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ABSTRACT

Videostroboscopy is an examination which yields a permanent record of the moving vocal
folds. Thus, it allows the diagnosis of abnormalities which contribute to voice disorders. In
this paper, in order to find and quantify the deformation of the vocal folds in videostrobo-
scopic recordings, an active contours (snakes) based approach is used to delineate the vocal
folds in each frame of the videostroboscopic image sequence. After this delineation, a new
elastic registration algorithm is used to register the vocal fold contours between adjacent
frames of the video sequence. This algorithm is based on the regularization principle and
is very effective when large deformations are present. A least-squares approach is used to
fit an affine model to the displacement vectors found by elastic registration. The parame-
ters of this model, rotation, translation, and deformation along two principle axes, quantify
the deformation and allow the succinct characterization of the videostroboscopic recordings
based on the deformations that occurred. Experiments are shown with synthetic and real

videostroboscopic data that demonstrate the value of the proposed approach.

Keywords: vocal folds, deformation analysis, elastic registration, affine transformation

modeling.

1 INTRODUCTION

Videostroboscopy is a method for the clinical examination of the vibrational character-
istics of the vocal folds.""? The method provides a permanent image record of the moving
vocal folds, and is thus used for diagnosis of vibrational abnormalities which contribute to
voice disorders that cannot be detected by other clinical methods.!»? Since the vocal folds

vibrate too fast to be recorded on video, stroboscopic flashes which are slightly “off phase”



with the frequency of the vocal folds are used to yield an image sequence in which the vocal
folds appear to move in “slow motion”.! It is of great interest to voice clinicians both for
diagnostic and research purposes to measure and to quantify the deformation of the vocal
folds during phonation.? Voice clinicians routinely inspect videostroboscopic recordings vi-
sually for diagnostic purposes. However, it is clear that the observer bias and the inability of
humans to absorb and quantify the large amounts of information in video sequences compro-
mise the effectiveness of this examination. The goal of the work in this paper is to measure

and quantify the deformations that occur in videostroboscopic recordings of the vocal folds.

The need for this measurement and quantification stems from the simple fact that com-
puters are much better than humans at sorting out information in large amounts of data.
The unaided human observer, no matter how trained, cannot capture and quantify all the
available information about the motion of the vocal folds that is available in a videostro-
boscopic image sequence. For example, is is impossible for the human observer to measure
accurately quantities such as the direction of motion and the change of the area of the vo-
cal fold opening. Small changes in these quantities that could indicate the initial stages
of a disease or a trend during treatment could escape undetected from a human observer.
In addition, it is widely known that during videostroboscopic examinations as performed
today, where trained humans observe the vibratory pattern, the bias of the observer is a
serious problem limiting the usefulness of this examination.? It is impossible just by visual
inspection to classify always objectively, let alone quantify and measure, properties of the
motion pattern of the vocal folds. Motivated by the above limitations of this examination,

the objective of this work is to propose a system that will help ameliorate some of these

difficulties.

The vocal folds are non-rigid objects. Non rigid objects when in motion change shape over



time. Finding the motion of non-rigid objects is a hard problem which has been studied in
the past for a number of different medical imaging applications in mind, see for example Refs.
3,4,5,6,7,8 and the references within. There exist three main methodologies to find the motion
of non-rigid objects. For the first, specific anatomical features of the object (tokens) are
employed to find the motion from frame-to-frame. For the second, the mechanical properties
of the underlying elastic body are modeled and laws of mechanics are used to describe the
motion. For the third, no information about the shape or the mechnical properties of the
underlying objects is used. Thus, the motion is determined using only a set of rules that
describe the desired properties of the resulting motion field. Most of the approaches in the
above mentioned references are guided by the features of the application in mind and use a

combination of these methodologies.

For this work the vocal folds are first detected using active contour models (snakes).?
Then, the deformation of the vocal folds is found by elastically registering the contours of
the vocal folds from frame-to-frame. The main characteristics of this elastic registration
problem are: (1) There are no distinct features in the images that can be used as tokens to
help track the motion from frame-to-frame. (2) The mechanical properties of the vocal folds
are not yet very well understood, thus it is hard to write down equations that describe their
motion. Therefore, the third methodology has to be used for finding non-rigid motion for this
problem. (3) The registration algorithm which will be used must be able to accommodate
large deformations that appear in the data due to the severe temporal sub-sampling that

occurs in videostroboscopy.

Recently, combinatorial optimization algorithms have been employed to find the motion
when only the third methodology is used. A method based on dynamic programming and

auto-regressive modeling was proposed in Ref. 3 This approach was modified and used



successfully in Ref. 4 for the problem of motion estimation of skeletonized angiographic
images. Another approach was also proposed in Ref. 5. Unlike the approach in Ref. 3 the
approach in Ref. 5 is based entirely on dynamic programing. We found that the algorithm in
Ref. 4 and our implementation of the algorithm in Ref. 5 experience difficulties when applied
to contours that have been severely deformed. For this purpose we proposed a new elastic
contour matching algorithm!® that ameliorates the difficulties that we encountered when
applying the algorithms in Refs. 4,5. The proposed algorithm is based on a cost function
which is minimized using simulated annealing.'' Simulated annealing is an optimization
algorithm that is able to obtain near-optimal solutions for a wide variety of combinatorial
optimization problems. The definition of the cost function is based on the principle of
regularization, see for example Refs. 12,13, and thus trades-off between two requirements.
First, smoothness of the displacement vector field and second that the overall displacement

1s small.

