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ABSTRACT

Videostroboscopy is an examination which yields a permanent record of the moving vocal

folds� Thus� it allows the diagnosis of abnormalities which contribute to voice disorders� In

this paper� in order to �nd and quantify the deformation of the vocal folds in videostrobo�

scopic recordings� an active contours �snakes� based approach is used to delineate the vocal

folds in each frame of the videostroboscopic image sequence� After this delineation� a new

elastic registration algorithm is used to register the vocal fold contours between adjacent

frames of the video sequence� This algorithm is based on the regularization principle and

is very e�ective when large deformations are present� A least�squares approach is used to

�t an a	ne model to the displacement vectors found by elastic registration� The parame�

ters of this model� rotation� translation� and deformation along two principle axes� quantify

the deformation and allow the succinct characterization of the videostroboscopic recordings

based on the deformations that occurred� Experiments are shown with synthetic and real

videostroboscopic data that demonstrate the value of the proposed approach�

Keywords� vocal folds� deformation analysis� elastic registration� a	ne transformation

modeling�

� INTRODUCTION

Videostroboscopy is a method for the clinical examination of the vibrational character�

istics of the vocal folds���� The method provides a permanent image record of the moving

vocal folds� and is thus used for diagnosis of vibrational abnormalities which contribute to

voice disorders that cannot be detected by other clinical methods���� Since the vocal folds

vibrate too fast to be recorded on video� stroboscopic 
ashes which are slightly �o� phase�





with the frequency of the vocal folds are used to yield an image sequence in which the vocal

folds appear to move in �slow motion��� It is of great interest to voice clinicians both for

diagnostic and research purposes to measure and to quantify the deformation of the vocal

folds during phonation�� Voice clinicians routinely inspect videostroboscopic recordings vi�

sually for diagnostic purposes� However� it is clear that the observer bias and the inability of

humans to absorb and quantify the large amounts of information in video sequences compro�

mise the e�ectiveness of this examination� The goal of the work in this paper is to measure

and quantify the deformations that occur in videostroboscopic recordings of the vocal folds�

The need for this measurement and quanti�cation stems from the simple fact that com�

puters are much better than humans at sorting out information in large amounts of data�

The unaided human observer� no matter how trained� cannot capture and quantify all the

available information about the motion of the vocal folds that is available in a videostro�

boscopic image sequence� For example� is is impossible for the human observer to measure

accurately quantities such as the direction of motion and the change of the area of the vo�

cal fold opening� Small changes in these quantities that could indicate the initial stages

of a disease or a trend during treatment could escape undetected from a human observer�

In addition� it is widely known that during videostroboscopic examinations as performed

today� where trained humans observe the vibratory pattern� the bias of the observer is a

serious problem limiting the usefulness of this examination�� It is impossible just by visual

inspection to classify always objectively� let alone quantify and measure� properties of the

motion pattern of the vocal folds� Motivated by the above limitations of this examination�

the objective of this work is to propose a system that will help ameliorate some of these

di	culties�

The vocal folds are non�rigid objects� Non rigid objects when in motion change shape over
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time� Finding the motion of non�rigid objects is a hard problem which has been studied in

the past for a number of di�erent medical imaging applications in mind� see for example Refs�

����������� and the references within� There exist three mainmethodologies to �nd the motion

of non�rigid objects� For the �rst� speci�c anatomical features of the object �tokens� are

employed to �nd the motion from frame�to�frame� For the second� the mechanical properties

of the underlying elastic body are modeled and laws of mechanics are used to describe the

motion� For the third� no information about the shape or the mechnical properties of the

underlying objects is used� Thus� the motion is determined using only a set of rules that

describe the desired properties of the resulting motion �eld� Most of the approaches in the

above mentioned references are guided by the features of the application in mind and use a

combination of these methodologies�

For this work the vocal folds are �rst detected using active contour models �snakes���

Then� the deformation of the vocal folds is found by elastically registering the contours of

the vocal folds from frame�to�frame� The main characteristics of this elastic registration

problem are� �� There are no distinct features in the images that can be used as tokens to

help track the motion from frame�to�frame� ��� The mechanical properties of the vocal folds

are not yet very well understood� thus it is hard to write down equations that describe their

motion� Therefore� the third methodology has to be used for �nding non�rigid motion for this

problem� ��� The registration algorithm which will be used must be able to accommodate

large deformations that appear in the data due to the severe temporal sub�sampling that

occurs in videostroboscopy�

Recently� combinatorial optimization algorithms have been employed to �nd the motion

when only the third methodology is used� A method based on dynamic programming and

auto�regressive modeling was proposed in Ref� � This approach was modi�ed and used
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successfully in Ref� � for the problem of motion estimation of skeletonized angiographic

images� Another approach was also proposed in Ref� �� Unlike the approach in Ref� � the

approach in Ref� � is based entirely on dynamic programing� We found that the algorithm in

