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ABSTRACT 

In this paper we describe an approach to content-based retrieval of medical images from a database, 

and provide a preliminary demonstration of our approach as applied to retrieval of digital mammograms.  

Content-based image retrieval (CBIR) refers to the retrieval of images from a database using information 

derived from the images themselves, rather than solely from accompanying text indices.  In the medical-

imaging context, the ultimate aim of CBIR is to provide radiologists with a diagnostic aid in the form of a 

display of relevant past cases, along with proven pathology and other suitable information.  CBIR may 

also be useful as a training tool for medical students and residents. 

The goal of information retrieval is to recall from a database information that is relevant to the user’s 

query.  The most challenging aspect of CBIR is the definition of relevance (similarity), which is used to 

guide the retrieval machine.  In this paper, we pursue a new approach, in which similarity is learned from 

training examples provided by human observers.  Specifically, we explore the use of neural networks and 

support vector machines to predict the user’s notion of similarity. Within this framework we propose 

using a hierarchal learning approach, which consists of a cascade of a binary classifier and a regression 

module to optimize retrieval effectiveness and efficiency. We also explore how to incorporate online 

human interaction to achieve relevance feedback in this learning framework. Our experiments are based 

on a database consisting of 76 mammograms, all of which contain clustered microcalcifications (MCs). 

Our goal is to retrieve mammogram images containing similar MC clusters to that in a query. The 

performance of the retrieval system is evaluated using precision-recall curves computed using a cross-

validation procedure. Our experimental results demonstrate that: (1) the learning framework can 

accurately predict the perceptual similarity reported by human observers, thereby serving as a basis for 

CBIR; (2) the learning-based framework can significantly outperform a simple distance-based similarity 

metric; (3) the use of the hierarchical two-stage network can improve retrieval performance; and (4) 

relevance feedback can be effectively incorporated into this learning framework to achieve improvement 

in retrieval precision based on online interaction with users. 
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I. INTRODUCTION 
 

Content-based image retrieval (CBIR) refers to the recall of relevant images to a query from a 

database, using information derived from the images themselves, rather than relying on accompanying 

text indices or other annotation.   CBIR has received increasing attention as a result of the availability of 

large image databases in medicine, science, commerce, and the military [1,2]. CBIR has been proposed to 

overcome the difficulties encountered in textual annotation for large image databases. Like a text-based 

search engine, a CBIR system aims to retrieve information that is relevant (or similar) to the user’s query.  

In document retrieval, the query is usually a word or phrase; in CBIR, it is an image.  The key to 

successful CBIR lies in the development of appropriate similarity metrics for ranking the relevance of 

images in a database to the query image. In CBIR quantitative image features, computed automatically, 

are used to characterize image content. The image features may be extracted at either a low level (such as 

local edges [3]) or at a high level (such as color histogram [4]), or both. The query image is then 

compared to the images in the database on the basis of the measured features. Those images in the 

database having the highest similarity to the query image are retrieved and displayed for the user.  

The general application of image retrieval to broad image databases has experienced limited success, 

principally due to the difficulty of quantifying image similarity for unconstrained image classes (e.g., all 

images on the Internet).  We expect that medical imaging will be an ideal application of CBIR, because of 

the more-limited definition of image classes (e.g., digital mammograms), and because the meaning and 

interpretation of medical images is better understood and characterized.  In spite of this, the application of 

CBIR in medical imaging thus far has been somewhat limited [5]. In [6], a rule-based expert system was 

developed to display chest radiographs from a library of images as illustrative examples for helping 

radiologists’ diagnosis. In [7], a retrieval method based on texture and shape analyses was applied for 
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search and retrieval of a database containing pulmonary CT images. In [8], an algorithm was described 

for retrieval of 3D MR images based on anatomical structure matching. In [9], a similarity metric based 

on Bayes decision theory was developed for retrieval of neuroradiological CT images. In [10,11], a 

technique was developed that reduces high-dimensional data to a two-dimensional feature space in which 

images that are close to each other are selected for purposes of visualizing relationships in the data. In 

[12], a retrieval method was developed using correlation coefficients in a database of pulmonary nodules 

represented by the joint histogram of the pattern CT density and 3-D curvature shape index.  

A. A Learning Approach to Quantify Image Similarity 

 Unlike the existing approaches to CBIR, which are typically based on some simple distance measures 

for image similarity, we propose an approach in which machine-learning algorithms (neural networks and 

support vector machines) are trained to predict the measures of image similarity reported by human 

observers.   We treat the learning of the similarity function as a nonlinear regression of the similarity 

coefficient on the features of the images. The method is developed using a set of 76 mammograms, all 

containing clustered microcalcifications (MCs). Our goal is to retrieve mammograms containing similar 

MC clusters to that in a query mammogram. The proposed retrieval framework is evaluated statistically 

using a cross-validation procedure.  

The feasibility of a learning-based approach for modeling perceptual similarity was first demonstrated 

in our previous work in [13] using simulated image data. In this work, we expand this approach in two 

major aspects. First, we develop a hierarchal two-stage learning network for improved performance. 

Second, we explore how to utilize user interaction, known as relevance feedback, in the learning 

framework so as to achieve online adaptation to the user. 

