of-Gaussian (DoG)
filter for spot detection and morphological operators to extract
shape features. Gurcanet al. [21] developed a method based on
higher order statistics. Chenget al. [22] applied fuzzy logic for
MC detection. Pfrenchet al. [23] presented a two–dimensional
adaptive lattice algorithm to predict correlated clutters (i.e., the
tissue structure) in the mammogram. Liet al. [24] proposed
using fractal background modeling, taking the difference
between the original and the modeled image, which results
in enhanced MC detection. Bankmanet al. [25] developed a
method based on region-growing in conjunction with active
contours, wherein the seed points are selected as the local
maxima found by an edge-detection operator. Mixed wavelet
components, gray-level statistics, and shape features were used
to train a two-stage multilayer neural network (TMNN) for
detection of individual MC objects [26]. Recently, Bazzani
et al. [27] proposed a method for MC detection based on
multiresolution filtering analysis and statistical testing, in
which an SVM classifier was used to reduce the false detection
rate. This approach is quite different from ours in that it used
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extracted image features (including area, average pixel value,
edge gradient, degree of linearity, and average gradient) as
the basis for detection, while our approach does not attempt
to extract any explicit image features. Instead, we directly use
finite image windows as input to the SVM classifier, and rely
on the capability of the SVM to automatically learn the relevant
features for optimal detection.

II. REVIEW OF SVM LEARNING FORCLASSIFICATION

In this paper, we treat MC detection as a two-class pattern
classification problem. At each location in a mammogram, we
apply a classifier to determine whether an MC is present or not.
We refer to these two classes throughout as “MC present” and
“MC absent.” Let vector denote a pattern to be classi-
fied, and let scalar denote its class label (i.e., ). In
addition, let , denote a given set of

training examples. The problem is how to construct a classi-
fier [i.e., a decision function ] that can correctly classify an
input pattern that is not necessarily from the training set.

A. Linear SVM Classifiers

Let us begin with the simplest case, in which the training pat-
terns are linearly separable. That is, there exists a linear function
of the form

(1)

such that for each training example, the function yields
for , and for . In other

words, training examples from the two different classes are
separated by the hyperplane .

For a given training set, while there may exist many hyper-
planes that separate the two classes, the SVM classifier is based
on the hyperplane that maximizes the separating margin be-
tween the two classes (Fig. 2) [7], [9]. In other words, SVM
finds the hyperplane that causes the largest separation between
the decision function values for the “borderline” examples from
the two classes. Mathematically, this hyperplane can be found
by minimizing the following cost function:

(2)

subject to the separability constraints

for

or

for (3)

Equivalently, these constraints can be written more compactly
as

(4)

This specific problem formulation may not be useful in prac-
tice because the training data may not be completely separable
by a hyperplane. In this case, slack variables, denoted by,
can be introduced to relax the separability constraints in (4) as
follows:

(5)

Fig. 2. SVM classification with a hyperplane that maximizes the separating
margin between the two classes (indicated by data points marked by “�”s and
“”s). Support vectors are elements of the training set that lie on the boundary
hyperplanes of the two classes.

Accordingly, the cost function in (2) can be modified as follows:

(6)

where is a user-specified, positive, regularization parameter.
In (6), the variable is a vector containing all the slack variables

, .
The modified cost function in (6) constitutes the so-called

structural risk, which balances theempirical risk (i.e., the
training errors reflected by the second term) with model com-
plexity (the first term) [28]. The regularization parameter
controls this trade-off. The purpose of using model complexity
to constrain the optimization of empirical risk is to avoid
overfitting, a situation in which the decision boundary too
precisely corresponds to the training data, and thereby fails to
perform well on data outside the training set.

B. Nonlinear SVM Classifiers

The linear SVM can be readily extended to a nonlinear classi-
fier by first using a nonlinear operator to map the input pat-
tern into a higher dimensional space. The nonlinear SVM
classifier so obtained is defined as

(7)

which is linear in terms of the transformed data , but non-
linear in terms of the original data .

