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ABSTRACT

It has recently been demonstrated that object recognition can be formulated as an image�

restoration problem� In this approach� which we term impulse restoration� the objective is to

restore a delta function indicating the detected object�s location� Here we develop solutions

based on impulse restoration for the Gaussian noise case� We propose a new iterative ap�

proach� based on the expectation�maximization �EM	 algorithm� that simultaneously estimates

the background statistics and restores a delta function at the location of the template� We

use a Monte�Carlo study and localization�receiver�operating characteristics �LROC	 curves to

evaluate the performance of this approach quantitatively and compare it with existing meth�

ods� We present experimental results that demonstrate that impulse restoration is a powerful

approach for detecting known objects in images severely degraded by noise� Our numerical

experiments point out that the proposed EM�based approach is superior to all tested variants
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of the matched �lter� This demonstrates that accurate modeling and estimation of the back�

ground and noise statistics are crucial for realizing the full potential of impulse restoration�based

template�matching�
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�� INTRODUCTION

Template matching� which consists of the identi�cation and localization of known objects �tem�

plates	 in a scene� is an important image�processing task with application in novelty detection�

motion estimation� target recognition� industrial inspection� and sensor fusion� The classical

approach to this problem is the matched �lter �MF	 which is optimal in the sense that it is the

�lter for which the signal�to�noise ratio �SNR	 of the output is maximized�� However� the MF is

known to have several important drawbacks� including� �	 it is very sensitive to small variations

of the object� �	 it can produce very broad correlation peaks that do not localize the object

well�� and �	 it fails in the presence of background areas of high intensity because these areas

produce high peaks in the output�

Attempts to overcome these limitations have led investigators to propose a number of modi�

�cations to the classical MF� among the most important being the phase�only MF �POMF	 and

its variants �see� for example� Refs� ����
	� It has been widely recognized that the phase of the

Fourier transform is more important to describing an image than is its magnitude �see� for ex�

ample� Ref� �	� Phase�only matched �lters �POMF	 and symmetric phase�only matched �lters

�SPOMF	 have been proposed� and have been shown to provide better discrimination ability

and noise robustness than the MF �see� for example� Refs� ����� and the references within	�

Filters in use in joint transform correlators have been proposed that further improve the

capabilities of the MF�� These �lters are based on normalization of the correlation signal by the
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background power spectrum� Methods for estimation of the power spectrum of the background

are given in Ref� ��

A di�erent way of viewing the design of template�matching �lters has recently emerged� In

this new approach the problem of template matching is framed as one of image restoration� in

which the image to be restored is an impulse at the location of the object to be detected� To

our knowledge the �rst explicit application of this principle was reported in Ref� � in which

the use of expansion matching� i�e�� self�similar non�orthogonal basis decomposition� was pro�

posed� More recently� the relationship between linear�minimum�mean�squared�error �LMMSE	

impulse restoration and template matching was recognized and impulse�restoration �lters were

proposed for template�matching applications��������� In these papers it was demonstrated that

impulse restoration is a very powerful approach to template matching and has the potential

to provide better localization� class discrimination� and error tolerance than the MF and its

variants� Independently� the relationship between template matching and impulse restoration

was recognized in previous papers��������� In these papers LMMSE�based impulse restoration was

used to �nd the displacement vector �eld �DVF	 from noisy and�or blurred image sequences�

A critical shortcoming of the earlier work on impulse restoration has been the assumption

that the background and�or noise statistics are known� which is not the case in practice� In real�

istic applications� one is required to estimate these statistics from the observed image� Without

accurate estimates� the performance of impulse�restoration methods is severely compromised�
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In Ref� � three di�erent approaches to estimate the backgound power spectrum were intro�

duced� In Refs� �������
 one�step periodogram�based approaches were proposed to estimate

the background statistics� in this paper� a new approach is proposed based on the expectation�

maximization �EM	 algorithm���

In this paper we propose a new technique for template matching based on the approach of

restoring an impulse indicating the object location� We describe an expectation�maximization

�EM	 algorithm �� that simultaneously estimates the impulse along with the statistics of the

noise and background� This algorithm is similar in philosophy to the application of EM to the

image�restoration problem in Ref� ��� A major advantage of the impulse�restoration viewpoint

is that it permits the substantial base of knowledge gained in the image�restoration �eld to be

brought to bear on the template�matching problem�

Another important issue not often addressed in the object�recognition literature is the quan�

titative evaluation of task performance� Frequently� �gures of merit are used that only indirectly

measure the ability of an algorithm to detect and locate objects with accuracy� Such perfor�

mance measures include the mean�square error �MSE	 between the �lter output and the desired

impulse� and the peak�to�sidelobe �PTS	 ratio of the �lter output��� While these measures cer�

tainly have some relationship with detection performance� they provide only indirect evidence�

To make quantitative evaluations of the performance of various techniques� we use an exten�

sion of the receiver operating characteristic �ROC	 curve� called the localization ROC �LROC	






curve��	 The ROC curve� which plots the probability of detection versus the probability of false

alarm for the continuum of possible decision thresholds� is a comprehensive description of the

detection performance of an algorithm �see� for example� Ref� ��	� The LROC curve plots the

probability of detection and correct localization of an object versus the false�alarm probability�

thus it also measures the ability of the detection algorithm to locate objects correctly� The

LROC curve thoroughly and directly describes the detection and localization capability of an

algorithm� thus it is much more informative than criteria such as MSE or PTS�

The remainder of this paper is organized as follows� In Section � we review the impulse�

restoration formulation for the template�matching problem� In Section � we introduce a maximum�

likelihood �ML	 approach based on the EM algorithm that simultaneously estimates the back�

ground statistics and restores an impulse at the location of the template� In Section � we brie�y

review the LROC curve� In Section 
 we present numerical experiments and LROC�based com�

parisons demonstrating the proposed impulse�restoration template�matching algorithm� Finally�

in Section � we present our conclusions and suggestions for future work�

�� BACKGROUND

A� Object Recognition as Impulse Restoration

In this section� the formulation of object recognition as an impulse�restoration problem is

reviewed� For notational simplicity� images are represented throughout the paper by one�
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dimensional signals� Consider the observed image g�n	� n � �� �� � � � � N
�

� � in which the

known object f�n	 is located at the unknown position n�� One can then represent the image by

g�n	 � f�n � n�	 � b�n	� ��	

where b�n	 is the combined background and noise� The goal of template matching is to �nd the

location n� of the known object f�n	 within the image g�n	� Equation ��	 can be rewritten as

g�n	 � f�n	 � ��n� n�	 � b�n	� ��	

where ��n�n�	 represents a discrete impulse function located at n� and � denotes convolution�

Using a matrix�vector notation and circular convolutions we write Eq� ��	 as

�g � F�� ��b� ��	

where �g� �b and �� are N � � vectors representing g�n	� b�n	 and ��n	� respectively� In the rest

of this paper� small letters with arrows represent vectors and capital letters represent matrices�

In Eq� ��	 �� is a vector having zeros everywhere except in element n� which has a value of

�� The matrix F is an N � N circulant matrix constructed from the template f�n	 such that

F�� represents the convolution f�n	 � ��n � n�	� In general� the equivalency of Eqs� ��	 and

��	 can be guaranteed by choosing N � N
�

��� Note that if each image vector is obtained by

lexicographic ordering of a two�dimensional image� then F is a block�circulant matrix�

In this formulation it becomes apparent that the problem of detecting and locating the

template can be viewed as a restoration problem in which ��n�m	 is the signal to be restored
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and the template f�n	 is the point spread function �PSF	�

B� LMMSE Formulations

An LMMSE framework can be used to estimate �� from the observation �g in Eq� ��	� We will

assume signals �� and �b to have zero mean with covariance matrices C� and Cb� respectively�

Moreover� we assume signals �� and �b to be stationary� thus� Cb is an N �N circulant covariance

matrix with eigenvalues equal to the power�spectrum coe�cients Sb�k	� k � �� �� � � � � N � ��

Since �� is a discrete impulse function� C� � I� where I is the N � N identity matrix and

S��k	 �
�
N
� k � �� �� � � � � N � �� We also make the assumption that �b and �� are uncorrelated�

In previous work� LMMSE estimates of �� have been sought� To �nd the LMMSE estimate

for �� one minimizes with respect to �� the Bayesian mean square error

Bmse�
���	 � E���� �

���	��� ��	

while constraining the estimator to be linear� One can �nd the LMMSE estimate for the linear

observation model in Eq� ��	 using the orthogonality principle which gives the following well�

known solution ���

��� � �F tCb
��F � C��

� 	��F tCb
���g � �F tCb

��F � I	��F tCb
���g� �
	

where the superscript t denotes the transpose of a matrix� Note that �� cannot be determined

using Eq� �
	 without accurate knowledge of Cb�
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Because F and Cb are assumed circulant Eq� �
	 can be written in the discrete Fourier

transform �DFT	 domain � as

���k	 �
F ��k	G�k	

jF �k	j� �NSb�k	
� k � �� �� � � � � N � �� ��	

where ���k	 is the kth DFT component of
���� F �k	 and G�k	 represent the kth DFT components

of the template and the observed image� respectively� and Sb�k	 is the kth eigenvalue of the

covariance matrix of the background� and � denotes conjugation� In the rest of this paper�

indexed capital letters represent DFT quantities� Clearly� the computation of ��k	 using Eq�

��	 requires the knowledge of Sb�k	� the power spectrum of the combined background and noise�

Filters identical to the LMMSE estimator in Eq� ��	 were used in Ref� ��� in Ref�  the

background was assumed white with variance �b�� i�e�� Sb�k	 � �b
��k � �� �� � � � � N � �� But

neither Ref�  nor Ref� �� o�ered a systematic approach for estimating �b� or Sb�k	�

In Ref� �� the following periodogram estimate for Sb�k	 was used for impulse restoration

Sb�k	 �
jG�k	j� � jF �k	j�

N
� k � �� �� � � � � N � �� ��	

In Ref� �� it was proven that this is equivalent to the maximum�likelihood �ML	 estimate of

Sb�k	� therefore� we refer to the use of Eqs� and ��	 and ��	 as the LMMSE�ML method� By

de�nition the power spectrum Sb�k	 cannot be negative� However� owing to inconsistencies

between the data and the assumed model� mainly due to the assumption that the signal and the

background are uncorrelated� it was observed that the periodogram estimator yields a negative

value for the power spectrum at many frequencies� These negative values were observed to





degrade the performance of the LMMSE estimate� So the following constrained ML �CML	

estimate of Sb�k	 was introduced in Ref� ��

Sb�k	 � maxf��
jG�k	j� � jF �k	j�

N
g� k � �� �� � � � � N � �� ��	

The main di�culty in the impulse�restoration problem arises from the fact that� in most

practical applications� the power spectrum Sb�k	 of the background in Eq� ��	 is unknown and

must be estimated� A solution is o�ered in the following section�

�� MAXIMUM�LIKELIHOOD IMPULSE RESTORA�

TION

The purpose of impulse restoration is to obtain an estimate of �� which is as close as possible

to the true impulse ��� Restoration �lters of the kind described in the previous section require

knowledge of the background statistics Sb�k	 to accomplish this goal�

In this section we derive a new iterative restoration �lter that does not require advance

knowledge of Sb�k	� This �lter estimates a set of unknown parameters which is de�ned by

� � f��� Cbg �	

where �� denotes the impulse and Cb represents the background covariance matrix�

The ML estimator of � is given by

��ML � argmax
�

log p��gj�	 ���	
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where p��gj�	 is the likelihood function of �g given �� We now assume the background to obey

a Gaussian probability density function �PDF	 with zero mean and covariance matrix Cb� i�e��

�b � N��� Cb	� We further assume that �� � N��� C�	� Assuming �� and �b to be stationary signals�

Cb is an N � N circulant covariance matrix� the eigenvalues of which are the power�spectrum

coe�cients Sb�k	� k � �� �� � � �N � �� Because �� is a delta function� C� � I� where I is the

N �N identity matrix� This implies that S��k	 �
�
N
� k � �� �� � � � N � �� We also make the

assumption that �b and �� are uncorrelated� therefore� because they are Gaussian� they are also

independent�

In this formulation the number of parameters to be estimated is �N � N power�spectrum

coe�cients of �b and N elements of ��� Therefore� the number of parameters far exceeds the

number of observations N �the number of pixels in the observed image	� In an e�ort to reduce the

number of parameters to be estimated� we model the background as a low�order two�dimensional

autoregressive �AR	 process with causal support�� i�e��

b�n	 � b�n	 � ��n	 � v�n	 ���	

where ��n	 represents the background AR�model coe�cients that minimize E�v�n	�	� The

modeling error is a zero�mean Gaussian random process with covariance matrix Cv � ��vI�

Using a matrix�vector notation and circular convolutions we write Eq� ���	 as

�b � A�b� �v� ���	
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Thus�

Cb � ��v�I �A	���I �A	�t ���	

where A is a circulant matrix containing the model parameters ��n	 such that the matrix

multiplication is equivalent to convolution� Using the AR model for the background� we can

rewrite our set of unknown parameters as � � f��� Ag� Hence the likelihood function becomes

p�gj�	 � N�F��� F tF � ��v�I �A	���I �A	�t	� ���	

By substituting Eq� ���	 into Eq� ���	� the ML estimate of � is obtained as

��ML � arg max
�

f�log �jF tF � Cbj	� ��g � F��	t�F tF � Cb�
����g � F��	g ��
	

where Cb is the covariance matrix of �b as in Eq� ���	� Unfortunately� this is a complicated

nonlinear function which cannot be optimized directly� Therefore� we propose to employ the