B. Application to Mammography 

 Mammography has been by far the most effective means for early detection of breast cancer, a 

leading cause of death in women in many developed countries. The sensitivity of mammography is 

approximately 90% [14]. In spite of the technological advances in recent years, mammogram reading still 
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remains a difficult clinical task. Some breast cancers may produce changes in mammograms that are 

subtle and difficult to recognize. It has been reported that 10-30% of lesions are misinterpreted during 

routine screening of mammograms [15]. Furthermore, it is very difficult to distinguish benign lesions 

from malignant ones in mammograms.  As a result, between 2 and 10 women are biopsied for every 

cancer detected, causing needless fear and pain to women who are biopsied [16,17]. This low specificity 

results in a relatively large inter-observer variability that can lead to failure to biopsy malignant lesions 

and potentially avoidable biopsy of benign lesions [18].  

We conjecture that by presenting images with known pathology that are “visually similar” to the 

image being evaluated, the use of a mammogram retrieval system may provide a more intuitive aid to 

radiologists, potentially leading to improvement in their diagnostic accuracy. Furthermore, it is expected 

that the proposed technique would be a useful aid in the training of students and residents, since it would 

allow them to view images of lesions that appear similar, but may have differing pathology.  

An alternative approach to computer-aided diagnosis (CAD), in which the likelihood of malignancy is 

computed (e.g., [19]), has been studied to a large extent in the literature. The proposed retrieval system is 

in principle very different, and may helpfully complement existing diagnostic aids. Our retrieval system 

follows a “critiquing” approach [20]: instead of proposing a diagnosis, it aims to assist the radiologist by 

providing relevant supporting evidence from prior known cases.   If we view the human observer as a 

classifier, then the aim of the CBIR system is to provide the observer with training-set examples that are 

close to his decision boundary, along with the correct class labels (proven pathology) for these examples.  

The hypothesis that we ultimately hope to demonstrate is that this approach will improve the 

classification (diagnostic) performance of the observer. 

In developing a CBIR system for digital mammography, we argue that the similarity metric must 

conform closely to the user’s notions of similarity, and that simple, mathematical distance metrics may 

not be adequate for describing perceived similarity.  Therefore, we aim to show that a learned concept of 

similarity can outperform simple distance metrics in modeling the user’s similarity concept. 
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The remainder of the paper is organized as follows. First, an overview of the proposed learning-based 

retrieval framework is provided in Section II. In Section III the hierarchical learning network is described, 

and relevance-feedback techniques are developed in Section IV. An evaluation study, including data-set 

acquisition, training, and testing procedures is described in Section V. Experimental results are presented 

in Section VI. Finally, conclusions are drawn in Section VII.  

II. OVERVIEW OF THE PROPOSED IMAGE-RETRIEVAL FRAMEWORK 

We assume that the user’s notion of similarity between a pair of images is a function of the relevant 

features in the images. We then use machine learning to model this notion of similarity for the purpose of 

CBIR. Our goal is to find, among the many images in the database, those that are most visually similar to 

the query as judged by the user.  

The proposed framework is illustrated with a functional diagram in Fig. 1. For a given query image, 

we first characterize its content by an M-dimensional vector u , quantifying the key relevant features of 

the image. This feature vector is then compared to the corresponding feature vector  of a database entry 

by way of a learning machine, denoted by a nonlinear mapping , to produce a similarity 

coefficient (SC). The images with the highest SCs (say, those above a prescribed threshold value T ) are 

then retrieved from the database. 

v

( , )f u v

Clearly, the key to this framework1 lies in the learning machine . Ideally, the learning machine 

should have the following properties: 1)  must closely conform to the user’s notion of similarity; 

2) the learning machine should involve reasonable computational complexity so that it can be applied to a 

large-scale database; and 3) should provide the user with the ability to refine the search in a 

process called relevance feedback (indicated by the dashed path in Fig. 1).  

( , )f u v

( , )f u v

( , )f u v

We adopt a supervised learning approach for . For this purpose we first collect a set of sample 

image pairs, each having a labeled SC (e.g., obtained from observer studies). We then train a learning 

( , )f u v

 
1 Of course, an equally important issue, if not more important, is the selection of feature vector u so that its components are relevant to 

perceptual similarity. In this study, we will make use of some features already existing in the literature (detail in Section V.C).  
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machine  with these samples. Specifically, letting SC  denote the similarity coefficient 

between an image pair  and , we model  as: 

( , )f u v ( , )u v

u v ( , )SC u v

( , )f +u v

( ,f u v

 ( , )SC ξ=u v ,   (1) 

where ξ is the modeling error of the learning machine. Our aim is to determine a functional ( , )f ⋅ ⋅  that 

will generalize well to images outside the training set.  

Since our aim is always the comparison of pairs of images, we will view the similarity metric as a 

functional of a single argument , which is a concatenation of the feature vectors  and of two 

images to be compared; thus, we redefine the similarity functional  as

 
≡  
 

u
x

v
u v

) ( )f x .  