The collection of all the vectors that describes the displacement of the contours of the
vocal folds in a point-by-point manner from frame-to-frame is called the displacement vector
field Once the displacement vector field is found, the need to model it quantitatively arises.
Although the displacement vector field captures the vocal fold deformations, it does not
provide a succinct description of them. Thus, a model that describes them is necessary. A
simple model that is easy to compute and also captures the deformations of the vocal folds is
an affine transformation model.'* In this paper, a least squares procedure is developed to fit
the affine transformation model to the displacement vector field between successive frames.
The obtained affine transformation is then decomposed to a rotation and a deformation
along two principle axes. The time evolution of the rotation and deformation parameters

characterizes succinctly the deformation of the vocal folds in the videostroboscopic sequence.



It is well known that the vocal fold vibration consists of the inferior portion (in a coronal
plane) of a vocal fold moving approximately 50 degrees out of phase with the superior portion.
This vertical phase difference means that during part of the closing phase of a glottal cycle,
the bottom part of the vocal folds are closer together than the top. Problems with adequate
illumination make reliable visualization and measurement difficult for the motion of the
inferior portion of the vocal fold. Consequently for the purposes of this study measurements

were limited to the superior margin of the glottal surface that could be easily visualized.

The rest of this paper is organized as follows. In section 2, we present the snakes imple-
mentation that we used to delineate the vocal folds in the videostroboscopic data. In section
3, we present the new elastic registration algorithm that was used for the registration of
the vocal fold contours from frame-to-frame. In section 4, we present the modeling of the
vocal fold deformations using the displacement vector field and the affine transformation
model. In section 5, we present our experimental results. Finally, in section 6, we present

our conclusions from this work and our future research directions.

2 BOUNDARY DETECTION OF VOCAL FOLDS
USING SNAKES

The delineation of the vocal folds can be viewed as the combination of two tasks. 1.
finding the locations of abrupt intensity changes, edges, that signify the presence of the
folds; 2. ordering the edges to form connected curves or edge linking. There is an enormous
amount of research in edge detection and edge linking, see for example Refs. 15,16. The
approaches that exist to handle these tasks can be classified into two broad categories. 1.

data-driven approaches,!” where an edge detector operates directly on image intensities. The



problem with these approaches is that errors made in edge detection propagate to edge linking
without any opportunity for correction. 2. model-driven approaches,'® where a parametric
expression for the curve is assumed. The main advantage of this technique is that it is
insensitive to noise and gaps in curves. However, the quantization of the image and the
parameter space used influence the final outcome. Furthermore, this method does not use

any information about the local structure of the image.

Active contour models (snakes) is a method that combines the advantages of both previ-
ous approaches.'®?° The main difficulty in applying snakes to different problems is in selecting
the initial positions for them. For our application, this initialization problem can be solved
by user interaction in the first frame. For the following frames, the snake position found in

the preceding frame can be used as the initial position for the current frame.

A snake is an energy-minimizing spline guided by external forces and is influenced by
image forces that pull it towards features such as lines and edges. Snakes are active contour
models which lock on to nearby edges localizing them accurately. Snakes were originally
proposed in Ref. 9 in which an energy functional was defined for the contour and the
minimum energy contour was determined using variational calculus. A snake, is represented
by a vector v whose elements are functions of two spatial coordinates z and y, i.e. v(z) =
(z(2),y(2)) are the locations on the snake and are called snake elements, or snazels. A snake
is closed if v forms a closed curve, otherwise it is open. The total snake energy, Finake,
consists of a sum of two energy terms:

Eanake(V) = 3 Banake(1) = 3 (ABine(1) + (1 — 3) Beat(3)) , (1)

i=1 i=1
where E;n(7) and Ee.(7) are the internal and external energies respectively at snaxel v(z).
This definition of the energy function complies with the principle of regularization. According

to this principle fidelity to the data E.,; and prior knowledge E,,; are combined to resolve



the ambiguities of imperfect data in estimation problems, see for example Refs. 12,13. The
parameter A € [0,1] is the regularization parameter that determines the relative trade-off
between data fidelity and prior knowledge which for this problem are captured by the terms

E..; and E;,;, respectively.

We seek the optimum locations v(z),z = 1,2,---,n, that minimizes the snake energy
in Eq.(1). The internal energy E;,; imposes a model of smooth curves which restricts the
solutions to the class of controlled continuity splines; the external energy E..: causes the
snake to attach itself to salient features in the image. The combined effect of this two-
energy term yields a model that allows itself to deform in conformation to the nearest salient
features. In general, E;,; consists of a continuity term E.,; and a curvature term E.,.,.
E ,n: encourages snaxels to be evenly spaced and eliminates the tendency of shrinkage and
expansion. FE.,., imposes the smoothness constraint on the snake. For the external energy,

both the magnitude and direction of intensity gradient are used in the formulation of E,y;.

We use similar definitions as in Refs. 19,20; the energy functional thus yields the following

Esnake (7/) :

Eomake(1) = ABing(s) + (1 = A)Eeai(3)

= )‘('YEcont(i) + (1 - 'Y)Ecuw(i)) + (1 - )‘)Eezt(i) ) (2)

where A, v € [0, 1].