Following nonlinear transformation, the parameters of
the decision function are determined by the following
minimization:

(8)

subject to

(9)

C. Solution of SVM Formulation

Using the technique of Lagrange multipliers, one can show
that a necessary condition for minimizing in (8) is that
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the vector is formed by a linear combination of the mapped
vectors , i.e.,

(10)

where , , are the Lagrange multipliers
associated with the constraints in (9).

Substituting (10) into (7) yields

(11)
where the function is defined as

(12)

The Lagrange multipliers , , are solved
from the dual form of (8), which is expressed as

(13)

subject to

(14)

(15)

Notice that the cost function is convex
and quadratic in terms of the unknown parameters. In
practice, this problem is solved numerically through quadratic
programming.

Analytic solutions of (13) are not readily available, but it
is still informative to examine the conditions under which an
optimal solution is achieved. The Karush–Kuhn–Tucker opti-
mality conditions for (13) lead to the following three cases for
each :

1) . This corresponds to . In this case,
the data element is outside the decision margin of the
function and is correctly classified.

2) . In this case, . The data ele-
ment is strictly located on the decision margin of .
Hence, is called amargin support vectorof .

3) . In this case, . The data element
is inside the decision margin (though it may still be

correctly classified). Accordingly, is called anerror
support vectorof .

Note that most of the training examples in a typical problem
are correctly classified by the trained classifier (case 1), i.e., only
a few training examples will be support vectors. For simplicity,
let , , , denote these support vectors and
their corresponding nonzero Lagrange multipliers, respectively,
and let denote their class labels. The decision function in (11)
can, thus, be simplified as

(16)
Note that the decision function is now determined directly by
the support vectors , , which are determined

by solving the optimization problem in (13) during the training
phase.

D. SVM Kernel Functions

Notice that the nonlinear mapping from to never
appears explicitly in either the dual form of SVM training in
(13) or the resulting decision function in (16). The mapping
enters the problem only implicitly through the kernel function

, thus, it is only necessary to define , which im-
plicitly defines . However, when choosing a kernel func-
tion , it is necessary to check that it is associated with
the inner product of some nonlinear mapping. Mercer’s theorem
states that such a mapping indeed underlies a kernel pro-
vided that is a positive integral operator [28], [29], that
is, for every square-integratable function defined on the
kernel satisfies the following condition:

(17)

Examples of kernels satisfying Mercer’s condition include poly-
nomials and radial basis functions (RBFs), which will be dis-
cussed in Section III.

III. SVM FORMULATION FOR MICROCALCIFICATION

DETECTION

In this section, we present a supervised SVM learning frame-
work for detection of MCs in which an SVM is first trained
using existing mammograms. The ground truth of MCs in these
mammograms is assumed to be knowna priori. A detailed for-
mulation of the SVM learning framework is presented in the
following discussion. A performance evaluation of the method
is presented in Section IV.

A. Input Feature Vector

Individual MCs are well localized in a mammogram; there-
fore, to detect whether an MC is present at a given location, it
is sufficient to examine the image content within a small neigh-
borhood around that location. Thus, we define the input pattern
to the SVM classifier to be a small pixel window cen-
tered at the location of interest.

The window should be chosen large enough to contain an
MC, but small enough to avoid potential interference from
neighboring MCs. A small window size is also favorable
for computational reasons. In our study, the mammograms
were digitized at a resolution of 0.1 mm/pixel, and we chose

. Our experiments indicated that the results were not
very sensitive to the choice of (e.g., similar performance
was achieved when was used).

To suppress the image background and, thus, restrict intra-
class variation among the training patterns, we begin by ap-
plying a sharp high-pass filter to each mammogram. This filter
was designed as a linear-phase finite impulse response filter
with 3-dB cutoff frequency and length 41. As an
example, we show in Fig. 3 the result after filtering the mammo-
gram in Fig. 1 with this filter. The filter appears to be effective
in reducing the inhomogeneity of the background.
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Fig. 3. The mammogram in Fig. 1 after background removal by a high-pass
filter designed for the purpose.