EM algorithm to obtain a solution for Eq� ��
	� The EM algorithm is a general iterative method

to compute ML estimates if the observed data can be regarded as incomplete���

We rewrite the matrix�vector form of the imaging equation ��	 as follows�

�g � F�� ��b �
h
F � I

i � ��
�b

�
� H�z� ���	

where we have de�ned �z � ���t� �bt�t and I is an N �N identity matrix�

In applying the EM algorithm� one de�nes a set of complete data and a set of incomplete

data��� Here� the vector �z represents the complete data� consisting of the background �b and the
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impulse ��� the observation vector �g represents the incomplete data� As its name suggests� the

EM algorithm consists of two steps� the expectation step �E�step	 and the maximization step

�M�step	� In the E�step� one computes the conditional expectation of the likelihood function of

the complete data parameterized by the observed data �g and the current estimate of the relevant

parameters� In the M�step this expectation is maximized� The EM algorithm can be expressed

as the alternating iterative computation of the following equations�

E�step�

Q��� �
l�	 � E�ln�p��z� �		jg� �
l�� ���	

M�step�

�
l��� � argmax
�

�Q��� �
l�	�� ���	

We will assume the complete data and the observation to be stationary Gaussian random

signals� The Gaussian assumption results in linear equations for the E�step and the M�step�

Moreover� the stationarity that we assume yields circulant covariance matrices� Using the diag�

onalization properties of the DFT for circulant matrices the EM algorithm can be represented

in the DFT domain as a set of scalar equations��

By evaluating the conditional expectation of the complete�data likelihood function as shown

in Appendix A� The E�step can be written� for k � �� �� � � N � � � as
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M

l�
�jg�k	 �

F ��k	G�k	

jF �k	j� �N �S

l�
b �k	

��	

M

l�
bjg�k	 �

N �S

l�
b �k	G�k	

jF �k	j� �N �S
l�
b �k	

���	

S

l�
bjg�k	 �

jF �k	j� �S
l�
b �k	

jF �k	j� �N �S
l�
b �k	

� ���	

where F �k	 and G�k	 represent the kth DFT components of the template and the observed image�

respectively� M 
l�
�jg�k	 and M


l�
bjg�k	 represent the kth DFT components of the conditional mean

of the impulse and the background� respectively� S
l�
bjg�k	 is the k

th eigenvalue of the conditional

covariance matrix of the background parameterized by the observation� and �S
l�
b �k	 is the kth

eigenvalue of the autocorrelation matrix of the background based on the AR model� The index

l is the iteration index of the algorithm�

In Appendix A we show that the M�step is obtained by taking the partial derivative of the

expectation of the likelihood function with respect to the background AR�model parameters

which are contained in the matrix A and setting it to zero� This leads to the set of normal

equations

 R

l�
b ��
l��� �  R


l�
b
�� � �r


l�
b � ���	

where  R
l�
b is an N � M matrix containing the �rst M columns of the N � N �N 	 M	

conditional autocorrelation matrix of the background given the observation R
l�
b � where M is the

order of the AR model and �� � �� � � � � � � ��t� Thus� the normal equations can be written as

�r

l�
b �  R


l�
b ��
l��� ���	

��



where �r

l�
b is anN�� vector representing the inverse DFT of S


l�
b �k	 and �� � ����	� ���	� � � � � ��M	��

In Appendix A we show that the DFT of �r

l�
b is found by

S

l�
b �k	 � S


l�
bjg�k	 �

�

N
jM


l�
bjg�k	j

�� k � �� �� � � � N � �� ���	

Consequently S

l�
b �k	 is the kth eigenvalue of the circulant matrix R


l�
b �

Taking Eq� ���	 to the DFT domain the AR�modeled power spectrum of the background �b

is given by

�S
l�
b �k	 �

��
l�v 	�

j��A
l��k	j
� � k � �� �� � � � � N � �� ��
	

�� LOCALIZATIONRECEIVER OPERATING CHAR�

ACTERISTICS CURVE

The receiver operating characteristics �ROC	 curve is a comprehensive way to describe the de�

tection performance of a human or machine observer� The ROC curve is a plot of the probability

of correct detection PD versus the probability of false alarm PF for the continuum of possible

decision thresholds� Thus� it summarizes the range of trade�o�s between missed detections and

false alarms� In comparing two detection algorithms� the one having a strictly higher ROC

curve can be said to be superior in the sense that for any speci�ed false alarm probability� the

detection probability is higher �likewise� for a speci�ed detection probability� the false alarm

rate is lower	�
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The limitation of the ROC curve in characterizing an object�recognition algorithm is that

it only captures the ability of the algorithm to decide correctly whether an object is present

somewhere in a given scene� Thus� it fails to account for errors in localization which can be

quite signi�cant� For example� if the algorithm mistakenly identi�es a non�target object as a

target� this is treated by the ROC curve as a correct decision as long as a target happens to be

present somewhere else in the scene�

The localization ROC �LROC	 curve remedies this shortcoming by taking into account lo�

calization performance as well as detection performance� An LROC curve is a plot of the

probability of detection and correct localization versus the probability of false alarm� Thus� a

decision is said to be correct only if the object is both detected and located correctly by the

object�recognition algorithm�

The experimental method we used to compute LROC curves is described in the following

section� For a detailed description of recent results and extensions of the LROC curve see Ref�

��

�� EXPERIMENTAL RESULTS

In this section we describe numerical experiments that compare the proposed EM�based impulse�

restoration �lter with previous implementations of the LMMSE impulse�restoration �lter and

di�erent types of MFs� Monte�Carlo studies were performed to evaluate the performance of the

��



di�erent algorithms� Multiple synthetic images were generated by randomly varying the object

locations and noise realizations�

We compared the phase only matched �lter POMF� � given by

���k	 �
F ��k	G�k	

jF �k	j
� k � �� �� � � � � N � �� ���	

the symmetric phase only matched �lter SPOMF�� given by

���k	 �
F ��k	G�k	

jF �k	jjG�k	j
� k � �� �� � � � � N � �� ���	

and previous LMMSE �lters given in Eq� ��	 that use the ML and the CML estimates of the

background statistics de�ned in Eqs� ��	 and ��	� respectively�

We also evaluated the performance of the MF variants described in Ref� �� The �rst approach

in Ref� � models the backgound as

b�n	 � g�n	� f�n� n�	� ���	

where b�n	 represents the backgound� g�n	 represents the observation image� and f�n � n�	 is

the template located at the location of the target in the observation� Since the location of the

target is not normally known a priori� a uniform distribution of the target location is assumed�

Using this assumption� the following form for the power spectrum of the background is obtained�

Sb�k	 � jG�k	j� � jF �k	j�� ��	

We will refer to this �lter in the experiments as MF�Model��	� Notice that this is identical to

an LMMSE �lter in which the power spectrum of the observation is used as an approximation

��



of the background power spectrum� The second MF approach in Ref� � models the background

as

b�n	 � w�n� n�	g�n	� ���	

where w�n � n�	 is a window function centered at the location of the object that has a value

of � within the template and � elsewhere� By again by assuming a uniform distribution of the

target location the background power spectrum ia approximated as

Sb�k	 � jG�k	j� � jW �k	j�� ���	

where � denotes convolution and W �k	 represents the kth DFT component of the window func�

tion� We will refer to this �lter as MF�Model��	�

The third MF approach in Ref� � uses the power spectrum of the observation as as estimate

for the background power spectrum� This approach is based on the assumption that the size of

the template is much smaller than the scene� This matched �lter turns out to be identical in

form to the LMMSE�ML �lter de�ned in Sect� ��B�

To establish the upper performance bound of the impulse�restoration template�matching

approach� we implemented an exact LMMSE �lter which assumes perfect knowledge of the

noise and background statistics was also used� Of course� such information is never available

in practice� The exact LMMSE �lter serves only as a basis for judging the other more realistic

approaches� The true statistics were only provided to the exact LMMSE �lter� For purposes

of implementing the exact LMMSE �lter the actual background was determined based on the

��



imaging model of Eq� ��	 by placing zeros at the location of the object �see� for example� Fig� �	�

The sum of the periodogram power�spectrum estimate of the true background� plus the known

variance of added white noise� was used as the background statistics for the implementation of

the exact LMMSE �lter in Eq� ��	�

As stated before� the EM algorithm uses an AR model for the background� A � � � AR

image model with causal support as shown in Fig� � was used to model the background� In our

experience it was observed that the performance of the EM algorithm is not very sensitive to

the order of the AR model in this application�

A� Experiment �� LROC Analysis

In this experiment� LROC analysis was used to quantify the performance of various algorithms in

detecting and locating objects within a scene� Test scenes of dimension �
���
� were generated

by embedding the three objects shown in Fig� � at random locations within a background terrain

image� These scenes were then degraded by blur and white Gaussian noise to represent the e�ects

of the imaging system� The scenes were blurred with a Gaussian�shaped point spread function

with full width at half maximum �FWHM	 of � pixels� White Gaussian noise with � � �� was

used� where � represents the standard deviation� Examples of the noisy blurred scenes used in

the experiment are shown in Fig� ��

In each experimental trial� an object�recognition �lter was applied to the generated scene�

�



The peak of the output was taken to be the restored impulse� and the value at the peak was

used as a decision variable x� If x exceeded a decision threshold T � then the object was said

to be present at the location of the peak� otherwise� the object was said to be absent� The

performance of the algorithm for various thresholds is summarized by the LROC curve which

plots the probability of detection and correct localization �PDL	 versus the probability of false

alarm �PF 	� These probabilities were obtained by numerical evaluation of the following integrals

PDL �
Z

T

�

p�xjH�	dx

PF �
Z
T

�

p�xjH�	dx� ���	

where p�xjHj	 is the conditional probability density function �PDF	 of x given hypothesis Hj�

The null hypothesis H� is that the object is absent� the alternative hypothesis H� is that the

object is present�

In this study the conditional PDFs p�xjH�	 and p�xjH�	 were obtained using the following

procedure� Two sets of ��� images were generated each with a di�erent noise realization and

with di�erent random object locations� In one set of images� all three objects were present in

each scene �see� for example� Fig� �	� in the other set� the object of interest was absent �see�

for example� Fig� 
	� In the case where the object of interest was present� each algorithm

was applied to every image� and the magnitude x of the peak value of the restored impulse

was recorded� provided that the peak correctly indicated the target location� The normalized

histogram of these values was then used as p�xjH�	� To �nd p�xjH�	 the set of images was

��



used in which the object of interest was absent� Again� the algorithms were applied to each

image� but the magnitude of the peak value of the restored impulse was recorded regardless

of its location� The normalized histogram of the recorded peak values of the restored impulse

obtained was used as p�xjH�	� Di�erent points of the LROC curves were obtained by varying

the decision threshold T and computing the integrals in Eq� ���	�

In Fig� � we show the conditional PDFs p�xjH�	 and p�xjH�	 for the exact LMMSE� EM�AR�

MF�Model��	� MF�Model��	� LMMSE�CML� SPOMF� LMMSE�ML� and POMF �lters for the

case where the tank was the object of interest� These �gures illustrate that good discriminating

capability results from non�overlapping p�xjH�	 and p�xjH�	� For example the hypotheses are

almost perfectly distinguished by the exact LMMSE if the decision threshold T is ��
�

The LROC curves are shown in Fig� �� The LROC curves in Fig�� indicate that the proposed

EM�based approach with AR modeling performes best overall among the template matching

�lters tested� Other methods worked better in some cases� but were inconsistent and so did not

perform as well overall�

B� Experiment �� Robustness Comparison

In this experiment� we compare the robustness of the proposed algorithms as the noise increases

using the �
���
� Lena image and the ����� template� both shown in Fig� �� White additive

noise was used to degrade the scene� Twenty di�erent noise levels� with noise standard deviation

��



ranging from �� to ��� in increments of ��� were used to degrade the scene �see� for example� Fig�

	� For each noise level the experiment was repeated 
� times with di�erent noise realizations�

The probability PDL was found as PDL � N
��

where N is the number of times that the maximum

of the output of the restored delta was positioned correctly at the object location�

In Fig� �� plots of PDL versus the noise standard deviation are shown for the exact LMMSE�

EM�AR� MF�Model��	� MF�Model��	� LMMSE�CML� SPOMF� LMMSE�ML� and POMF algo�

rithms� This plot shows that the proposed EM�AR �lter is the best among all �lters that do not

require prior knowledge of the location of the object� In Fig� �� the restored impulses for the

exact LMMSE� EM�AR� MF�Model��	� MF�Model��	� LMMSE�CML� SPOMF� LMMSE�ML�

and POMF algorithms are shown for a speci�c noise realization when the standard deviation

is ��� Notice that the proposed EM�AR �lter gives the closest approximation to an ideal delta

function among all �lters that do not require prior knowledge of the location of the object� A

mean square error metricMSE for the restored impulse was used to compare di�erent algorithms�

MSE is de�ned by

MSE �
�

N

NX
i��

����i	� ��n�		
� ���	

where ���i	 is the normalized restored impulse as shown in Fig� �� and n� represents the location

of the object� In Table �� the mean square error �MSE	 values for the restored impulses are

tabulated for di�erent �lters for the case of � � ���These values represent the average MSE over

all the 
� cases for � � ��� The table shows that the EM�AR �lter gives the lowest average

��



MSE among all �lters that do not require prior knowledge of the location of the object�

�� CONCLUSIONS AND FUTURE WORK

In this paper restoration�based template�matching �lters were used to detect objects within a

noisy� blurred scene� The main challenge involved in the impulse�restoration approach is good

estimation of the background statistics� To address this� we propose a new iterative approach

based on the EM algorithm that simultaneously estimates the background statistics and restores

a delta function at the location of the template� Our algorithm models the background as an

AR process with causal support�

Our numerical experiments veri�ed the importance of accurately estimating the background

statistics to the success of the template�matching impulse�restoration approach� The proposed