The regularization parameter A weighs the importance of the internal and the external
energy terms. For the values of A > (1 — X), the E,,; is dominant. This restricts the snake
to concur more with the model-driven approach, while for the values of A < (1 — ), the
E,;; is dominant. This causes the snaxels to settle at locations of high intensity gradient,

causing the snake to behave like an edge linking algorithm. This concurs more with the



data-driven approach. In the continuum of A € [0,1], the snake exhibits an intermediate

behaviour between the model-driven and data-driven approaches.

3 REGULARIZATION BASED ELASTIC
REGISTRATION OF THE VOCAL FOLDS

Once the vocal fold contours have been delineated, they have to be matched elastically
from frame-to-frame. In elastic contour matching the two contours, say the smaller 1 and the
larger 2, are matched/registered by finding the correspondence between points in contours
1 and 2. Assume that the vocal fold contours 1 and 2 in two successive frames are defined
by points ( z1(m), yi(m) ) and ( za(k), y2(k) ), form =1, 2, .. Ly and k=1, 2, .. L.
Matching the two contours corresponds to finding the pair of indices (m(2), k(z)) for ¢« =
1, 2, .. Ly where L, is the larger contour, that describe a correspondence of points between
the two contours. The pair of points (m(2), k(¢)) defines the ** displacement vector, and the
collection of all these points for z = 1, 2, . . L, vectors gives the displacement vector field.

The displacement vector field describes the elastic deformation of the two contours.

An elastic contour registration method based on dynamic programming %' and auto-
regressive modeling was proposed in Refs. 3,4. The cost function to be minimized using
dynamic programming is chosen to be a function of the estimated (using auto-regressive
models) displacement vector and the actual displacement vector found. The advantage of
this algorithm is that the complexity of the deformations does not affect the computational
cost. However, the main limitations of this approach for our application are the follow-
ing: First, it does not guarantee that all pixels of the smaller contour will correspond to

points in the larger contour. This will affect the motion estimation in the next stages. Sec-



ond, there is a possibility of crossovers between adjacent displacement vectors when severe

shrinking/expansion is present.

Another algorithm that also matches deformed contours was proposed in Ref.5. Un-
like the approach in Refs. 3,4, this approach is based entirely on dynamic programming.
However, instead of choosing as the cost function the distance between two points (size of
the displacement vectors), the weighted sum of the difference between two successive dis-
placement vectors and the size of the displacement vectors themselves is used. In order to
keep the implementation cost at a reasonable level, dynamic programming is applied to a
sub-graph which is based on a neighborhood system which is defined around every point of
the largest contour. The main drawback of this approach for our application is the choice
of the cost function which makes this method unsuitable for matching contours which are
different in size. This is exactly the case when severe shrinking/expansion is present from
contour-to-contour. In other words, one-to-one matching leaves unmatched points when the
two contours are not of equal sizes. Finally, this approach requires that both contours are

described as an ordered list of points.

In this section, we present a original elastic contour matching algorithm'® that alleviates
the difficulties of the algorithms in Refs. 4,5 for our application. The proposed algorithm is
based on a cost function that is minimized using simulated annealing.'' The simulated an-
nealing algorithm is a general optimization technique for solving combinatorial optimization
problems. The algorithm is based on randomization techniques. However, it also incorporates
a number of aspects related to local search techniques. In contrast to local search techniques
the simulated annealing algorithm finds high-quality solutions which do not strongly depend
on the choice of the initial solution, i.e. the algorithm is effective and robust. Furthermore,

the simulated annealing algorithm can escape from local minima while it still exhibits the



favorable features of local search algorithms, 7.e. simplicity and general applicability. Due
to the highly non-convex nature of the function that is minimized an optimization algo-
rithm which is based on a random search would be appropriate for this problem. Simulated

annealing is such an algorithm.

Finding the displacement vector field is an :ll-posed problem and it is common in all ill-
posed problems to impose simultaneously a small square error and a smoothness constraint.
This is the very well known reqularization principle.!*'* A cost function based on the regu-
larization principle is defined. This cost function is minimized with respect to the choice of
the displacement vectors (m(z), k(z)) for ¢ = 1,2, -- Ly and is of the form

C= (1-2) Yl (z(m(z)) — z2(k(i)))* + (y2(m(3)) — y2(h())* ]

+A ;[l $(m(1), k(3)) — ¢(m(i — 1), k(i — 1)) []* (3)
where the parameter A € [0,1] is the regularization parameter and ¢(m(z), k(2)) is the angle
of the 3** displacement vector which is defined by the points m(z) and k() of the contours 1
and 2, respectively. The first part of the function C captures the requirement that the total
distance between points that are matched should be small. The second part of the function
imposes the smoothness constraint to the displacement vector field by constraining adjacent
motion vectors to have similar directions. The use of the regularization principle in the
registration problem is especially helpful when the deformations are severe and the contours
are not smooth. In this case, the data alone are not sufficient to provide a meaningful

displacement vector field.
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3.1 Simulated annealing

Simulated annealing has been applied in the past to a number of non-convex combinato-
rial optimization problems in image processing, see for example Ref. 22. The name simulated

annealing originates from the analogy with the physical annealing process of solids.