To summarize, if we let denote the entire mammogram, and
be a windowing operator that extracts the window

centered at a particular location, then the input feature vector
is extracted as follows:

(18)

where denotes the high-pass filter for background removal.
Note that the vector is of dimension (81 in this study), and
is formed at every image location where an MC is to be detected
[the fact that varies with location is not explicitly indicated in
(18) for notational simplicity].

The task of the SVM classifier is to decide whether the input
vector at each location is an MC pattern or not

.

B. SVM Kernel Functions

The kernel function in an SVM plays the central role of im-
plicitly mapping the input vector (through an inner product) into
a high-dimensional feature space. In this paper, we consider two
kernel types: polynomial kernels and Gaussian RBFs. These are
among the most commonly used kernels in SVM research, and
are known to satisfy Mercer’s condition [28]. They are defined
as follows.

1) Polynomial kernel:

(19)

where is a constant that defines the kernel order.
2) Gaussian RBF kernel:

(20)

where is a constant that defines the kernel width.
Notice that in both cases the kernel function serves essen-

tially as a similarity measure betweenand . In particular,
the polynomial kernel function in (19) assumes its maximum

when and are aligned in the same direction (with their re-
spective lengths fixed); while the Gaussian RBF kernel function
in (20) assumes its maximum whenand are identical. The
associated parameters, orderin (19) and width in (20), are
determined during the training phase.

C. Preparation of Training Data Set

The procedure for extracting training data from the training
mammogram set is as follows. For each MC location in a
training-set mammogram, a window of image pixels
centered at its center of mass is extracted; the vector formed by
this window of pixels, denoted by , is then treated as an input
pattern for the “MC present” class ( . “MC absent”
samples are collected ( similarly, except that their
locations are selected randomly from the set of all “MC absent”
locations in the training mammograms. In this procedure, no
window in the training set is allowed to overlap with any other
training window. The reason for using only a random subset of
“MC absent” examples is that there are too many “MC absent”
examples to be used at once practically.

D. Model Selection and SVM Training

Once the training examples are gathered, the next step is to
determine the SVM decision function in (16). In this process,
we must decide the following variables: the type of kernel func-
tion, its associated parameter, and the regularization parameter

in the structural risk function. To optimize these parameters,
we applied -fold cross validation [8] to the training-mam-
mogram set. This procedure consists of the following steps.
First, divide randomly all the available training examples into

equal-sized subsets. Second, for each model-parameter set-
ting, train the SVM classifier times; during each time one of
the subsets is held out in turn while all the rest of the subsets
are used to train the SVM. The trained SVM classifier is then
tested using the held-out subset, and its classification error is
recorded. Third, the classification errors are averaged to obtain
an estimate of the generalization error of the SVM classifier. In
the end, the model with the smallest generalization error will be
adopted. Its performance will be evaluated using FROC analysis
(Section IV).

As explained in Section II, the training of the SVM classifier
is accomplished by solving the quadratic optimization problem
in (13). While in principle this can be done using any existing
general-purpose quadratic programming software, it should be
noted that the number of training examples (hence, the number
of unknowns) used in this study is large (on the order of several
thousand). Fortunately, numerically efficient algorithms have
been developed for solving the SVM optimization problem [8].
These algorithms typically take advantage of the fact that most
of the Lagrange multipliers in (13) are zero. In this paper, we
adopted a technique calledsuccessive minimal optimization
(SMO) [30]–[32]. The basic idea of this technique is to opti-
mize the objective function in (13) iteratively over a pair of
variables (i.e., two training samples) at a time. The solution can
be found analytically for each pair, thus, faster convergence can
be achieved. We found in this study that the SMO algorithm
is typically five to ten times faster than a general-purpose
quadratic optimization algorithm.
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E. Insight on the SVM Classifier