III. HIERARCHICAL LEARNING NETWORK  

We propose to use a two-stage hierarchical learning network to model the perceptual similarity for 

retrieval. This network consists of a cascade of a binary classifier stage and a regression stage for 

predicting the SCs between a query image and the images in the database, as illustrated in Fig. 2. In the 

first stage, images that are very different from the query image are eliminated from further consideration 

by a binary classifier. Images surviving this stage are then compared to the query in the second stage to 

obtain a numerical SC for retrieval.  

The learning network in Fig. 2 is hierarchical in the following sense: during the training phase, the 

first-stage classifier functions as a coarse, binary learner, the purpose of which is for triage; i.e., the first 

stage identifies simply whether a database entry is sufficiently similar to the query for further 

consideration. The second stage functions as a more-refined learner, the purpose of which is to measure 

quantitatively the similarity between a surviving database entry and the query. 

The reasons for this approach are as follows. First, the triage classifier avoids the computational cost 

of carefully measuring the SCs of those database entries that are not at all similar to the query, and thus 

will certainly not be determined to be relevant. Second, by training the second stage only using 
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reasonably similar pairs, the learning machine can be better fine-tuned to predict SCs for those image 

pairs that are of genuine interest.  

Of course, the use of a triage stage can also have adverse effect, i.e., it may eliminate some truly 

similar images from further consideration. To ameliorate this effect, in the following we will modify the 

cost function of in the SVM classifier such that it will impose a greater penalty on missed similar images 

than on misclassified non-similar images.  As demonstrated by our experimental results (Section VI), this 

approach can lead to significant improvement in retrieval performance. Below we discuss the details of 

the two-stage network. 

A. First-Stage Classifier  
 

Consider a query image and a database entry with feature vectors u  and , respectively. The task of 

the first-stage classifier is to determine whether the two images are sufficiently similar for further 

consideration. This is treated as a two-class pattern classification problem, i.e., the mammogram image 

pair is either reasonably similar (designated as “class 1”) or not similar (designated as “class 2”). For 

reasons of computational speed, we employ a linear classifier for this task, i.e., we use a decision function 

of the form 

v

( ) Th b= +x w x                     (2) 

such that  if the image pair  is sufficiently similar, and h( ) 0h ≥x x ( ) 0<x

(

 otherwise. In other words, 

image pairs from the two different classes are separated by the hyperplane h b) 0T= + =x w x . 

The decision function h  is to be determined from training samples. Let {( )x }( , ),  1,2, ,i id i l=x "

id

w ( )x

 

denote a given set of  training examples, where each sample pair  has a known class label  (i.e., 

for class 1, and  for class 2). The problem then is how to determine  and b  in h  so 

that it that can correctly classify an input pattern (not necessarily from the training set). 

l ix

1id = + 1= −id
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We consider two types of pattern classifiers for this task: (1) a Fisher discriminant, and (2) a support 

vector machine (SVM). To distinguish between the two classifiers, below we use 1w  and 1b  to denote the 

parameters w  and b  in ( )h x  for the Fisher discriminant, and use w  and b  for the SVM. 

1) Fisher Discriminant Classifier:  

The Fisher discriminant is based on the principle of projecting the data onto a one-dimensional space 

so that the two classes are well separated [21]. The discriminant vector 1w  in the decision function is 

determined by 

1
1 1(−

+ −= −w Σ µ µ 1) ,                      (3) 

where and  are the mean vectors of the two classes, and  is the total within-class covariance 

matrix, all estimated from the training samples. The constant b  is computed as 

1+µ 1−µ Σ

1

1 1
1 (
2

Tb + −= − +w µ µ 1) .                 (4) 

2) SVM Classifier:  

SVM is a constructive learning procedure based on statistical learning theory [22]. It is based on the 

principle of structural risk minimization, which aims at minimizing the bound on the generalization error 

(i.e., error made by the learning machine on data unseen during training) rather than minimizing the mean 

square error over the data set. As a result, an SVM tends to perform well when applied to data outside the 

training set. In recent years, SVM learning has found a wide range of real-world applications (see, for 

example, [23-27]). In many of these applications it has been reported that SVM based approaches are able 

to outperform competing methods. In our own work [28] we developed an SVM based approach for 

detection of microcalcifications in mammograms, and demonstrated using clinical mammogram data that 

such an approach could outperform several well-known methods in the literature. 

Using the training data set { }( , ),  1,2, ,i id i l=x " , a linear SVM classifier in its original form is 

formulated as minimization of the following cost function: 
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1

1( , )
2

l
T

i
i

J C ξ
=

= + ∑w ξ w w ,                    (5) 

      s ,          ubject to  ( ) 1 , 0 ;  1,2,...,T
i i i id b iξ ξ+ ≥ − ≥ =w x l

where C is a user-specified, positive parameter, and iξ  are slack variables. 

The cost function in (5) constitutes the so-called structured risk. It consists of both the empirical risk 

(i.e., the training errors reflected by the second term) and the model complexity measure (the first term). 

The regularization parameter C in (5) is used to define the trade-off between these two factors. In 

particular, when the two classes are separable, the SVM classifier amounts to maximize the separating 

margin between the two classes (as illustrated in Fig. 3(a)).  