Simulated annealing associates a “ temperature ” T', with a model and searches for the
optimal configuration based on a defined energy by repeatedly trying to alter the state of
the system. At each iteration, a transition is first generated and then either accepted or
rejected. A rejected transition is regarded as a transition from the current state to itself. By
appropriately selecting the probability of generating and accepting state 7 from state 2, the
simulated annealing algorithm can be shown to converge,?® for any value of the temperature
T > 0, after a (possibly large) number of transitions. The temperature is then lowered
repeatedly, and after enough iterations the system approaches equilibrium. This process is
terminated using a stopping rule when the change of the expected cost is very small compared

to the expected cost at Tp, see for example Refs. 10,11.

A simulated annealing algorithm is completely defined upon specifying a cooling schedule.
This cooling schedule consists of the initial temperature of the system Tj, a rule for deter-
mining the number of transitions at each temperature, a rule for determining the lowering

of the temperature, and a termination criterion.

We used the rule for lowering the temperature described in Ref. 11, the temperature

Tk41 1s given by

Ty

Thr = Ty dn(116) *

k=01, |, 4
1+ )

3o Tk

where 6 is a small positive number. Small §-values lead to small decrements of the temper-

11



ature. or, is the standard deviation of the cost function at T} where

L, L,
or, = (1/L Y (On,(5) - Cp,)*)/?, and O, =1/L ) Cr,(z),
=1 =1

Cr,(7) is the value of the cost function at state : when the temperature is T, the bar denotes
averaging over all values of the cost function Cr,(2), for s = 1,2, - -, Ly, generated at a given

temperature Tj.

The algorithm terminates when, for some k, we have ACr, is small compared to Cr,,'?

1.€.
1, 9T
Co 0T

where €, is some small positive number called the stop parameter, C o, is the expected cost

|T:T,e <&, (5)

at T — oo and %h:n is the partial derivative of the expected cost at 7' = T.

Let Ty denote the value of the temperature, L, the length of the Markov chain when
the temperature is T, to the initial state (configuration). Then, our registration algorithm

can be described in pseudo code as follows:

begin
INITTIALIZE(%0, 1)

k :=0;
1 =10
repeat

for | :=1to Ly, do

begin
GENERATE (new state j);
if C(j) <C(:) then: =35

else

12



if exp(%ﬁ(j)) > random[0, 1) then: :=
end;
E:=k+1;
CALCULATE (Ty) Eq.(4);
until stop criterion Eq.(5)

end;

We used Ly, = Ly for k= 1,2,---. The initial state 79 is selected randomly. We start
at an initial value of the temperature T evaluated using the same approach as in Ref. 11.
The GENERATE (new state j) picks at random at state : two adjacent points from the
larger contour, which are the origins of two displacement vectors. Then the new state j is

generated by exchanging the displacement vectors of the two points previously selected.

4 AFFINE TRANSFORM MODELING OF THE
DEFORMATION

After elastic registration, the displacement vector field between adjacent frames of the
vocal folds is available. The displacement vector field provides a better visualization of the
deformation than the raw video-recordings. However, the displacement vector field alone
does not provide a quantitative description of the deformation. Therefore, in this section

we present the model that is used to quantify the deformation from the displacement vector

field.

As explained previously the deformation at the location ¢ between two successive frames
for example 1 and 2 is represented as a vector which is given by two pairs of coordinates.

This vector is called the displacement vector (DV). Let ( z1(z), y1(2) ) and ( z2(2), y2(z) )

13



denote the origin and the end-point of the DV at location 2. Assuming that L such points are
given, then the displacement vector field between frames 1 and 2 is given by the collection
of all available displacement vectors. The displacement vector field is fully described by the

set of points

(z1(2), yi(e) ) forl=1,2and :=1,2,---, L.

A simple model for the displacement vector field that is very appropriate because it can cap-
ture the deformation during the motion of the vocal folds is based on the affine transformation.'**

This model is described by the following set of linear equations

58] (2 2l [El s

yz(%) a1 Q22 0N (2)

The = sign is used because fitting an affine transformation model to more than 3 motion
vectors is an overdetermined problem which has to be solved approximately. In what follows,
we will elaborate on this point. The matrix A defined by the coeflicients a11, @12, a21, @22 de-
scribes deformation and rotation,'* while T, T, describe translation in the z and y directions,
respectively. More specifically, the matrix A can be decomposed into the product of R and
D,*® where D is a symmetric positive definite matrix that represents deformation and R is

an orthonormal matrix. More specifically

A:lan a12]:R‘D7R:lc030 —smH] andD:lZ c] ‘ (7

ay1 Qoo sinf  cosf b

Because of the symmetry of D we can also write

o= [eal- L[5 Ates), .

where );, €;, for 1 = 1,2 are the eigenvalues and the corresponding orthogonal eigenvectors,

YR

respectively, of matrix D. To find D and R we observe that

ATA = (RD)'(RD) = D"RTRD, (9)

14



but, since R is orthonormal matrix then,
RTR=1, (10)

where [ is the identity matrix. Therefore,
ATA=DTD. (11)

But since D is symmetric, there exists a unique decomposition of ATA such that D is

symmetric and positive definite.