Consider the SVM decision function in (16), which is ex-
pressed in terms of the support vectors, .
Let denote the number of support vectors that belong to the
“MC present” class and, for notational simplicity, let them be
denoted in an ordered fashion as, . Then, we
can rewrite as

(21)

Replacing by the inner product of the mapping in
(12) and making use of the symmetry of the inner product, we
obtain

(22)

Defining

(23)

we have

(24)

Note that, when expressed as in (24), the SVM decision func-
tion assumes the form of a template-matching detector in the
nonlinear-transform space: the vector can be viewed as
a known template, against which the input patternis com-
pared in the space. A careful examination of the form of the
template provides further insight to the SVM classifier. The
first sum in (23) is composed of support vectors from the “MC
present” class, while the second sum consists of those from the
“MC absent” class. Naturally, a large positive matching score
is expected when an input patternis from the “MC present”
class; similarly, a large but negative matching score is expected
when is from the “MC absent” class.

Furthermore, by definition, support vectors are those training
examples found to be either on or near the decision boundaries
of the decision function. In a sense, they consist of the “border-
line,” difficult-to-classify examples from each class. The SVM
classifier then defines the decision boundary between the two
classes by “memorizing” these support vectors. This in philos-
ophy is quite different from a neural network, for example, that
is based on minimization of MSE.

In an interesting study in [33], where a neural network was
trained for MC detection, it was reported that better performance
was achieved when the neural network was trained with a set of
“difficult cases” (identified by human observers) than with the
whole available data set. In our method, the “difficult cases” are
automatically identified by the SVM during training.

F. Successive Enhancement Learning

The support vectors define the decision boundaries of the
SVM classifier; therefore, it is essential that they well repre-

sent their respective classes. As mentioned earlier, in a mam-
mogram there are vastly more examples available from the “MC
absent” class than from the “MC present” class. Yet, in training
only a small fraction of them can practically be used. As such, a
potential concern is whether this fraction of randomly selected
training samples can represent the “MC absent” class well.

To address this issue we propose an SEL scheme to make
use of all the available “MC absent” examples. The basic idea
is to select iteratively the “most representative” “MC absent”
examples from all the available training images while keeping
the total number of training examples small. Such a scheme im-
proves the generalization ability of the trained SVM classifier
(as shown experimentally in Section IV). The proposed algo-
rithm is summarized below. A proof of convergence of the pro-
posed algorithm is given in the Appendix.

SUCCESSIVE ENHANCEMENT-L EARNING ALGORITHM:
1. Extract an initial set of training ex-

amples from the available training im-
ages (e.g., through random selection).
Let denote
this resulting set of training examples.

2. Train the SVM classifier
with .

3. Apply the resulting classifier
to all the mammogram regions (except
those in ) in the available training
images and record the “MC absent” lo-
cations that have been misclassified as
“MC present.”

4. Gather new input examples from the
misclassified “MC absent” locations;
update the set by replacing “MC ab-
sent” examples that have been classified
correctly by with the newly col-
lected “MC absent” examples.

5. Re-train the SVM classifier with the
updated set .

6. Repeat steps 3–5 until convergence is
achieved.

In Step 1, the training set sizeis typically kept small for
numerical efficiency. Consequently, the training examples rep-
resent only a small fraction of all the possible mammogram re-
gions. The purpose of steps 3 and 4 is to identify those difficult
“MC absent” examples in the training mammograms that were
not included in the initial training set. In Step 4, there may be
several ways for gathering the new “MC absent” examples. One
is simply to select the most-misclassified “MC absent” loca-
tions [i.e., those with the most positive values of ]. This is
referred to as thegreedyapproach. An alternative would be to
select randomly among all those misclassified “MC absent” lo-
cations. In our studies, we experimented with both approaches.
In Step 6, the numerical convergence of the algorithm is deter-
mined by monitoring the change in support vectors during each
iteration.
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IV. PERFORMANCEEVALUATION STUDY