For our task at hand, we propose to modify the SVM cost function in (5) as: 

               1( , )
2

T
i

i Z i Z

J C iCξ ξ
+ −

+ −

∈ ∈

= + +∑ ∑w ξ w w ,                 (6) 

where , and C C+ > − ,Z Z+ −  are the index sets of the training samples belonging to class 1 (i.e., 1id = + ) 

and class 2 (i.e, ), respectively. This imposes a greater penalty ( C1= −id + ) on missed similar images 

than on misclassified non-similar images ( C− ).  The rationale is that the first-stage classifier is for pre-

screening only and should be designed to pass marginal cases to the second stage for further 

consideration.  

Using the technique of Lagrange multipliers, one can show that a necessary condition for minimizing 

( , )J ξw  in (6) is that the vector  is formed by a linear combination of the vectors , i.e., w ix

 ,                      (7) 
1

l

i i i
i

yα
=

= ∑w x

lwhere 0, 1,2, ,i iα ≥ = " , are the Lagrange multipliers associated with the constraints in (5).  

The Lagrange multipliers 0iα ≥ , 1,2, ,i l= … , are solved from the dual form of (6), which is 

expressed as 
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1 2
1 1 1

1max  ( , , , )
2

l l l
T

l i i j i j i
i i j

J α α α α αα
= = =

= −∑ ∑∑ x x� " jd d

l

                 (8) 

subject to the constraints: 

                   .   (9) 
1

i i

(1) 0

(2) 0   for 1;  or 0   for 1,   1,2, ,
      

l

i i
i

i i

d

C d C d i

α

α α
=

+ −

=

≤ ≤ = + ≤ ≤ = − =

∑
"

The cost function 1 2( , , , )lJ α α α� …  is convex and quadratic in terms of the unknown parameters iα . In 

practice, the maximization in (8) is solved numerically through quadratic programming [22].  

Analytic solutions of (8) are not readily available, but it is still informative to examine the conditions 

under which an optimal solution is achieved. The Karush-Kuhn-Tucker (KKT) optimality conditions for 

(8) lead to the following three cases for each iα : 

1. 0iα = . This corresponds to d ( ) 1T
i i b+ >w x

( )h x

. In this case, the data element  is outside the 

decision margin of the function  and is correctly classified. 

ix

2. . In this case, 0  for 1;  or 0  for 1i i i iC d C dα α+< < = + < < = −−
i

T
i b d+ =w x . The data element x  

is strictly located on the decision margin of . Hence, x  is called a margin support vector of 

. 

i

( )h x

( )h x

i

3. . In this case,  for 1;  or  for 1i i i iC d C dα α+ −= = + = = − ( ) 1T
i id b+ <w x . The data element  is 

inside the decision margin (though it may still be correctly classified). Accordingly, x  is called an 

error support vector of . 

ix

i

( )h x

It is typical that most of the training examples are correctly classified by the trained classifier (case 1), 

i.e., only a few training examples will be support vectors. For simplicity, let js , *, 1,2, ,j sjα = " l , denote 

these support vectors and their corresponding nonzero Lagrange multipliers, respectively, and let jd  

denote their class labels. The SVM decision function can thus be simplified as  
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*

1

( ) ( )
sl

T
j j j

j

h yα
=

= ∑x s b+x .                   (10) 

Note that the decision function is now determined directly by the support vectors ,  1,2, ,j sj l= "s , 

which are determined by solving the optimization problem in (8) during the training phase. 

B. Regression Stage 
 

The regression stage is used to provide quantitative SCs between the query and those images deemed 

sufficiently similar by the classification stage. Consequently, only a subset of the training data will be 

qualified for the training of the learning machine in this stage. In this study we consider the following two 

different approaches for learning the similarity function ( )f x : (1) an SVM, and (2) a general regression 

neural network (GRNN) [29].  

1) SVM Regression: 

SVM learning can also be applied for regression. An SVM formulation in such a case maintains many 

of the characteristics of the classification case. For nonlinear regression, an SVM in concept first maps the 

input data vector x  into a higher dimensional space  through an underlying nonlinear mapping H ( )Φ ⋅ ; 

then applies a linear regression in this mapped space. That is, a nonlinear SVM regression function can be 

written in the following form: 

( ) ( )Tf b= Φ +x w x .                   (11) 

Let { }( , ), 1,2, , ′= "i iy i lx  denote a set of training samples surviving the first stage, where  is the 

human-observer SC for the image pair denoted by . The parameters  in the regression function 

in (11) are determined through minimization of the following structured risk: 

iy

ix and bw

1

1( , ) ( )
2 ε

′

=

= + ∑
l

T
i

i
R b C Lw w w x ,                 (12) 

where  is the so-called ( )Lε ⋅ -ε insensitive loss function which is defined as: 

( )  ,    if ( )
( )

0 ,         otherwise.
y f y f

Lε

ε ε− − −
= 


x x
x

≥
             (13) 
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The function  has the property that it does not penalize errors below the parameter ( )Lε ⋅ ε , as illustrated 

in Fig. 3(b). The constant C  in (12) determines the trade-off between the model complexity and the 

training error.  