Let A2, €, for @ = 1,2, be the eigenvalues and eigenvectors, respectively of the symmetric
matrix ATA, i.e.
ATA = X2&6" + Nerey”. (12)
Then

D = Mé el + hepel. (13)

Once D is estimated, R can be estimated uniquely as R = AD~?. The eigenvectors of the

D matrix give the perpendicular directions of the maximum and minimum deformation.'*

These directions are given by the angles

¢y = tan_l(el(y)), and ¢, = tan_l(ez(y)) ) (14)

1(z es(z)

where e;(z), e;(y) are the z and y components of the vector €;. The corresponding eigenvalues

o

N

give the changes of the magnitude of the deformation along these directions. Therefore, the
affine transformation model of the displacement vector field provides a succinct description

of the changes that occurred in the shapes of the contours.

The ~ sign in Eq.(6) is used because in general it is impossible to find a unique set of

(a11, @12, @21, @22, Ty, T;) parameters that will satisfy Eq.(6) exactly for all © = 1,2,---, L.

15



Thus, a set of such parameters is found that “on the average” is optimal forz =1,2,---, L.
For this problem the least-squares approach is used.?® According to this approach a model
is found which minimizes the sum of the squared error over the entire set of range data that
is fitted with our model. Rearranging Eq.(6) for ¢« = 1,2,--- L we can write the following

system of linear equations Bz = b with

[ z1(1)  yi(1) 0 0 1 07
0 0 z1(1) wyi(1) 0 1
z1(2) v1(2) 0 0 10
B=| O 0 2(2) %n(2) 0 1], (15)
azl(‘L) yl(‘L) 1 0
. 0 0 (L) yo(L) O 1|
T = [ a1, Q12, Q21, Q22, 1y, Ty ]T, (16)
b=[2a(l), wa(l), 7(2), a2, - wa(l), wl)] (17)

where B and b are a 2L X 6 matrix and 2L X 1 vector, respectively, of the data. Vector z is
6 x 1 and contains the parameters that are fitted to the data. For L > 6 clearly this is an

overdetermined system of equations so we resort to a least-squares solution.

Minimizing || Bz — b||2, where || - ||2 is the ly-norm, gives the following equations,
BTB#;s = BTb

from which we can solve for 21,5 and get the affine model parameters. The matrix BT B is a

6 x 6 symmetric matrix given by

[ Tiaei@) X z()(i) 0 0 i 21 (3) 0 ]
Y n(@n() T yi) 0 0 i yi(2) 0
0 0 Y ai() Xk w(0)u(e) 0 Y (3)
0 0 25:1 z1(2)y1(2) 25:1 y%(z) 0 211;21 y1(2)
25:1 z1(2) 25:1 ya(2) 0 0 L 0
L 0 0 25:1 z1(2) 25:1 y1(2) 0 L .

16




Apart from the trivial straight line case where y1(2) = az1(z) for 2 = 1,2, -, L, where «
is a constant, BT B is positive definite and thus (BT B)~! exists. Therefore, the computation

of Z15 is easy.

5 EXPERIMENTAL RESULTS

In this section we present two categories of experiments. In the first, the performance of
the new simulated annealing-based elastic registration approach that we propose is compared
to previous elastic registration algorithms that are based on the same methodology. To
the best of our knowledge two such algorithms exist, more specifically, the algorithms in
Refs. 4 and 5. In the second, the proposed system (contour delineation, elastic registration,
deformation modeling) is tested on videostroboscopic recordings of normal larynges, a larynx

with a polyp, and a larynx with a cyst.

For the first category, experiments are presented to test the new registration algorithm
on contours produced by synthetic deformations since in order to evaluate the algorithms’
performances quantitatively, the true displacement vector field must be known. More specif-
ically, the three registration algorithms from Refs. 4,5 and section 3 were compared. For the
algorithm in Ref. 4 the authors of the paper provided us with their code. The algorithm
in Ref. 5 was modified to match all the points of the larger contour. For our modification,
the algorithm was reapplied in the regions were points were left unmatched. All three al-
gorithms were applied to contours that have been deformed in a controlled manner by an

affine transformation, given by
D = diag{d,d} d< 1.0, (18)

and a 6° rotation, see Eq.(7). This affine transformation when applied to the outer contour

17



of Fig.(1) results in the deformed inner contours, see Fig.(1). Notice that D “squeezes” the

initial contour in both the z and y directions.

For the simulated annealing that was used in our elastic registration algorithm,!® we
chose a cooling schedule defined by three parameters, i.e. the initial acceptance ratio xo, the

6 parameter, and the stop parameter €,. In the previous, and all of the following experiments

To

&, and £, = 1078, Choosing xo ~ 1 sets the initial temperature 7o

we used xo = 0.98 , 6 =
of the system at very high value, while, § which controls the decrease rate of the temperature

in Eq.(4) is relatively small, and finally the stop parameter ¢, is chosen to be very small.

A mean square error metric, Epsg, in pixels for the simulated elastic matching problem

was used to objectively evaluate the results. Fjssg is defined by

Eysg = 1/N Z:[(wz(i) — 22(k(4)))* + (y2(4) — 92(k(3)))] , (19)
where (z2(2),y2(2)) are the true positions computed from Eq.(6) and (Z2(k(2)), 92(k(2)))

were found from the elastic matching of contours 1 and 2.