A. Mammogram Data Set

We developed and tested the proposed algorithm using a data
set collected by the Department of Radiology at The University
of Chicago. This data set consists of 76 clinical mammograms,
all containing multiple MCs. These mammograms are of dimen-
sion 1000 700 pixels, with a spatial resolution of 0.1 mm/pixel
and 10-bit grayscale. Collectively, there are a total of 1120 MCs
in these mammograms, which were identified by a group of ex-
perienced mammographers. These mammograms were obtained
at The University of Chicago which are representative of cases
that contain clustered MCs that are difficult to detect.

In this study, we divided the data set in a random fashion into
two separate subsets, each of which consisted of 38 images. One
of these subsets was used exclusively during the training phase
of the proposed algorithm, and is hereafter designated as the
training-mammogram set; the other subset was used exclusively
during the testing phase, and is designated as thetest-mammo-
gram set. At no time was a test-set image used in any way in the
training procedure, andvice versa.

B. Performance Evaluation Method

To summarize quantitatively the performance of the trained
SVM classifier, we used FROC curves [34]. An FROC curve is
a plot of the correct detection rate (i.e., true-positive fraction)
achieved by a classifier versus the average number of false pos-
itives (FPs) per image varied over the continuum of the decision
threshold. An FROC curve provides a comprehensive summary
of the trade-off between detection sensitivity and specificity.

We constructed the FROC curves by the following proce-
dure. First, the trained SVM classifier was applied with varying
thresholds to classify each pixel in each test mammogram as
“MC present” or “MC absent.” Because several neighboring
pixels may be part of an MC, it is necessary next to group
the pixels classified as “MC present” to form MC objects. This
was accomplished by a morphological processing procedure de-
scribed in [15], where isolated spurious pixels were removed.
Finally, MC clusters were identified by grouping the objects that
have been determined by the algorithm to be MCs.

In our implementation, we adopted a criterion recommended
by Kallergiet al. [35] for identifying MC clusters. Specifically,
a group of objects classified as MCs is considered to be a true
positive (TP) cluster only if: 1) the objects are connected with
nearest-neighbor distances less than 0.2 cm; and 2) at least three
true MCs should be detected by the algorithm within an area of
1 cm . Likewise, a group of objects classified as MCs is labeled
as an FP cluster provided that the objects satisfy the cluster re-
quirement but contain no true MCs. It was reported [35] that
such a criterion yields more-realistic performance than several
other alternatives.

It bears repeating here that, to ensure a realistic evaluation,
the FROC curves in this study were all computed using only the
test-mammogram set. As mentioned before, this set of 38 mam-
mograms, chosen randomly, was held aside at the beginning of
the study, and was never used by any of the training algorithms.

C. Other Methods for Comparison

For comparison purposes, the following four existing
methods for MC detection were also considered in this study:
1) image difference technique (IDT) [15]; 2) DoG method
[20]; 3) wavelet-decomposition (WD)-based method [17], [18];
and 4) a TMNN method [26]. We selected these because they
are well-known methods that are representative of two main
approaches that are widely used: template-matching techniques
and learning-based methods.

The following is a summary of the parameter values we used
when implementing the four methods for comparison. For the
DoG method, the values of the kernel width used for the
positive and negative Gaussian kernels were 0.75 and 4, re-
spectively. The weight associated with the positive kernel was
0.8. For the WD method, four-octave decomposition was used
where an additional voice was inserted between octaves 2 and
3, and one between octaves 3 and 4. For the TMNN method, a
three-layer feed-forward neural network with six neurons in the
hidden layer was used in the first stage; and another three-layer
feed-forward neural network with eight neurons in the hidden
layer was used for the second stage. The 15-component feature
vector described in [26] was used.