As with the case of classification, the regression function ( )f x  in (11) is also characterized by the 

support vectors. It can be written as follows 

            
1

( ) ( , )γ
′

=

= +∑
sl

i i
i

f Kx x s b

sl i

,                              (14) 

where , denote the support vectors, and  which is called a kernel 

function. A training sample (  is a margin support vector when 

, 1,2, , ′= "i is ( , ) ( ) ( )T
iK ≡ Φ Φx s x s

, )i iyx ( )i iyf ε− =x , and an error 

support vector when ( )f i iy ε− >x .  

From (14), we can directly evaluate the regression function through the kernel function  without 

the need to specifically addressing the underlying mapping 

( , )K ⋅ ⋅

( )Φ ⋅ . In this study we consider two kernel 

types: polynomial kernels and Gaussian radial basis functions (RBF). These are among the most 

commonly used kernels in SVM research, and are known to satisfy Mercer’s condition [22].  They are 

defined as follows. 

1.  Polynomial kernel: 

( , ) ( 1)TK p= +x y x y ,                    (15) 

where  is a constant that defines the kernel order. 0p >

2.  RBF kernel: 

2

2( , ) exp ,  
2

K
σ

 −
= −


 

x y
x y 


                  (16) 

where 0σ >  is a constant that defines the kernel width. 

2) GRNN Regression: 
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The GRNN computes an estimate of the conditional mean of the  for an image pair from the 

human-observer data [29]. It is based on an estimate of the joint probability density of the input and the 

output obtained by the Parzen method [29]. With training data 

SC

{ }( , 1,2, , ′"i i lx ), =y i , the output of the 

GRNN can be represented as: 

                    

2

2
1

2

2
1

exp
2

( )

exp
2

σ

σ

′

=

′

=

 −
−  
=
 −
−  
 

∑

∑

l
i

i
i

l
i

i

y

f

x x

x
x x

 ,                     (17) 

where 0σ >  defines the kernel width. 

Note that the GRNN estimate ( )f x  in (17) has a similar form to the SVM estimate in (14) when the 

RBF kernel is used. The major difference between the two, however, is that only the support vector 

samples are used in the SVM in (14), while all the training samples are used in the GRNN in (17). Thus, 

the SVM estimate can be computationally advantageous over the GRNN. 

IV. RELEVANCE FEEDBACK 
 

In this section we explore how to incorporate relevance feedback into our proposed learning based 

retrieval approach. Relevance feedback is a post-query process to refine the search by using positive 

and/or negative indications from the user of the relevance of retrieved images. It has been applied 

successfully in traditional text-retrieval systems for improving the results of a retrieval strategy [30]. In 

particular, we consider the following scenario: for a query image q  a user selects a relevant image r  

amongst the retrieved images to confirm that the retrieved  is indeed similar to the query q ; we want to 

incorporate this information to further refine the search, hoping that more relevant images could be found 

for the same query .  

r

q

In this study we consider the following simple approach for relevance feedback: we explicitly weigh in 

the impact of the feedback image r  in the similarity between the query image q  and a database entry d . 

Specifically, we use the following weighted SC:   
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   ,                                  (18) j( , ) (1 ) ( , ) ( , )SC w SC w SC= − ⋅ + ⋅q d q d r d

where w is a weighting parameter used to adjust the relative impact of the feedback image r . The images 

with the highest weighted SCs are then retrieved. 

An alternative to the above weighting approach is to adapt the learning machine based on the feedback 

information. We will consider this in a separate study [31], as the main goal of this paper is to 

demonstrate the feasibility of a learning framework for similarity modeling.  

V. PERFORMANCE EVALUATION STUDY 
 
A. Mammogram Data Set 

The proposed retrieval framework was developed and tested using a data set collected by the 

Department of Radiology at The University of Chicago. This data set consists of 76 clinical 

mammograms, all containing multiple microcalcifications (MCs). These mammograms are of dimension 

1000×700 pixels, with a spatial resolution of 0.1 mm/pixel and 10-bit grayscale. Collectively, there are a 

total of 1120 MCs in these mammograms, which were identified by a group of experienced 

mammographers.  

MCs are tiny calcium deposits that appear as small bright spots (typically 0.05-1mm in diameter) in a 

mammogram. MC clusters (MCCs) in a mammogram provide valuable information to radiologists in 

diagnosis of cancer. For example, linearly distributed MCCs are typically malignant, while round clusters 

are typically benign [32]. In Fig. 4 we show a number of different regions of interests (ROIs) extracted 

from the mammograms in the data set, all of which contain MCCs. 

Our objective is to apply the proposed framework to retrieve mammograms containing similar MCCs 

to that in a query mammogram.  

B. Observer Similarity Data 

For the training and testing of the algorithms, ROIs containing the identified MCCs were first 

extracted from all the mammograms in the data set (as shown in Fig. 4). Among the 76 mammograms, 74 

contain only single ROIs, while the other two have two ROIs. These MCC ROIs were then used in a 
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subsequent observer study to obtain SCs for different ROI pairs, which were then used to form training 

and testing samples.  

The observer study was carried out by a panel of six human observers, who scored the similarity 

between each pair of ROIs based on their geometric distributions on a scale from 0 (most dissimilar) to 10 

(most similar). It consisted of the following different sessions: 1) a “pre-calibration” session; 2) individual 

scoring sessions; and 3) a statistical analysis session for both intra- and inter-observer consistencies. 