We applied the three algorithms for different deformations. Fig.(1) shows some of these
deformations of the outer contour. Applying the three algorithms for d = 0.5,8 = 0° yields
the displacement vector fields of Fig.(2). Registration errors of the first two algorithms can be
seen where crossings of motion vectors occurred in Fig.(2)(a) and Fig.(2)(b). In Fig.(2)(c)
the resulting displacement vector field from the proposed approach is shown. Using the
definition in Eq.(19) with N = 303 the Ensg for the three algorithm in Refs. 4,5 and for

the proposed approach for different deformations are shown in Table(1).

The previous experiments and for d = 0.5, = 0° were run on a SUN/SPARC-10 work-

station, the processing time for the algorithm in Ref. 5 was 50 seconds, for the algorithm

18



in Ref. 4 was 55 seconds and for the proposed approach it took 390,870 iterations in 69
seconds. For the other experiments similar numbers in terms of times and iterations were
observed. These simple experiments indicate that the proposed approach has the ability to
track better elastic contours during deformation and computationally it is not much more

expensive.

In the second category, experiments are presented that test the proposed algorithms
on real data of videostroboscopic image sequences of a normal and abnormal larynges. In
the first experiment, we used a sixteen frame videostroboscopic image sequence showing a
complete vibrational cycle of normal vocal folds. All our real data was provided by the last
two authors. In Fig.(3), the sequence is shown running from top left to bottom right starting
from frame 1 and ending at frame 16. The bright contours delineate the boundaries of the
vocal folds in the successive frames and were produced using the snake algorithm described
in section 2. It can be seen that the positions and changes in the shape of the vocal folds
are correctly extracted using the snakes. In locating the contours of the vocal folds we used
a small number (30-40) of snaxels, then the complete boundary was obtained by applying
cubic spline interpolation®” to the snaxels at the right and the left side of the vocal folds
separately. For our application we chose the value of ¥ = 0.5 and the value of A = 0.8 this
yields more of a model-driven solution and is robust to noise. The displacement vector fields
of all contours for the successive frames are shown in Fig.(4). From this figure and in frames
7-10 1t is observed that some points on the vocal fold contour move together while others
move oppositely. This seems to happen only around the time of maximum opening and the

?turn-around” toward closure.

Because of the frame rate limitations of videostroboscopy, as explained in the introduc-

tion, the frames in an apparent videostroboscopic cycle originate from a number depending on
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the frequency of phonation. For example fundamental frequency of 140 Hz at 33 frames/sec
would sample every 47 cycle. Therefore, there are instances where the visible anterior clo-
sure of the vocal folds shows a large descrepancy, large lateral distances between adjacent
frames, as seen for example in Fig.(4) (displacement vector fields of frames 2 — 3, 3 — 4,
4 — 5 and 15 — 16); therefore the line connecting the most anterior aspects of the openings
between adjacent frames was used as the reference for reconstructing the glotal contour for

the subsequent motion analysis.

This correction is based on the observation that the structural motion is medial-lateral
(horizontal in the images) rather than anterior-posterior and is consistent with high-speed
photography descriptions of the vocal folds vibratory patterns.?32° In order to have anterior-
posterior motion there would need to be concomitant shortening at the ventricular folds
and other visible structures which was not the case. Therefore, it is safe to assume in
these images that all the missing motion was medial-lateral and that the line correction
enhanced the motion interpretation analysis of the data. This is not to discount vertical
movement. However, while the vertical position is continuously changing, over the one
second representing a cycle the motion is negligible as evidensed by no change in the size of

the true vocal folds or the position of the supraglotic structure.

In order to evaluate the performance of the affine transformation parameters in modeling
the displacement vector and characterizing the deformation of the vocal folds, a prediction

mean-square-error metric was used, the Epn,. is defined by:

Bomee = 1/N 3 [1d(3) - d(1))? (20)

where N is the number of displacement vectors, d(z) = (z2(2) — #1(2), y2(z) — y1(2)) is the

displacement vector found from the elastic registration of contours 1 and 2, and az(z) =
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(£2(2) — z1(2),¥2(2) — y1(2)) is the displacement vector predicted by

l afg(z) ] = l 1 A1z ] l azl(z) ] + l To ] for:=1,2,---, N. (21)

¥2(?) @21 @22 y1(2) T,

where (a1, @12, @21, @22, Ty, T,) are the affine transformation parameters obtained for this
displacement vector field. Using the definition in Eq.(20), the Epu,. for the displacement
vector fields in Fig.(8) is shown as an example in Table(2) for the larynx with a polyp. The
values of the E,,, are small which indicates the ability of the affine transformation model
to capture the deformation of the vocal folds. This sequence was chosen as an example to

demonstrate the ability of the affine transformation model to capture the motion information

even when it is irregular.