While it was nearly impossible to obtain the globally optimal
parametric setting for each algorithm, care was taken in our im-
plementation so that it is as faithful to its original description
in the literature as possible. Whenever feasible, these methods
were typically run under multiple parameter settings and the one
yielding the best results was chosen for the final test.

A final note is that both the WD and TMNN methods are
learning-based, thus training was required. The same training-
mammogram set was used for these methods as for the proposed
SVM method. All the methods were evaluated using the same
test-mammogram set.

V. EXPERIMENTAL RESULTS

A. SVM Training and Model Selection

The training-mammogram set contained 547 MCs. Conse-
quently, 547 examples were gathered for the “MC present” class
from this set of mammograms. In addition, twice as many “MC
absent” examples were selected by random sampling from these
mammograms. Thus, there were 1641 training examples in total.
A tenfold cross-validation procedure was used for training and
testing the SVM classifier under various model and parametric
settings.

We also experimented with using an increased number of
“MC absent” examples in training (e.g., up to five times more
than the number of MC examples), but no significant improve-
ment was observed in the generalization error of the resulting
SVM classifier. We believe this is largely due to the redundancy
among the vast collection of “MC absent” examples. This partly
motivated our proposed SEL training scheme for the SVM clas-
sifier. In this regard, the SEL is an informed scheme for selecting
the “MC absent” samples for training, making use of both the
current state of the SVM classifier in training and all the avail-
able “MC absent” samples.
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In our evaluations, we used generalization error as a figure of
merit. Generalization error was defined as the total number of
incorrectly classified examples divided by the total number of
examples classified. Generalization error was computed using
only those examples held-out during training.

In Fig. 4(a), we summarize the results for the trained SVM
classifier when a polynomial kernel was used. The estimated
generalization error is plotted versus the regularization param-
eter for kernel order and . Similarly, in Fig. 4(b)
we summarize the results when the Gaussian RBF kernel was
used; here, the estimated generalization error is plotted for dif-
ferent values of the width(2.5, 5, and 10).

For the polynomial kernel, we found that the best error level is
achieved when and is between 1 and 10; interestingly,
a similar error level was also achieved by the Gaussian RBF
kernel over a wide range of parameter settings (e.g., when
and is in the range of 100–1000). These results indicate that
the performance of the SVM classifier is not very sensitive to
the values of the model parameters. Indeed, essentially similar
performance was achieved whenwas varied from 2.5 to 5.

Having determined that the SVM results do not vary signifi-
cantly over a wide range of parameter settings, we will focus for
the remainder of the paper on a particular, representative con-
figuration of the SVM classifier, having a Gaussian RBF kernel
with and .

Some insight about the SVM classifier can be gained by
looking at the support vectors produced by the training pro-
cedure. The number of support vectors in the representative
case that we studied was approximately 12% of the total
number of training examples and the training time is around
7s (implemented in MATLAB on a Pentium III 933-MHz PC).
Fig. 5 shows some examples of the support vectors obtained
for both “MC present” and “MC absent” image windows.
For comparison, some randomly selected examples from the
training set are also shown. Note that, as expected, some of
the support vectors indeed appear to be the difficult-to-classify,
“borderline” cases; i.e., the “MC present” support vectors are
MCs that could be mistaken for background regions, and the
“MC absent” support vectors are background regions from the
training set that look like MCs.

B. Effect of Successive Enhancement Learning

The SVM classifier (with the representative parameters
described previously) was then further trained using the pro-
posed SEL scheme on the training mammogram set. For this
purpose, a total of additional 50 000 nonoverlapping, “MC
absent” sample windows were randomly selected from the
training-mammogram set. Collectively these samples together
with the previous 1641 training samples cover as much as
15% of the total training-mammogram areas. The proposed
SEL scheme was then applied with this set of 50 000 samples.
Note that this slightly deviates from the original description
of the SEL scheme in that only a subset of the mammogram
background areas (rather than all the mammogram regions)
were used. We find this is sufficient to demonstrate the effect
of the SEL scheme. For testing the resulting trained SVM,
5000 additional nonoverlapping, “MC absent” samples were
randomly selected from the remaining mammogram areas of