The panel of observers first participated in a “pre-calibration” session (~1 hour), the goal of which was 

to establish a consensus among the observers on a uniform measure of the perceptual similarity and to 

identify tentative “anchor pairs” (prototype examples) along the scale (from very different to very similar, 

all chosen randomly from the mammogram set).  

For the individual scoring sessions, we randomly selected 30 ROIs from the mammogram set, each of 

which corresponds to a different patient. The observers then scored the similarity for all the possible pairs 

(a total of 435) formed by these ROIs, assisted by a software user interface. In each session, a query ROI 

was displayed along with up to 15 other ROIs simultaneously on the same computer screen (presented in 

a random order). The observer then assigned a continuous SC value between the query and each of the 

other ROIs by mouse-clicking on a thermometer bar on the computer screen. Each of the 30 ROIs in the 

dataset was used in turn as the query, yielding a total of 870 SCs (each MCC pair got scored twice) from 

each observer.  

The collected SCs were then analyzed for both intra- and inter-observer consistencies. Specifically, the 

Kendall’s rank correlation method [33] was first applied to test the consistency between the two scores for 

each of the 435 MCC pairs by the same observer. The two scores were then averaged for each pair. 

Afterward, the Kendall’s rank correlation method was applied to analyze the inter-observer consistency 

among the six observers. The scores by the six observers were then averaged for each of the 435 pairs to 

obtain the SCs. (Issam, describe all the test results here.) 

Finally, we introduced 30 “ideal” pairs, formed by each query ROI with itself. These pairs were all 

assigned a perfect SC (10).  
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In summary, a total of 465 MCC pairs were scored and recorded. In Fig. 5 we show a histogram plot of 

the obtained observers’ similarity scores for the 465 pairs. 

All the six observers have background in engineering training. To facilitate the observer study, all the 

individual MCs were clearly marked out in all the ROIs involved. While there are other potentially 

important image features one might consider, we elected in this preliminary demonstration to retrieve 

images based on the spatial characteristics of the clusters alone. This will enable us to demonstrate the 

feasibility of the proposed framework using an observer-data set of reasonable size.  

C. Extraction of MCC Features 
 

To describe the geometric features of MCCs, we started with a pool of 20+ (Issam, give your specific 

number) shape descriptors, most of which were used in the literature for shape analysis of MMCs [xx-yy]. 

We then applied a so-called sequential backward selection procedure [34] to reduce the set of salient 

features down to nine, which we describe below in detail. We point out that features xx-yy were used in 

[xx], features were used in [xx]. (Issam, update the references above) 

1. Cross sectional area (A): the area occupied by the cluster. It is computed in the following steps: 1) a 

binary image is first created in which the pixels corresponding to the centers of the MCs are set to 1 

and all the rest of the pixels set to 0. 2) a Delaunay triangulation is next applied to connect the centers 

of the MCs in this binary image; the average inter-distance between neighboring MCs, denoted by ρ , 

is then computed based on this triangulation. 3) a morphological closing operation with a circular 

structuring element having a radius of ρ  is then performed on the binary image to fill the gaps 

among the MCs. The area of the resulting region is then computed.  

2. Compactness: a measure of roundness of the region occupied by the cluster. It is computed as  

2

4 f
f

f

A
C

P
π

= ,                                                                      (21)  
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,f fA P  are the area and perimeter of the solid region occupied by the cluster (i.e., holes are filled 

when necessary), respectively. Note that fA  will differ from the cross sectional area A when the 

occupied region contains any holes. 

3. Eccentricity: the eccentricity of the smallest enclosing ellipse of the region, computed as the ratio of 

the distance between the foci and the length of the major axis of the ellipse. 

4. Density:  the spatial density of the MCs in the cluster, computed as the number of MCs per unit area 

(A). 

5. Scatteredness: represented by the mean and the standard deviation of the inter-distances between 

neighboring MCs; the neighbors are determined based on the Delaunay triangulation of the MCs as 

described above. 

6. Solidity:  computed as the ratio between cross sectional area A and the area of the convex hull formed 

by the MCs. 

7. Invariant moment 1φ : a regional descriptor that is invariant to translation, rotation, or scaling [35]. 

8. Moment signature, as defined in [36]: a measure of boundary roughness, computed based on the 

distance deviation of a point on the boundary from the center of the region. 

9. Normalized Fourier descriptor, also as defined in [36]: a frequency-domain characterization of the 

smoothness of the boundary.  

These feature components (a total of 10, with 2 for scatteredness) were first computed for each MCC 

in the mammograms. All these feature components were then normalized to have the same dynamic range 

(0,1). Each MCC was then labeled with a feature vector  formed by these components. These feature 

vectors were paired with the observer similarity data to form the training and testing samples.  

u

In summary, we have the following data set 

( ){ }, , 1,2, ,465i iS y i= =x " ,                 (22) 

where  denotes the computed feature vector for the i-th MCC pair, and  is the observer SC of the 

pair. This set was used for the subsequent training and testing of the proposed framework. 

ix iy
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D. Machine Training and Performance Evaluation 
 
1) Preparation of Data Sets: 

For the first stage, the MCC pairs in set  in (22) were first divided into two classes: class 1 

representing sufficiently similar pairs, and class 2 representing dissimilar pairs. We chose a threshold 

=4 so that samples in  were labeled as class 1 if their SCs were larger than T ; otherwise they were 

labeled as class 2. In short, we denote this set as  

S

1T S 1

( ){ }1 , , 1,2, ,465i iS d i= =x " ,                 (23) 

where . There were in total 229 samples in class 1, and 236 samples in class 2. This set 

was used subsequently to train and test the first-stage classifier. 