Ref� � and our implementation of the algorithm in Ref� � experience di	culties when applied

to contours that have been severely deformed� For this purpose we proposed a new elastic

contour matching algorithm�� that ameliorates the di	culties that we encountered when

applying the algorithms in Refs� ���� The proposed algorithm is based on a cost function

which is minimized using simulated annealing��� Simulated annealing is an optimization

algorithm that is able to obtain near�optimal solutions for a wide variety of combinatorial

optimization problems� The de�nition of the cost function is based on the principle of

regularization� see for example Refs� ���� and thus trades�o� between two requirements�

First� smoothness of the displacement vector �eld and second that the overall displacement

is small�

The collection of all the vectors that describes the displacement of the contours of the

vocal folds in a point�by�point manner from frame�to�frame is called the displacement vector

�eld Once the displacement vector �eld is found� the need to model it quantitatively arises�

Although the displacement vector �eld captures the vocal fold deformations� it does not

provide a succinct description of them� Thus� a model that describes them is necessary� A

simple model that is easy to compute and also captures the deformations of the vocal folds is

an a�ne transformation model��� In this paper� a least squares procedure is developed to �t

the a	ne transformation model to the displacement vector �eld between successive frames�

The obtained a	ne transformation is then decomposed to a rotation and a deformation

along two principle axes� The time evolution of the rotation and deformation parameters

characterizes succinctly the deformation of the vocal folds in the videostroboscopic sequence�
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It is well known that the vocal fold vibration consists of the inferior portion �in a coronal

plane� of a vocal fold moving approximately �� degrees out of phase with the superior portion�

This vertical phase di�erence means that during part of the closing phase of a glottal cycle�

the bottom part of the vocal folds are closer together than the top� Problems with adequate

illumination make reliable visualization and measurement di	cult for the motion of the

inferior portion of the vocal fold� Consequently for the purposes of this study measurements

were limited to the superior margin of the glottal surface that could be easily visualized�

The rest of this paper is organized as follows� In section �� we present the snakes imple�

mentation that we used to delineate the vocal folds in the videostroboscopic data� In section

�� we present the new elastic registration algorithm that was used for the registration of

the vocal fold contours from frame�to�frame� In section �� we present the modeling of the

vocal fold deformations using the displacement vector �eld and the a	ne transformation

model� In section �� we present our experimental results� Finally� in section �� we present

our conclusions from this work and our future research directions�

� BOUNDARY DETECTION OF VOCAL FOLDS

USING SNAKES

The delineation of the vocal folds can be viewed as the combination of two tasks� �

�nding the locations of abrupt intensity changes� edges� that signify the presence of the

folds� �� ordering the edges to form connected curves or edge linking� There is an enormous

amount of research in edge detection and edge linking� see for example Refs� ���� The

approaches that exist to handle these tasks can be classi�ed into two broad categories� �

data�driven approaches��� where an edge detector operates directly on image intensities� The
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problemwith these approaches is that errors made in edge detection propagate to edge linking

without any opportunity for correction� �� model�driven approaches��� where a parametric

expression for the curve is assumed� The main advantage of this technique is that it is

insensitive to noise and gaps in curves� However� the quantization of the image and the

parameter space used in
uence the �nal outcome� Furthermore� this method does not use

any information about the local structure of the image�

Active contour models �snakes� is a method that combines the advantages of both previ�

ous approaches������ The main di	culty in applying snakes to di�erent problems is in selecting

the initial positions for them� For our application� this initialization problem can be solved

by user interaction in the �rst frame� For the following frames� the snake position found in

the preceding frame can be used as the initial position for the current frame�

A snake is an energy�minimizing spline guided by external forces and is in
uenced by

image forces that pull it towards features such as lines and edges� Snakes are active contour

models which lock on to nearby edges localizing them accurately� Snakes were originally

proposed in Ref� � in which an energy functional was de�ned for the contour and the

minimum energy contour was determined using variational calculus� A snake� is represented

by a vector v whose elements are functions of two spatial coordinates x and y� i�e� v�i� �

�x�i�� y�i�� are the locations on the snake and are called snake elements� or snaxels� A snake

is closed if v forms a closed curve� otherwise it is open� The total snake energy� Esnake�

consists of a sum of two energy terms�

Esnake�v� �
nX
i��

Esnake�i� �
nX
i��

��Eint�i� � � � ��Eext�i�� � ��

where Eint�i� and Eext�i� are the internal and external energies respectively at snaxel v�i��

This de�nition of the energy function complies with the principle of regularization� According

to this principle �delity to the data Eext and prior knowledge Eint are combined to resolve
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the ambiguities of imperfect data in estimation problems� see for example Refs� ���� The

parameter � � ��� � is the regularization parameter that determines the relative trade�o�

between data �delity and prior knowledge which for this problem are captured by the terms

Eext and Eint� respectively�

We seek the optimum locations v�i�� i � � �� � � � � n� that minimizes the snake energy

in Eq���� The internal energy Eint imposes a model of smooth curves which restricts the

solutions to the class of controlled continuity splines� the external energy Eext causes the

snake to attach itself to salient features in the image� The combined e�ect of this two�

energy term yields a model that allows itself to deform in conformation to the nearest salient

features� In general� Eint consists of a continuity term Econt and a curvature term Ecurv�

Econt encourages snaxels to be evenly spaced and eliminates the tendency of shrinkage and

expansion� Ecurv imposes the smoothness constraint on the snake� For the external energy�

both the magnitude and direction of intensity gradient are used in the formulation of Eext�

We use similar de�nitions as in Refs� ����� the energy functional thus yields the following

Esnake�i��

Esnake�i� � �Eint�i� � � � ��Eext�i�

� ���Econt�i� � �� ��Ecurv�i�� � �� ��Eext�i� � ���

where �� � � ��� ��

The regularization parameter � weighs the importance of the internal and the external

energy terms� For the values of �� � � ��� the Eint is dominant� This restricts the snake

to concur more with the model�driven approach� while for the values of � � � � ��� the

Eext is dominant� This causes the snaxels to settle at locations of high intensity gradient�

causing the snake to behave like an edge linking algorithm� This concurs more with the
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data�driven approach� In the continuum of � � ��� �� the snake exhibits an intermediate

behaviour between the model�driven and data�driven approaches�

� REGULARIZATION BASED ELASTIC

REGISTRATION OF THE VOCAL FOLDS

Once the vocal fold contours have been delineated� they have to be matched elastically

from frame�to�frame� In elastic contour matching the two contours� say the smaller  and the

larger �� are matched�registered by �nding the correspondence between points in contours

 and �� Assume that the vocal fold contours  and � in two successive frames are de�ned

by points � x��m�� y��m� � and � x��k�� y��k� �� for m � � �� � � L� and k � � �� � � L��

Matching the two contours corresponds to �nding the pair of indices �m�i�� k�i�� for i �

� �� � � L� where L� is the larger contour� that describe a correspondence of points between

the two contours� The pair of points �m�i�� k�i�� de�nes the ith displacement vector� and the

collection of all these points for i � � �� � � L� vectors gives the displacement vector �eld�

The displacement vector �eld describes the elastic deformation of the two contours�

An elastic contour registration method based on dynamic programming �� and auto�

regressive modeling was proposed in Refs� ���� The cost function to be minimized using

dynamic programming is chosen to be a function of the estimated �using auto�regressive

models� displacement vector and the actual displacement vector found� The advantage of

this algorithm is that the complexity of the deformations does not a�ect the computational

cost� However� the main limitations of this approach for our application are the follow�

ing� First� it does not guarantee that all pixels of the smaller contour will correspond to

points in the larger contour� This will a�ect the motion estimation in the next stages� Sec�
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ond� there is a possibility of crossovers between adjacent displacement vectors when severe

shrinking�expansion is present�

Another algorithm that also matches deformed contours was proposed in Ref��� Un�

like the approach in Refs� ���� this approach is based entirely on dynamic programming�

However� instead of choosing as the cost function the distance between two points �size of

the displacement vectors�� the weighted sum of the di�erence between two successive dis�

placement vectors and the size of the displacement vectors themselves is used� In order to

keep the implementation cost at a reasonable level� dynamic programming is applied to a

sub�graph which is based on a neighborhood system which is de�ned around every point of

the largest contour� The main drawback of this approach for our application is the choice

of the cost function which makes this method unsuitable for matching contours which are

di�erent in size� This is exactly the case when severe shrinking�expansion is present from

contour�to�contour� In other words� one�to�one matching leaves unmatched points when the

two contours are not of equal sizes� Finally� this approach requires that both contours are

described as an ordered list of points�

In this section� we present a original elastic contour matching algorithm�� that alleviates

the di	culties of the algorithms in Refs� ��� for our application� The proposed algorithm is

based on a cost function that is minimized using simulated annealing��� The simulated an�

nealing algorithm is a general optimization technique for solving combinatorial optimization

problems� The algorithm is based on randomization techniques� However� it also incorporates

a number of aspects related to local search techniques� In contrast to local search techniques

the simulated annealing algorithm �nds high�quality solutions which do not strongly depend

on the choice of the initial solution� i�e� the algorithm is e�ective and robust� Furthermore�

the simulated annealing algorithm can escape from local minima while it still exhibits the
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favorable features of local search algorithms� i�e� simplicity and general applicability� Due

to the highly non�convex nature of the function that is minimized an optimization algo�

rithm which is based on a random search would be appropriate for this problem� Simulated

annealing is such an algorithm�

Finding the displacement vector �eld is an ill�posed problem and it is common in all ill�

posed problems to impose simultaneously a small square error and a smoothness constraint�

This is the very well known regularization principle�����	 A cost function based on the regu�

larization principle is de�ned� This cost function is minimized with respect to the choice of

the displacement vectors �m�i�� k�i�� for i � � �� � � �L� and is of the form

C � � � ��
L�X
i��

� �x��m�i��� x��k�i���
� � �y��m�i��� y��k�i���

� �

��
L�X
i��

�j ��m�i�� k�i��� ��m�i� �� k�i� �� j�� � ���

where the parameter � � ��� � is the regularization parameter and ��m�i�� k�i�� is the angle

of the ith displacement vector which is de�ned by the points m�i� and k�i� of the contours 

and �� respectively� The �rst part of the function C captures the requirement that the total

distance between points that are matched should be small� The second part of the function

imposes the smoothness constraint to the displacement vector �eld by constraining adjacent

motion vectors to have similar directions� The use of the regularization principle in the

registration problem is especially helpful when the deformations are severe and the contours

are not smooth� In this case� the data alone are not su	cient to provide a meaningful

displacement vector �eld�
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��� Simulated annealing