(a)

(b)

Fig. 4. Plot of generalization error rate versus regularization parameterC

achieved by trained SVM classifiers using (a) a polynomial kernel with orders
two and three and (b) a Gaussian RBF kernel with width� = 2:5; 5; and10.

the training-mammogram set. These 5000 samples were then
used to compute the generalization error rate of the trained
SVM classifier with SEL. Both the greedy approach and
random selection were tested. Up to misclassified
“MC absent” samples were selected during each iteration.

In Fig. 6, we show a plot of the generalization error rate
achieved by the trained SVM classifier for the first nine iter-
ations. Note that in both cases there is a significant drop in the
generalization error rate after the first two iterations, and dimin-
ishing gain from subsequent iterations. We believe this indicates
that most of the “difficult” “MC absent” examples were effec-
tively selected by the proposed SEL scheme during the first
two iterations. Also, note that the random SEL approach out-
performed the greedy method in Fig. 6. This is possibly due
to the fact that the latter always selects the most misclassified
samples during each iteration, which may not necessarily be
most representative of the “MC absent” class; on the other hand,
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Fig. 5. Examples of 9� 9 image windows and support vectors. Image windows with and without MCs are shown at top-left and bottom-left, respectively.
Support vectors representing the “MC present” and “MC absent” classes of image windows are shown at top-right and bottom-right, respectively. Note that the
SVs represent the borderline examples from each class that are difficult to categorize (“MC present” SVs could be mistaken for “MC absent” image regions; “MC
absent” SVs might be mistaken for MCs. The support vectors shown are for the case of a SVM with Gaussian kernel (� = 5, andC = 1000).

Fig. 6. Plot of generalization error rate of the trained SVM classifier using
SEL versus the number of iterations.

the random approach selects samples from all the misclassified
samples, leading to the possibility of selecting more-representa-
tive samples as the iterations progress. This random SEL trained
SVM was used in the rest of the evaluation study.

C. Performance Evaluation

The performance of the proposed SVM approach, along with
the other methods, is summarized by the FROC curves in Fig. 7.

As can be seen, the SVM classifier offers the best detection re-
sult, and is improved by the proposed SEL scheme. The SVM
achieves a sensitivity of approximately 85% when the false-pos-
itive (FP) rate is at an average of one FP cluster per image.

The FROC results obtained here for WD and IDT filteringare
very similar to those described in the original reports of these
methods [15], [17], [18]. For the DoG method (for which no
FROC information is given in its original report), the detection
rate is close to that of the IDTF when the FP rate is around
two FP clusters per image. This is not surprising because both
methods operate under a similar principle (the detection ker-
nels in both cases behave like a bandpass filter). In addition,
the FROC results indicate that the TMNN method outperforms
the other three methods we compared (WD, IDTF, and DoG)
when the FP rate is above one FP cluster per image. The nu-
merical FROC results we obtained for the TMNN are somewhat
different from those in its original report. There are several pos-
sible explanations: 1) the mammogram set used was different;
2) the detection criterion for MC clusters used in performance
evaluation was different; and 3) in the original work [26] the
MC clusters used for training were also included in testing.

In Fig. 8, we demonstrate that the method of defining
MC clusters has an influence on the FROC curves, making
it difficult to compare reported results in the literature that
were derived using various criteria. The results in Fig. 8,
which differ from those in Fig. 7, were obtained when the
nearest-neighbor-distance threshold for MC cluster detec-
tion was increased from 0.2 cm to 0.3 cm. In particular, the
sensitivity of the SVM approach increased to nearly 90% at
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Fig. 7. FROC comparison of the methods tested. A higher FROC curve
indicates better performance. The best performance was obtained by a
successive learning SVM classifier, which achieves around 85% detection rate
at a cost of one FP cluster per image. The nearest neighbor distance threshold
used for cluster detection is 0.2 cm.