1sgn( )i id y= −T

For the regression stage, we chose only those pairs in  with SCs larger than T , i.e., those belonging 

to class 1 in set . We denote this set as 

S 1

1S

( ){ }2 1, : , 1,2, ,465i i iS y y T i= > =x " .                (24) 

2) Performance Evaluation: 

For training and testing of the learning machines (both the classification stage and the regression 

stage), we applied the following cross-validation procedure [37]: 1) the images were selected in turn so 

that during each run only one image was chosen (as a query), based on which the data samples (  or ) 

were divided into the following two sets: one for training, which consisted of all the samples not 

involving the chosen image, and the other for testing, which consisted of only those samples involving the 

chosen image; 2) in each run the learning machine (either classification or regression) was then trained 

using the resulting training set, and tested for performance using the testing set; 3) the test results were 

then averaged over all the different runs to obtain the generalization performance (e.g., classification 

error, retrieval precision, etc.). 

1S 2S

To evaluate the performance of the retrieval network, we used the so-called precision-recall curves 

[1]. The retrieval precision is defined as the proportion of the images among all the retrieved that are truly 
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relevant to a given query; the term recall is measured by the proportion of the images that are actually 

retrieved among all the relevant images to a query. The precision-recall curve is a plot of the retrieval 

precision vs the recall over a continuum of the operating threshold  (Fig. 1).  T

As the ground truth in calculation of the precision-recall curves, we considered an image to be truly 

relevant to a query provided that their corresponding observer SC  is larger than a pre-selected threshold 

. In our experiments, T  was used. 2T 2 6=

3) Relevance Feedback: 

To demonstrate the effect of relevance feedback, we performed the following experiments: for each 

query, the trained retrieval network was first applied to retrieve images from the database; among the 

images retrieved, the one with the highest SC (based on the pre-existing observer data) was chosen as the 

relevant feedback image (in case there was a tie, random selection was used to break the tie). This chosen 

image was then paired up with the query along with their corresponding observer SC to form the feedback 

sample. The proposed relevance feedback procedure was then applied to retrieve a new set of images. The 

precision-recall curves were then computed based on this new set of images. 

4) Impact of parameters: 

To demonstrate the impact of various parameters involved in the training and testing of the proposed 

network on the overall performance, we also evaluated the precision-recall curves when these parameters 

were varied.  This includes using different values for the thresholds 1T  and 2T , and perturbing the 

inherent parameters of the trained learning machine.  

VI. EXPERIMENTAL RESULTS 
 

The proposed two-stage learning approach was thoroughly tested and evaluated for retrieval under 

various learning-machine settings. We summarize the results in Fig. 6 using the precision-recall curves 

for the following different network structures:  

1) a linear Fisher discriminant for the first stage and an SVM for the second stage (Fisher-SVM);  

2) a linear SVM for the first stage and an SVM for the second stage (SVM-SVM);  
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3) a linear SVM with the modified objective function in (6) for the first stage and an SVM for the 

second stage (MSVM-SVM);  

4) a linear SVM with the modified objective function in (6) for the first stage and a GRNN for the 

second stage (MSVM-GRNN).  

In the first three structures a Gaussian kernel was used in the SVM for the second stage. We note that 

similar performance was also achieved when a polynomial kernel was used, of which the results are 

omitted for clarity of the plots. 

For comparison, we also show in Fig. 6 the precision-recall curve obtained when a single stage SVM 

regression network was used for retrieval (SVM). In this case, the SVM with a Gaussian kernel was 

trained and tested directly using the samples formed from the entire set of observer SCs.  

Moreover, we show in Fig. 6 the precision-recall curve obtained when a naïve Euclidian metric was 

used as the similarity measure. In this case, the images with features vectors closest to a query were 

retrieved.  

From these results we see that the two-stage network (MSVM-SVM) achieves the best performance; 

and all the learning based networks outperform that based on the Euclidian distance. Note that the 

precision-recall curves corresponding to both Fisher-SVM and SVM-SVM drop below that of the single-

stage network (SVM) as the recall ratio is increased toward unity. This can be explained as follows: at a 

fixed operating threshold the first stage Fisher or SVM classifier discards some of the relevant images for 

a query with a nonzero probability, preventing the recall ratio from reaching 1 (as the retrieval threshold T 

gets decreased). The use of a modified SVM classifier in the first stage avoids this pitfall. 

Finally, the parametric settings for the learning machines corresponding to each of the network 

structures above are listed in Table 1. In our experiments each network structure was studied over a wide 

range of parametric settings; the precision-recall curves in Fig. 6 represent the best results for each case. 