EM�AR approach was superior to the variants of the matched �lter that we tested� When the

background statistics are not estimated accurately� impulse restoration�based template matching

cannot realize its full potential� Our numerical experiments also show that the advantage of the

proposed approach over previous methods increases with the strength of the noise in the scene�

We are currently studying application of this approach to photon�limited images and to the

more di�cult problems of object rotation and scaling�
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	� APPENDIX A
 THE EXPECTATION

MAXIMIZATION ALGORITHM

Let us assume the complete�data set �z to obey the following Gaussian likelihood function�

p��z� �	 � j �
Cz j
� �

� exp� �
�

�
�z tCz

���z �� �A��	

in which � is the set of the unknown parameters in Eq� �	�

Taking the logarithm of Eq� �A��	 we get

ln�p��z� �		 � �
�

�
� ln�j �
Cz j	 � �z tCz

���z � � K �
�

�
f ln�j Cz j	 � �z tC��

z �z g� �A��	

Then� the expected value of the logarithm of the conditional PDF required by the E�step of the

EM algorithm in Eq� ���	 is given by

Q��� �
l�	 � K �
�

�
f E� ln�j Cz j	 � �g � �
l� � � E� �g tC��

z �z � �g � �
l� � � K � Y ��� �
l�	� �A��	

It is easy to show that

Y ��� �
l�	 � ln�j Cz j	 � trace� C��
z Rzjg


l� �� �A��	

with

Rzjg

l� � E� �z�z t � �g � �
l� � � Czjg


l� � ��

l�
zjg ���
l�zjg	

t
� �A�
	

Thus� we can write

Y ��� �
l�	 � ln� j Cz j 	 � trace� C��
z C


l�
zjg � � ���


l�
zjg	

tCz
����


l�
zjg� �A��	

��



Because of the de�nition of �z in Eq� ���	 and since �� and �b are assumed uncorrelated we get

Cz �

�
I � �
� � Cb

�
� Cz�g �

�
C�jg � �
� � Cbjg

�
� and ��zjg � � ����jg	

t� ���bjg	
t �t� �A��	

Using the de�nition of Cb in Eq� ���	 we can write Eq� �A��	 as

Y ��� �
l�	 � lnj ��v�I �A	���I �A	�t j� tracefC

l�
�jg �

�

��v
�I �A	t�I �A	C
l�

bjgg

����

l�
�jg	

t��

l�
�jg �

�

��v
���


l�
bjg	

t�I �A	t�I �A	��

l�
bjg� �A��	

Since we assume an AR model with causal support� A is a strictly upper�triangular matrix�

Hence�

lnj ��v�I �A	���I �A	�t j � ln� � � �A�	

Thus� we can write

Y ��� �
l�	 � tracefC�jg �
�

��v
�I �A	t�C


l�
bjg � ��


l�
bjg���


l�
bjg	

t��I �A	g� ���

l�
�jg	

t��

l�
�jg� �A���	

A is a circulant matrix containing the model parameters� and C

l�
bjg is a circulant matrix since we

assume stationarity� For circulant matrices it is easy to show that

tracefX tAXg � N��xtA�x	� �A���	

and

tracefX�a�atX tg � tracefA�x�xtAg � �atX tX�a� �A���	

where X and A are N � N circulant matrices and �x and �a are N � � vectors representing the

�rst columns of X and A� respectively� Hence we obtain

Y ��� �
l�	 � tracefC�jg �
�

��v
��� � ���	t�N � C


l�
bjg �M


l�
bjg�M


l�
bjg	

t����� ���	g� ���

l�
�jg	

t��

l�
�jg� �A���	

�




in which �� � �� � � � � ��t� ��� � ����	 � � � ��M	� �� � � � � ��t� where M is the order of the AR model

and ��k	 is the kth parameter of the ARmodel� andMbjg is an N�N circulant matrix constructed

by circular shifting of ��bjg�

Letting

R

l�
b � C


l�
bjg �

�

N
M


l�
bjg�M


l�
bjg	

t� �A���	

we can write

Y ��� �
l�	 � tracefC�jg �
N

��v
��� � ���	tR


l�
b ���� ���	g� ���


l�
�jg	

t��

l�
�jg� �A��
	

Using the diagonalization properties of the DFT for circulant matrices� from Eq� �A���	 we

can write

S

l�
b �k	 � S


l�
bjg�k	 �

�

N
jM


l�
bjg�k	j

�for� k � �� �� � � � N � �� �A���	

where S

l�
b �k	 is the kth eigenvalue of R


l�
b � S


l�
bjg�k	 is the k

th eigenvalue of the covariance matrix of

the background parameterized by the observation obtained by Eq� ���	� and M

l�
bjg�k	 represents

the kth eigenvalue of the matrix M

l�
bjg� found as the kth DFT component of the vector ���jg�

A� The M�step

Taking the partial derivative of Y ��� �
l�	 in Eq� �A��
	 with respect to �� and setting it to zero