Fig. 8. FROC curves of the methods tested. The best performance was
obtained by a successive learning SVM classifier, which achieves around 90%
detection rate at a cost of one FP cluster per image. The nearest neighbor
distance threshold used for cluster detection is 0.3 cm.

an FP rate of one FP cluster per image. Similarly, when the
nearest-neighbor-distance threshold is increased further to
0.5 cm, the sensitivity of the SVM approach increased to as
high as 94% while the FP rate remains at one FP cluster per
image. The FROC curves in this case are shown in Fig. 9. Note
that, while different criteria may affect the numerical FROC
results, the relative ordering of performance of the methods is
preserved.

VI. CONCLUSION

In this paper, we proposed the use of an SVM for detection
of MCs in digital mammograms. In the proposed method, an

Fig. 9. FROC curves of the methods tested. The best performance was
obtained by a successive learning SVM classifier, which achieves around 94%
detection rate at a cost of one FP cluster per image. The nearest neighbor
distance threshold used for cluster detection is 0.5 cm.

SVM classifier was trained through supervised learning to test
at every location in a mammogram whether an MC is present
or not. The formulation of SVM learning is based on the prin-
ciple of structural risk minimization. The decision function of
the trained SVM classifier is determined in terms of support
vectors that were identified from the examples during training.
The result is that the SVM classifier achieves low generaliza-
tion error when applied to classify samples that were not in-
cluded in training. In addition, the proposed SEL scheme can
further lead to improvement in the performance of the trained
SVM classifier. Experimental results using a set of 76 clinical
mammograms demonstrate that the proposed framework is very
insensitive to the choice of several model parameters. In our
experiments, FROC curves indicated that the SVM approach
yielded the best performance when compared to several existing
methods, owing to the better generalization performance by the
SVM classifier.

APPENDIX

PROOF OF THESUCCESSIVEENHANCEMENT LEARNING

ALGORITHM

In this section, we provide a proof for the convergence of the
proposed successive enhancement learning (SEL) algorithm.
This proof follows a similar approach to one given by Osuna
et al. [5] for a decomposition strategy for SVM training with
a large data set. Here, we apply it to prove convergence of the
proposed SEL algorithm.

Let , , denote a
subset of the training examples, and let ,

, , denote the remainder of the
training set so that the entire training set is represented by

.
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Thus, the original dual problem in (13) can be extended as
follows:

(A-1)

subject to

for (A-2)

and

(A-3)

Observe that the original problem in (13) now becomes
only a subproblem of (A-1). Indeed, let
denote an optimal solution to (13), i.e., solution of training
the SVM with subset . Let denote the vector formed
by , with for

. Then automatically satisfies both the
constraints in (A-2) and (A-3) and, thus, is a feasible solution
to (A-1).

Let denote a margin support vector from the “MC ab-
sent” class obtained when the SVM is trained with, that is,

and . In addition, let denote the
index set of those examples in that have been selected to
update the training set. Note that these examples have been
misclassified by the trained .

Let be a positive constant such that . Now
consider a vector , having
components

otherwise.

(A-4)

Then

From (A-4), we have and, thus

(A-5)

Let

(A-6)

(A-7)

and

(A-8)

Noting that is symmetric, we have

(A-9)

Furthermore, since , we have

(A-10)

Noting that and for , we obtain

(A-11)

and

(A-12)

Therefore

(A-13)

When is chosen sufficiently small, the second-order term in
(A-13) is negligible and, thus

(A-14)

By selection, we have for . Thus,
. Therefore, the extended objective function in

(A-1) can be further improved by training the SVM with the
newly updated set . A successive application of this procedure
will eventually lead to an optimal solution of (A-1), which im-
plies that the generalization error of the trained SVM will also
be improved.

This proof also shows that, when retrained with the updated
set , a reasonable choice of the starting point for the optimiza-
tion algorithm is .
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