Simulated annealing has been applied in the past to a number of non�convex combinato�

rial optimization problems in image processing� see for example Ref� ��� The name simulated

annealing originates from the analogy with the physical annealing process of solids�

Simulated annealing associates a � temperature � T � with a model and searches for the

optimal con�guration based on a de�ned energy by repeatedly trying to alter the state of

the system� At each iteration� a transition is �rst generated and then either accepted or

rejected� A rejected transition is regarded as a transition from the current state to itself� By

appropriately selecting the probability of generating and accepting state j from state i� the

simulated annealing algorithm can be shown to converge��	 for any value of the temperature

T � �� after a �possibly large� number of transitions� The temperature is then lowered

repeatedly� and after enough iterations the system approaches equilibrium� This process is

terminated using a stopping rule when the change of the expected cost is very small compared

to the expected cost at T�� see for example Refs� ���

A simulated annealing algorithm is completely de�ned upon specifying a cooling schedule�

This cooling schedule consists of the initial temperature of the system T�� a rule for deter�

mining the number of transitions at each temperature� a rule for determining the lowering

of the temperature� and a termination criterion�

We used the rule for lowering the temperature described in Ref� � the temperature

Tk
� is given by

Tk
� �
Tk

 � Tk�ln��
��
	�T

k

� k � �� � � � � � ���

where � is a small positive number� Small ��values lead to small decrements of the temper�





ature� �Tk is the standard deviation of the cost function at Tk where

�Tk � �	L

LT
kX

i��

�CTk�i�� CTk�
������ and CTk � 	L

LT
kX

i��

CTk�i� �

CTk�i� is the value of the cost function at state i when the temperature is Tk� the bar denotes

averaging over all values of the cost function CTk�i�� for i � � �� � � � � LTk generated at a given

temperature Tk�

The algorithm terminates when� for some k� we have �CTk is small compared to CT��
��

i�e�

Tk

C�


CT


T
jT�Tk � �s � ���

where �s is some small positive number called the stop parameter� C� is the expected cost

at T �� and �CT

�T
jT�Tk is the partial derivative of the expected cost at T � Tk�

Let Tk denote the value of the temperature� LTk the length of the Markov chain when

the temperature is Tk� i� the initial state �con�guration�� Then� our registration algorithm

can be described in pseudo code as follows�

begin

INITIALIZE�i�� T��

k �� ��

i �� i��

repeat

for l ��  to LTk do

begin

GENERATE �new state j��

if C�j� � C�i� then i �� j

else

�



if exp�C�i��C�j�
Tk

� � random��� � then i �� j

end�

k �� k �  �

CALCULATE �Tk� Eq�����

until stop criterion Eq����

end�

We used LTk � L� for k � � �� � � �� The initial state i� is selected randomly� We start

at an initial value of the temperature T� evaluated using the same approach as in Ref� �

The GENERATE �new state j� picks at random at state i two adjacent points from the

larger contour� which are the origins of two displacement vectors� Then the new state j is

generated by exchanging the displacement vectors of the two points previously selected�

� AFFINE TRANSFORM MODELING OF THE

DEFORMATION

After elastic registration� the displacement vector �eld between adjacent frames of the

vocal folds is available� The displacement vector �eld provides a better visualization of the

deformation than the raw video�recordings� However� the displacement vector �eld alone

does not provide a quantitative description of the deformation� Therefore� in this section

we present the model that is used to quantify the deformation from the displacement vector

�eld�

As explained previously the deformation at the location i between two successive frames

for example  and � is represented as a vector which is given by two pairs of coordinates�

This vector is called the displacement vector �DV�� Let � x��i�� y��i� � and � x��i�� y��i� �
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denote the origin and the end�point of the DV at location i� Assuming that L such points are

given� then the displacement vector �eld between frames  and � is given by the collection

of all available displacement vectors� The displacement vector �eld is fully described by the

set of points

� xl�i�� yl�i� � for l � � � and i � � �� � � � � L�

A simple model for the displacement vector �eld that is very appropriate because it can cap�

ture the deformation during the motion of the vocal folds is based on the a�ne transformation������

This model is described by the following set of linear equations

�
x��i�
y��i�

�
	

�
a�� a��
a�� a��

� �
x��i�
y��i�

�
�

�
Tx
Ty

�
for i � � �� � � � � L� ���

The 	 sign is used because �tting an a	ne transformation model to more than � motion

vectors is an overdetermined problem which has to be solved approximately� In what follows�

we will elaborate on this point� The matrix A de�ned by the coe	cients a��� a��� a��� a�� de�

scribes deformation and rotation��� while Tx� Ty describe translation in the x and y directions�

respectively� More speci�cally� the matrix A can be decomposed into the product of R and