we obtain

R

l�
b
���


l���
� R


l�
b
�� � �r


l�
b � �A���	

��



So the AR parameters are found by solving a set of normal equations� Since ��� contains M  N

non zero unknown coe�cients we calculate the least squares estimate of ��
l���

��
l��� � ��  R

l�
b 	t  R


l�
b �

��
�  R


l�
b 	t�r


l�
b �A���	

where  R
l�
b is an N �M matrix containing the �rst M columns of R
l�

b �

From Eq� ���	� the update equation of the power spectrum of the background �b under the

AR model is then given by

�Sb

l�
�k	 �

��v
l�	�

j��A
l��k	j�
� k � �� �� � � � � N � �� �A��	

where �v is the standard deviation of the driving noise of the AR model� It is calculated from

�rb and �� ��� according to

��
l�v 	� � r

l�
b ��	 �

MX
k��

�
l��k	r

l�
b �k	� �A���	

and A
l��k	 represents the kth DFT component of ���

l�
� where ���


l�
is a version of ��
l� zero�padded

to length N�

B� The E�step

When the vectors �z and �g are related by Eq� ���	 it can be shown �� that the the conditional

mean is given by

��zjg � CzH
t�HCzH

t	���g �

�
F t

Cb

�
�FF t � Cb	

���g �

�
���jg
��bjg

�
� �A���	

��



In the DFT domain Eq� �A���	 gives� for k � �� �� � � N � ��

M

l�
�jg�k	 �

F ��k	G�k	

jF �k	j� �NS

l�
b �k	

� �A���	

M

l�
bjg�k	 �

NS

l�
b �k	G�k	

jF �k	j� �NS

l�
b �k	

� �A���	

For Gaussian �z and �g with �g � H�z it can be shown �� that the conditional covariance

Cz�g �

�
C��g � �
� � Cb�g

�
� Cz �CzH

t�HCzH
t	��HCz � �A���	

Thus�

Cb�g � Cb �Cb�FF
t � Cb	

��Cb� �A��
	

In the DFT domain Equation �A��
	 becomes

Sbjg�k	 � Sb�k	�
S�
b �k	

�
N
jF �k	j� � Sb�k	

� �A���	

Thus� from Eq� �A���	 we obtain

S

l�
bjg�k	 �

jF �k	j�S
l�
b �k	

jF �k	j� �NS

l�
b �k	

for k � �� �� � � N � �� �A���	

In this EM formulation the conditional mean ���jg is equivalent to the LMMSE estimate for �� in

Eq� ��	� Since the AR model is assumed for the background statistics� S

l�
b �k	 in Eqs� �A���	�

�A���	 and �A���	 is replaced by �S

l�
b �k	 which yields Eqs� ��	� ���	 and ���	� respectively�
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Figure �� Examples of the backgrounds used by the exact LMMSE �lter� The object of interest
is the tank� The exact LMMSE �lter is unrealistic� It was studied only to determine a theoritical
upper bound on the performance�
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α(2,1) α(2,0)

α(1,0)

Figure �� � � � autoregressive image model with causal support�
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Figure �� Object templates�
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Figure �� Examples of noisy test scenes with the object of interest present �in this case� tank	�
The noise level is � � ��� In each realization� the objects are placed randomly within the scene�

Figure 
� Examples of noisy scenes with the object of interest absent �in this case� the tank	�
The noise level is � � ���
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Figure �� The conditional PDFs for � � �� when the tank is the object of interest�
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Figure �� LROC curves for � � ��� Overall� the EM�AR algorithm outperforms all but the exact
�unrealistic	 LMMSE �lter which makes use of the unknown object location� Other methods
did outperform the EM�AR algorithm in some speci�c situations� but were inconsistent and did
not perform as well overall�
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Figure �� Lena scene and the template�
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Figure � Examples of Noisy Lena Scenes for Di�erent Noise Levels� Clockwise from top left�
� � 
� � � ��� � � 
�� and � � ����
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Figure ��� Plot of the probability of correct localization as a function of noise standard deviation�
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Figure ��� Examples of the restored impulse for � � ���
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Table �� Mean Squared Error values for Di�erent Filters for � � ��

MSE

Exact LMMSE ���� ����

EM�AR ���� ����

MF�Model��	 ���� ����

MF�Model��	 ���� ����

LMMSE�CML ���� ����

SPOMF 
�
� ����

LMMSE�ML ���� ����

POMF ���� ����
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