Fig.(5) (a) and (b) show the relative deformation and the directions of deformation,
respectively, for the vocal folds from frame-to-frame. The relative deformation from frame-
to-frame is given by the eigenvalues of matrix D i.e. A; and A,, while the corresponding
directions of deformation are given by the angles ¢; and ¢;. As seen, Ay which represents
the relative deformation along the ¢, direction is close to one, i.e. Ay & 1. This implies that
the deformation along the vertical direction z-axis, is very small. For this sequence, a larger
deformation occurs along the horizontal direction (y-axis), i.e. ¢1 ~ 90. The time intervals
for which A; > 1 defines the opening cycle of the vocal folds. From Fig.(5)(a) we observe
that the opening cycle lasts until frame 8 after which the vocal folds start the closing cycle
(A1 < 1). Also from Fig.(5)(a) we observe that the maximum relative opening movement
takes place between frames 3 and 4 and the maximum relative closing movement takes place
between frames 14 an 15. These observations cannot be made from the raw images in Fig.(3)
or from the displacement vector field in Fig.(4). For this sequence, as shown in Fig.(5)(c),
the translational motion along the z and y directions is very small since it represents the
small translational motion of the centroid of the vocal folds. By observing the images and

the motion vectors, which are not shown in this paper due to space limitations, we concluded
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that the sudden change in the curves of the angles ¢; and ¢, in Fig. (5) (b) around frames

8-10 is probably due to patient or camera motion.

Another sixteen frame videostroboscopic image sequence of a normal larynx was analyzed
and the deformations are shown in Fig.(6). From Fig.(6)(a) and as in the previous sequence,
the opening cycle (A; > 1) lasts until frame 8, after which the vocal folds start the closing
cycle (A; < 1). Similar comments as for the previous sequence can be made here about the

curves for ¢; and ¢,.

In another experiment, we used sixteen frames from a videostroboscopic image sequence
of a patient with polyps.? In Fig.(7) the sequence is shown running from top left to bottom
right. The bright contours delineate the boundaries of the vocal folds in the successive
frames. Fig.(8) shows the displacement vector fields between each two successive contours
of the vocal folds using the new algorithm described in section 3. The translational and

rotational components of the deformation are again very small, see Fig(9)(c), and (d).

For this sequence also there is almost no deformation along the ¢, direction for which
Ay & 1, see Fig.(9)(a). From Fig.(9)(a) we can again observe that the dominant deformation
is along the ¢; direction. From this figure we can also tell that the vocal folds kept the
opening movement until frame 6 (A; > 1) then an unexpected closing movement occurred
between frames 7 through 9, then they opened between frames 9 and 10 and after that the

closing cycle began.

In the last experiment, we used twenty frames from a videostroboscopic image sequence
of a patient with a cyst.? The translational and rotational components of the deformation
are again very small, see Fig(10)(c), and (d). From this figure we can also tell that the

vocal folds kept the opening movement until frame 7 (A; > 1) then an unexpected closing
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movement occurred between frames 8 and 9, then they continued to open until frame 11.

6 CONCLUSIONS

In this paper the problem of modeling the deformations of the vocal folds from videostro-
boscopic recordings was addressed. For this purpose a system that delineates the contours
of the vocal folds using snakes, elastically registers the contours using a new regularization-
based algorithm, thus, the displacement vector fiel between adjacent frames is obtained, and

finally fits an affine transform model to the available displacement vector field was developed.

We found that the affine transformation describes well the deformations of the vocal folds.
The proposed affine transformation model is quite general and can be applied in a number
of different ways. For example, when the symmetry of the vocal fold motion is examined
then, two affine transformation models one for the left and one for the right side of the vocal
folds should be used. In the experiments we show we observed that many important features
of the deformation of the vocal folds can be captured very effectively by the time evolution
of only a few affine transform parameters of our model. The most significant parameter is
A1 which represents the deformation along the horizontal direction. However, there exist
scenarios where the other parameters of the affine transformation might be significant. One

such scenario is when global motion is present.

Although videostroboscopy is considered to be one of the most valuable clinical tools
available for assesing vocal fold vibrations it is not without problems. It produces an averaged
signal and does not provide detail about any single cycle. It is based on assumptions that

the vocal fold vibration is fairly regular which frequently is not the case.
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Recently high-speed digital video asystem that has neither of these limitations has been
used to investigate non-periodic vibration characteristics of the vocal folds. With such
systems recordings are made at 1000 frames/sec or faster so that in contrast to recordings
made at 30 frames/sec, many video frames are captured during one true rather than one
apparent glottal cycle removing the periodicity limitation of stroboscopy.?® However, the
methods described in this paper could be applied to high-speed video images thus providing

more powerful interpretations of vocal fold vibrations.
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d 0 Fuse for the algorithm
in Ref. 7 ‘ in Ref. 5 ‘ using SA
0.85 | 0° 2.67 3.62 1.42
0.8 | 0° 3.85 4.59 1.49
0.7 | 0° 6.14 11.49 1.53
0.5 | 0° 7.18 14.27 1.70

Table I: The Epgg for the three algorithms for the different deformations in Fig.(1).
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frames | Eppmee | frames | Eppse
1 -2 0.68 2—3 1.70
3 -4 0.94 4 -5 0.76
556 1.10 6 — 7 1.25
7T— 8 1.20 8 —9 0.84
9—10 | 1.37 ||10—-11| 0.25
11 —-12| 036 || 12 >13 | 0.14
13—14 | 022 ||14 —- 15| 1.26
15— 16| 0.72

Table II: The Eppe of the affine transformation model based on prediction of the displace-

ment vector field of the sequence with the polyps in Fig.(7).
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8 Figure Captions

Figure 1: The inner contour is obtained by deforming the outer contour using the matrix

D in Eq.(18) and a rotation § = 0°, see Eq.(7) for (a) d =0.8, (b) d=10.7, (c) d = 0.5.