D�� where D is a symmetric positive de�nite matrix that represents deformation and R is

an orthonormal matrix� More speci�cally

A �

�
a�� a��
a�� a��

�
� R �D� R �

�
cos �sin
sin cos

�
and D �

�
a c
c b

�
� ���

Because of the symmetry of D we can also write

D �

�
a c
c b

�
�

�
� �eT�

�eT�

�
� � �� �

� ��

� h
�e�� �e�

i
� ���

where �i� �ei� for i � � � are the eigenvalues and the corresponding orthogonal eigenvectors�

respectively� of matrix D� To �nd D and R we observe that

ATA � �RD�T �RD� � DTRTRD� ���
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but� since R is orthonormal matrix then�

RTR � I� ���

where I is the identity matrix� Therefore�

ATA � DTD� ��

But since D is symmetric� there exists a unique decomposition of ATA such that D is

symmetric and positive de�nite�

Let ���� �e�� for � � � �� be the eigenvalues and eigenvectors� respectively of the symmetric

matrix ATA� i�e�

ATA � ��� �e� �e�
T � ��� �e��e�

T � ���

Then

D � �� �e� �e�
T � �� �e� �e�

T � ���

Once D is estimated� R can be estimated uniquely as R � AD�� � The eigenvectors of the

D matrix give the perpendicular directions of the maximum and minimum deformation���

These directions are given by the angles

�� � tan���
e��y�

e��x�
�� and �� � tan���

e��y�

e��x�
� � ���

where ej�x�� ej�y� are the x and y components of the vector �ej� The corresponding eigenvalues

give the changes of the magnitude of the deformation along these directions� Therefore� the

a	ne transformation model of the displacement vector �eld provides a succinct description

of the changes that occurred in the shapes of the contours�

The 	 sign in Eq���� is used because in general it is impossible to �nd a unique set of

�a��� a��� a��� a��� Tx� Ty� parameters that will satisfy Eq���� exactly for all i � � �� � � � � L�
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Thus� a set of such parameters is found that �on the average� is optimal for i � � �� � � � � L�

For this problem the least�squares approach is used��� According to this approach a model

is found which minimizes the sum of the squared error over the entire set of range data that

is �tted with our model� Rearranging Eq���� for i � � �� � � �L we can write the following

system of linear equations Bx � b with

B �

�
������������

x��� y��� � �  �
� � x��� y��� � 

x���� y���� � �  �
� � x���� y���� � 
���

���
���

���
���
���

x��L� y��L� � �  �
� � x��L� y��L� � 

�
������������
� ���

x �
h
a��� a��� a��� a��� Tx� Ty

iT
� ���

b �
h
x���� y���� x����� y����� � � � x��L�� y��L�

iT
� ���

where B and b are a �L
 � matrix and �L
  vector� respectively� of the data� Vector x is

� 
  and contains the parameters that are �tted to the data� For L � � clearly this is an

overdetermined system of equations so we resort to a least�squares solution�

Minimizing kBx� bk�� where k � k� is the l��norm� gives the following equations�

BTB�xLS � BTb �

from which we can solve for �xLS and get the a	ne model parameters� The matrix BTB is a

�
 � symmetric matrix given by

�
���������

PL
i�� x

�
��i�

PL
i�� x��i�y��i� � �

PL
i�� x��i� �PL

i�� x��i�y��i�
PL

i�� y
�
��i� � �

PL
i�� y��i� �

� �
PL

i�� x
�
��i�

PL
i�� x��i�y��i� �

PL
i�� x��i�

� �
PL

i�� x��i�y��i�
PL

i�� y
�
��i� �

PL
i�� y��i�PL

i�� x��i�
PL

i�� y��i� � � L �
� �

PL
i�� x��i�

PL
i�� y��i� � L

�
���������
�

�



Apart from the trivial straight line case where y��i� � �x��i� for i � � �� � � � � L� where �

is a constant� BTB is positive de�nite and thus �BTB��� exists� Therefore� the computation

of �xLS is easy�

� EXPERIMENTAL RESULTS

In this section we present two categories of experiments� In the �rst� the performance of

the new simulated annealing�based elastic registration approach that we propose is compared

to previous elastic registration algorithms that are based on the same methodology� To

the best of our knowledge two such algorithms exist� more speci�cally� the algorithms in

Refs� � and �� In the second� the proposed system �contour delineation� elastic registration�

deformation modeling� is tested on videostroboscopic recordings of normal larynges� a larynx

with a polyp� and a larynx with a cyst�

For the �rst category� experiments are presented to test the new registration algorithm

on contours produced by synthetic deformations since in order to evaluate the algorithms�

performances quantitatively� the true displacement vector �eld must be known� More specif�

ically� the three registration algorithms from Refs� ��� and section � were compared� For the

algorithm in Ref� � the authors of the paper provided us with their code� The algorithm

in Ref� � was modi�ed to match all the points of the larger contour� For our modi�cation�

the algorithm was reapplied in the regions were points were left unmatched� All three al�

gorithms were applied to contours that have been deformed in a controlled manner by an

a	ne transformation� given by

D � diagfd� dg d � �� � ���

and a � rotation� see Eq����� This a	ne transformation when applied to the outer contour