The performance of the learning networks was found to be considerably robust and insensitive to changes 

in the parameters (such as regularization parameter C , insensitive bound ε , kernel width σ , etc.).  As an 
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example, in Fig. 7 we show the resulting precision-recall curves for the case of MSVM-SVM when the 

parameter C of the regression stage is varied from its listed value in Table 1.   

Table 1.  PARAMETRIC SETTINGS OF THE TRAINED RETRIEVAL NETWORKS 

Networks  Classification Stage Regression Stage 

Fisher-SVM - C=100, σ=1.5, ε =0.5 
SVM-SVM C=1000 C=100, σ=1.5, ε =0.5 
MSVM-SVM C+=10 , C- =  5 45 10× C=100, σ=1.5, ε =0.5 
MSVM-GRNN C+=10 , C- =  5 45 10× σ=0.25  
SVM - C=100, σ=1.5, ε =0.5 

 

In Figs. 8 and 9 we show some retrieval examples for two given query images. These results 

demonstrate that the two-stage network can indeed improve retrieval performance.  

In Fig. 10, we show the precision-recall curves obtained using the Weighted SC method for the two-

stage MSVM-GRNN. Similar results were also obtained for SVM and MSVM-SVM (but not shown for 

brevity). As can be seen, the proposed feedback procedures can further improve the retrieval 

performance.  

In our experiments the two-stage networks (MSVM-SVM and MSVM-GRNN) could provide 4-5 

times of saving in computation time in retrieval over that of a single-stage network (SVM).  

 

In addition, we show in Fig. 11 the precision-recall curves obtained for MSVM-SVM when different 

values for the thresholds 1T  and 2T  were used.  

Finally, in Fig. 12 we show the average percentage of images among retrieved that actually match the 

disease condition of the query, obtained using the leave-one-out procedure, when different values were 

used for the operating threshold T. For comparison, we also show in Fig. 12 correspondingly the 

matching percentage when the observer score (ground truth) is used. As can be seen, the developed 

retrieval system matches well with the observer, and, as expected, the matching percentage decreases as 

the threshold T decreases.  
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VII.  CONCLUSIONS 

In this paper we have proposed a learning machine-based framework for modeling human perceptual 

similarity for content-based image retrieval. The proposed approach was developed and evaluated for 

retrieval of clinical mammograms containing clustered microcalcifications. The results demonstrated that 

a learning framework can be used effectively to model the perceptual similarity, thereby serving as basis 

for retrieving visually similar mammograms from a database. It was demonstrated that a hierarchical two-

stage learning network can offer several advantages over a single-stage one, including faster speed and 

retrieval accuracy. Furthermore, the use of relevance feedback in such a framework can be used to further 

improve the retrieval performance. In our future work we will explore the use of incremental learning to 

adapt the learning network online to a user’s feedback; we will also investigate the clinical benefit of 

using the developed retrieval framework for computer-aided diagnosis. 
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Figure 1. Proposed image retrieval framework with relevance feedback.  
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Figure 2. The two-stage hierarchical learning framework.  
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Figure 3. Illustration of support vector machines: (a) classification with a linear hyperplane that 
maximizes the margin between the two classes; and (b) ε-insensitive SVM for regression, where the loss 
function does not penalize errors below the parameter ε . The support vectors are indicated by filled 
squares. 
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Figure 4. Examples of mammogram regions containing clustered microcalcifications (indicated by 
circles). 
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Figure 5. A histogram plot of the observers’ similarity scores (SCs) for the 465 MCC pairs in 
the dataset. 
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Figure 6. Plot of precision-recall curves obtained from various network structures. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plot of P-R curves for MSVM-SVM 

Figure 7. Precision-recall curves obtained by the MSVM-SVM network when the regularization 
parameter C in the regression stage is varied from its tuned value of 100 in Table 1 to: (a) 10 
(MSVM-SVM(10)), and (b) 1000 (MSVM-SVM(1000)). 
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Figure 8. Top three images retrieved by the single-stage SVM (b) and the two-stage MSVM-SVM (c), 
respectively, for a given query MCC (a). Numbers in brackets on top of each cluster are the user SCs.  
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Figure 10. Precision-recall curves using relevance feedback for the two-stage network MSVM-GRNN. 

 

New plot here… 
Figure 11. Precision-recall curves obtained by the MSVM-SVM network when different values were used
for the thresholds T  and : (a) T =3, =6 (MSVM-SVM (3,6); (b) T =4, T =6 (MSVM-SVM (4,6); 
and (c) T =4, T =7 (MSVM-SVM (3,7).  
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 New plot here… 

Figure 12. Plot of the average percentage of images among retrieved that actually match the disease 
condition of the query when different values were used for the operating threshold T. For comparison, we 
also show correspondingly the matching percentage when the observer score (ground truth) is used.  


	Introduction
	A Learning Approach to Quantify Image Similarity
	Application to Mammography

	Overview of the Proposed Image-Retrieval Framework
	Hierarchical Learning Network
	First-Stage Classifier
	Regression Stage

	Relevance Feedback
	Performance Evaluation Study
	Mammogram Data Set
	Observer Similarity Data
	Extraction of MCC Features
	Machine Training and Performance Evaluation

	Experimental Results
	Conclusions