Figure 2: The DVF registration for d = 0.5, = 0° using the (a) algorithm in Ref. 7,
(b) algorithm in Ref. 5, (c) proposed regularization based approach, (d) true displacement
vector field.

Figure 3: The bright closed contours delineate the boundaries of the vocal folds in suc-

cessive frames of a normal larynx run from top left to the bottom right.

Figure 4: The registration of the successive boundaries of the sequence of videostrobo-
scopic images of a normal larynx using the proposed simulated annealing based approach runs
from top left to the bottom right, the displacement vector fields are sampled and magnified.

Figure 5: The figures in (a), (b), (c) and (d) represent time evolution of the eigenvalues,
principal directions of deformation, the translation along the z and y axes and the rotation
angle for the frames of the first normal larynx videostroboscopic image sequence respectively.

The units of the vertical axes in (b) and (d) are degrees.

Figure 6: The figures in (a), (b), (¢) and (d) represent time evolution of the eigenval-
ues, principal directions of deformation, the translation along the z and y axes and the
rotation angle for the frames of the second normal larynx videostroboscopic image sequence

respectively. The units of the vertical axes in (b) and (d) are degrees.

Figure 7: The bright closed contours delineate the boundaries of the vocal folds in the
successive frames of the first abnormal larynx sequence for a patient with polyps run from
top left to the bottom right.

Figure 8: The registration of the successive boundaries of the first abnormal larynx
sequence of videostroboscopic images using the proposed SA based approach runs from top
left to the bottom right, the displacement vector fields are sampled and magnified.

Figure 9: The figures in (a), (b), (¢) and (d) represent time evolution of the eigenval-
ues, principal directions of deformation, the translation along the z and y axes and the
rotation angle for the frames of the first abnormal larynx videostroboscopic image sequence

respectively. The units of the vertical axes in (b) and (d) are degrees.

Figure 10: The figures in (a), (b), (c) and (d) represent time evolution of the eigenvalues,
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principal directions of deformation, the translation along the z and y axes and the rota-
tion angle for the frames of the second abnormal larynx videostroboscopic image sequence

respectively. The units of the vertical axes in (b) and (d) are degrees.
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(a) (b) (c)

Figure 1: The inner contour is obtained by deforming the outer contour using the matrix D

in Eq.(18) and a rotation § = 0°, see Eq.(7) for (a) d = 0.8, (b) d =0.7, (c) d = 0.5.

|

=

i o
1T N

Figure 2: The DVF registration for d = 0.5, = 0° using the (a) algorithm in Ref. 7,
(b) algorithm in Ref. 5, (c) proposed regularization based approach, (d) true displacement
vector field.
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14 15 16

Figure 3: The bright closed contours delineate the boundaries of the vocal folds in the
successive frames of a normal larynx run from top left to the bottom right.
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Figure 4: The registration of the successive boundaries of the normal sequence of videostro-

boscopic images using the proposed simulated annealing based approach runs from top left

to the bottom right, the displacement vector field are sampled and magnified.

34



0.4

0.2

=]

I I
0 11 12

13 14 15

-4 |
_67
Tx
-8 ____Ty
Wt 7T T T T T T T T
1 2 3 45 6 7 8 9 10 11 12 13 14 15
frame #

()

140
120
100
80
60 |
40

,
20 PN

13 14 15

I I I
10 11 12

© —

20—

16+

124

T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 13
frame #

I |
14 15

(d)

Figure 5: The figures in (a), (b), (c) and (d) represent time evolution of the eigenvalues,
principal directions of deformation, the translation along the z and y axes and the rotation
angle for the frames of the first videostroboscopic image sequence, respectively. The units
of the vertical axes in (b) and (d) are degrees.

35



14—

044
02 A
N
0 I I I I I I I I I I I I |
1 2 3 4 5 6 8 9 10 11 12 13 14 15

Ix
Ty

=

I I I I !
0 11 12 13 14 15

140
120
100
80
60 |
40

20 - // \

=204 ./ \ , N
40| v

-60

I I I
10 11 12 13 14 15

© —

20 —
0 15

10

T 1T T 1T T T T T T T
2 3 4 5 6 7 8 9 10 11 12 13 14 15

frame #

(d)

-

Figure 6: The figures in (a), (b), (c) and (d) represent time evolution of the eigenvalues,
principal directions of deformation, the translation along the z and y axes and the rotation

angle for the frames of the second videostroboscopic image sequence, respectively. The units
of the vertical axes in (b) and (d) are degrees.

36



15

Figure 7: The bright closed contours delineate the boundaries of the vocal folds in the
successive frames of the sequence for a patient with polyps run from top left to the bottom
right.
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images of a larynx with a polyps using the proposed simulated annealing based approach runs
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Figure 9: The figures in (a), (b), (c) and (d) represent time evolution of the eigenvalues,
principal directions of deformation, the translation along the z and y axes and the rotation
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Figure 10: The figures in (a), (b), (c) and (d) represent time evolution of the eigenvalues,
principal directions of deformation, the translation along the z and y axes and the rotation
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