�



of Fig��� results in the deformed inner contours� see Fig���� Notice that D �squeezes� the

initial contour in both the x and y directions�

For the simulated annealing that was used in our elastic registration algorithm��� we

chose a cooling schedule de�ned by three parameters� i�e� the initial acceptance ratio ��� the

� parameter� and the stop parameter �s� In the previous� and all of the following experiments

we used �� � ���� � � �
T�
��
� and �s � ���� Choosing �� 	  sets the initial temperature T�

of the system at very high value� while� � which controls the decrease rate of the temperature

in Eq���� is relatively small� and �nally the stop parameter �s is chosen to be very small�

A mean square error metric� EMSE� in pixels for the simulated elastic matching problem

was used to objectively evaluate the results� EMSE is de�ned by

EMSE � 	N
NX
i��

��x��i�� �x��k�i���
� � �y��i�� �y��k�i���

�� � ���

where �x��i�� y��i�� are the true positions computed from Eq���� and ��x��k�i��� �y��k�i���

were found from the elastic matching of contours  and ��

We applied the three algorithms for di�erent deformations� Fig��� shows some of these

deformations of the outer contour� Applying the three algorithms for d � ����  � �� yields

the displacement vector �elds of Fig����� Registration errors of the �rst two algorithms can be

seen where crossings of motion vectors occurred in Fig�����a� and Fig�����b�� In Fig�����c�

the resulting displacement vector �eld from the proposed approach is shown� Using the

de�nition in Eq���� with N � ��� the EMSE for the three algorithm in Refs� ��� and for

the proposed approach for di�erent deformations are shown in Table���

The previous experiments and for d � ����  � �� were run on a SUN�SPARC�� work�

station� the processing time for the algorithm in Ref� � was �� seconds� for the algorithm

�



in Ref� � was �� seconds and for the proposed approach it took ������� iterations in ��

seconds� For the other experiments similar numbers in terms of times and iterations were

observed� These simple experiments indicate that the proposed approach has the ability to

track better elastic contours during deformation and computationally it is not much more

expensive�

In the second category� experiments are presented that test the proposed algorithms

on real data of videostroboscopic image sequences of a normal and abnormal larynges� In

the �rst experiment� we used a sixteen frame videostroboscopic image sequence showing a

complete vibrational cycle of normal vocal folds� All our real data was provided by the last

two authors� In Fig����� the sequence is shown running from top left to bottom right starting

from frame  and ending at frame �� The bright contours delineate the boundaries of the

vocal folds in the successive frames and were produced using the snake algorithm described

in section �� It can be seen that the positions and changes in the shape of the vocal folds

are correctly extracted using the snakes� In locating the contours of the vocal folds we used

a small number ������� of snaxels� then the complete boundary was obtained by applying

cubic spline interpolation�� to the snaxels at the right and the left side of the vocal folds

separately� For our application we chose the value of � � ��� and the value of � � ��� this

yields more of a model�driven solution and is robust to noise� The displacement vector �elds

of all contours for the successive frames are shown in Fig����� From this �gure and in frames

��� it is observed that some points on the vocal fold contour move together while others

move oppositely� This seems to happen only around the time of maximum opening and the

�turn�around� toward closure�

Because of the frame rate limitations of videostroboscopy� as explained in the introduc�

tion� the frames in an apparent videostroboscopic cycle originate from a number depending on

�



the frequency of phonation� For example fundamental frequency of �� Hz at �� frames�sec

would sample every �rth cycle� Therefore� there are instances where the visible anterior clo�

sure of the vocal folds shows a large descrepancy� large lateral distances between adjacent

frames� as seen for example in Fig���� �displacement vector �elds of frames � � �� � � ��

�� � and �� ��� therefore the line connecting the most anterior aspects of the openings

between adjacent frames was used as the reference for reconstructing the glotal contour for

the subsequent motion analysis�

This correction is based on the observation that the structural motion is medial�lateral

�horizontal in the images� rather than anterior�posterior and is consistent with high�speed

photography descriptions of the vocal folds vibratory patterns������ In order to have anterior�

posterior motion there would need to be concomitant shortening at the ventricular folds

and other visible structures which was not the case� Therefore� it is safe to assume in

these images that all the missing motion was medial�lateral and that the line correction

enhanced the motion interpretation analysis of the data� This is not to discount vertical

movement� However� while the vertical position is continuously changing� over the one

second representing a cycle the motion is negligible as evidensed by no change in the size of

the true vocal folds or the position of the supraglotic structure�

In order to evaluate the performance of the a	ne transformation parameters in modeling

the displacement vector and characterizing the deformation of the vocal folds� a prediction

mean�square�error metric was used� the Epmse is de�ned by�

Epmse � 	N
NX
i��

kd�i�� �d�i�k� ����

where N is the number of displacement vectors� d�i� � �x��i� � x��i�� y��i� � y��i�� is the

displacement vector found from the elastic registration of contours  and �� and �d�i� �
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� �x��i�� x��i�� �y��i�� y��i�� is the displacement vector predicted by�
�x��i�
�y��i�

�
�

�
a�� a��
a�� a��

� �
x��i�
y��i�

�
�

�
Tx
Ty

�
for i � � �� � � � � N� ���

where �a��� a��� a��� a��� Tx� Ty� are the a	ne transformation parameters obtained for this

displacement vector �eld� Using the de�nition in Eq������ the Epmse for the displacement

vector �elds in Fig���� is shown as an example in Table��� for the larynx with a polyp� The

values of the Epmse are small which indicates the ability of the a	ne transformation model

to capture the deformation of the vocal folds� This sequence was chosen as an example to

demonstrate the ability of the a	ne transformation model to capture the motion information

even when it is irregular�

Fig���� �a� and �b� show the relative deformation and the directions of deformation�

respectively� for the vocal folds from frame�to�frame� The relative deformation from frame�

to�frame is given by the eigenvalues of matrix D i�e� �� and ��� while the corresponding

directions of deformation are given by the angles �� and ��� As seen� �� which represents

the relative deformation along the �� direction is close to one� i�e� �� 	 � This implies that

the deformation along the vertical direction x�axis� is very small� For this sequence� a larger

deformation occurs along the horizontal direction �y�axis�� i�e� �� 	 ��� The time intervals

for which �� �  de�nes the opening cycle of the vocal folds� From Fig�����a� we observe

that the opening cycle lasts until frame � after which the vocal folds start the closing cycle

��� � �� Also from Fig�����a� we observe that the maximum relative opening movement

takes place between frames � and � and the maximum relative closing movement takes place

between frames � an �� These observations cannot be made from the raw images in Fig����

or from the displacement vector �eld in Fig����� For this sequence� as shown in Fig�����c��

the translational motion along the x and y directions is very small since it represents the

small translational motion of the centroid of the vocal folds� By observing the images and

the motion vectors� which are not shown in this paper due to space limitations� we concluded

�



that the sudden change in the curves of the angles �� and �� in Fig� ��� �b� around frames

��� is probably due to patient or camera motion�

Another sixteen frame videostroboscopic image sequence of a normal larynx was analyzed

and the deformations are shown in Fig����� From Fig�����a� and as in the previous sequence�

the opening cycle ��� � � lasts until frame �� after which the vocal folds start the closing

cycle ��� � �� Similar comments as for the previous sequence can be made here about the

curves for �� and ���

In another experiment� we used sixteen frames from a videostroboscopic image sequence

of a patient with polyps�� In Fig���� the sequence is shown running from top left to bottom

right� The bright contours delineate the boundaries of the vocal folds in the successive

frames� Fig���� shows the displacement vector �elds between each two successive contours

of the vocal folds using the new algorithm described in section �� The translational and

rotational components of the deformation are again very small� see Fig����c�� and �d��

For this sequence also there is almost no deformation along the �� direction for which

�� 	 � see Fig�����a�� From Fig�����a� we can again observe that the dominant deformation

is along the �� direction� From this �gure we can also tell that the vocal folds kept the

opening movement until frame � ��� � � then an unexpected closing movement occurred

between frames � through �� then they opened between frames � and � and after that the

closing cycle began�

In the last experiment� we used twenty frames from a videostroboscopic image sequence

of a patient with a cyst�� The translational and rotational components of the deformation

are again very small� see Fig����c�� and �d�� From this �gure we can also tell that the

vocal folds kept the opening movement until frame � ��� � � then an unexpected closing

��



movement occurred between frames � and �� then they continued to open until frame �

� CONCLUSIONS

In this paper the problem of modeling the deformations of the vocal folds from videostro�

boscopic recordings was addressed� For this purpose a system that delineates the contours

of the vocal folds using snakes� elastically registers the contours using a new regularization�

based algorithm� thus� the displacement vector �el between adjacent frames is obtained� and

�nally �ts an a	ne transform model to the available displacement vector �eld was developed�

We found that the a	ne transformation describes well the deformations of the vocal folds�

The proposed a	ne transformation model is quite general and can be applied in a number

of di�erent ways� For example� when the symmetry of the vocal fold motion is examined

then� two a	ne transformation models one for the left and one for the right side of the vocal

folds should be used� In the experiments we show we observed that many important features

of the deformation of the vocal folds can be captured very e�ectively by the time evolution

of only a few a	ne transform parameters of our model� The most signi�cant parameter is

�� which represents the deformation along the horizontal direction� However� there exist

scenarios where the other parameters of the a	ne transformation might be signi�cant� One

such scenario is when global motion is present�

Although videostroboscopy is considered to be one of the most valuable clinical tools

available for assesing vocal fold vibrations it is not without problems� It produces an averaged

signal and does not provide detail about any single cycle� It is based on assumptions that

the vocal fold vibration is fairly regular which frequently is not the case�

��



Recently high�speed digital video asystem that has neither of these limitations has been

used to investigate non�periodic vibration characteristics of the vocal folds� With such

systems recordings are made at ��� frames�sec or faster so that in contrast to recordings

made at �� frames�sec� many video frames are captured during one true rather than one

apparent glottal cycle removing the periodicity limitation of stroboscopy�	� However� the

methods described in this paper could be applied to high�speed video images thus providing

more powerful interpretations of vocal fold vibrations�
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d  EMSE for the algorithm
in Ref� � in Ref� � using SA
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Table I� The EMSE for the three algorithms for the di�erent deformations in Fig����
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Table II� The Epmse of the a	ne transformation model based on prediction of the displace�

ment vector �eld of the sequence with the polyps in Fig�����
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� Figure Captions

Figure � The inner contour is obtained by deforming the outer contour using the matrix

D in Eq���� and a rotation  � ��� see Eq���� for �a� d � ���� �b� d � ���� �c� d � ����

Figure �� The DVF registration for d � ����  � �� using the �a� algorithm in Ref� ��

�b� algorithm in Ref� �� �c� proposed regularization based approach� �d� true displacement

vector �eld�

Figure �� The bright closed contours delineate the boundaries of the vocal folds in suc�

cessive frames of a normal larynx run from top left to the bottom right�

Figure �� The registration of the successive boundaries of the sequence of videostrobo�

scopic images of a normal larynx using the proposed simulated annealing based approach runs

from top left to the bottom right� the displacement vector �elds are sampled and magni�ed�

Figure �� The �gures in �a�� �b�� �c� and �d� represent time evolution of the eigenvalues�

principal directions of deformation� the translation along the x and y axes and the rotation

angle for the frames of the �rst normal larynx videostroboscopic image sequence respectively�

The units of the vertical axes in �b� and �d� are degrees�

Figure �� The �gures in �a�� �b�� �c� and �d� represent time evolution of the eigenval�

ues� principal directions of deformation� the translation along the x and y axes and the

rotation angle for the frames of the second normal larynx videostroboscopic image sequence

respectively� The units of the vertical axes in �b� and �d� are degrees�

Figure �� The bright closed contours delineate the boundaries of the vocal folds in the

successive frames of the �rst abnormal larynx sequence for a patient with polyps run from

top left to the bottom right�

Figure �� The registration of the successive boundaries of the �rst abnormal larynx

sequence of videostroboscopic images using the proposed SA based approach runs from top

left to the bottom right� the displacement vector �elds are sampled and magni�ed�

Figure �� The �gures in �a�� �b�� �c� and �d� represent time evolution of the eigenval�

ues� principal directions of deformation� the translation along the x and y axes and the

rotation angle for the frames of the �rst abnormal larynx videostroboscopic image sequence

respectively� The units of the vertical axes in �b� and �d� are degrees�

Figure �� The �gures in �a�� �b�� �c� and �d� represent time evolution of the eigenvalues�
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principal directions of deformation� the translation along the x and y axes and the rota�

tion angle for the frames of the second abnormal larynx videostroboscopic image sequence

respectively� The units of the vertical axes in �b� and �d� are degrees�
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�a� �b� �c�

Figure � The inner contour is obtained by deforming the outer contour using the matrix D
in Eq���� and a rotation  � ��� see Eq���� for �a� d � ���� �b� d � ���� �c� d � ����

�a� �b� �c� �d�

Figure �� The DVF registration for d � ����  � �� using the �a� algorithm in Ref� ��
�b� algorithm in Ref� �� �c� proposed regularization based approach� �d� true displacement
vector �eld�
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� � � �

� �  �

� � � �

Figure �� The bright closed contours delineate the boundaries of the vocal folds in the
successive frames of a normal larynx run from top left to the bottom right�
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�� � �� � �� � �� � �� 

� � �� � �� � �� � �� �

Figure �� The registration of the successive boundaries of the normal sequence of videostro�
boscopic images using the proposed simulated annealing based approach runs from top left
to the bottom right� the displacement vector �eld are sampled and magni�ed�
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Figure �� The �gures in �a�� �b�� �c� and �d� represent time evolution of the eigenvalues�
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� � � �

Figure �� The bright closed contours delineate the boundaries of the vocal folds in the
successive frames of the sequence for a patient with polyps run from top left to the bottom
right�
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� � �� � �� � �� � �� �

Figure �� The registration of the successive boundaries of the sequence of videostroboscopic
images of a larynx with a polyps using the proposed simulated annealing based approach runs
from top left to the bottom right� the displacement vector �eld are sampled and magni�ed�
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Figure �� The �gures in �a�� �b�� �c� and �d� represent time evolution of the eigenvalues�
principal directions of deformation� the translation along the x and y axes and the rotation
angle for the frames of the �rst abnormal videostroboscopic image sequence respectively�
The units of the vertical axes in �b� and �d� are degrees�
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Figure �� The �gures in �a�� �b�� �c� and �d� represent time evolution of the eigenvalues�
principal directions of deformation� the translation along the x and y axes and the rotation
angle for the frames of the second abnormal videostroboscopic image sequence respectively�
The units of the vertical axes in �b� and �d� are degrees�
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