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ABSTRACT

It has recently been demonstrated that object recognition can be formulated as an image-
restoration problem. In this approach, which we term impulse restoration, the objective is to
restore a delta function indicating the detected object’s location. Here we develop solutions
based on impulse restoration for the Gaussian noise case. We propose a new iterative ap-
proach, based on the expectation-maximization (EM) algorithm, that simultaneously estimates
the background statistics and restores a delta function at the location of the template. We
use a Monte-Carlo study and localization-receiver-operating characteristics (LROC) curves to
evaluate the performance of this approach quantitatively and compare it with existing meth-
ods. We present experimental results that demonstrate that impulse restoration is a powerful
approach for detecting known objects in images severely degraded by noise. Our numerical

experiments point out that the proposed EM-based approach is superior to all tested variants



of the matched filter. This demonstrates that accurate modeling and estimation of the back-
ground and noise statistics are crucial for realizing the full potential of impulse restoration-based

template-matching.
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1. INTRODUCTION

Template matching, which consists of the identification and localization of known objects (tem-
plates) in a scene, is an important image-processing task with application in novelty detection,
motion estimation, target recognition, industrial inspection, and sensor fusion. The classical
approach to this problem is the matched filter (MF) which is optimal in the sense that it is the
filter for which the signal-to-noise ratio (SNR) of the output is maximized.! However, the MF is
known to have several important drawbacks, including: 1) it is very sensitive to small variations
of the object; 2) it can produce very broad correlation peaks that do not localize the object
well;? and 3) it fails in the presence of background areas of high intensity because these areas

produce high peaks in the output.

Attempts to overcome these limitations have led investigators to propose a number of modi-
fications to the classical MF, among the most important being the phase-only MF (POMF) and
its variants (see, for example, Refs. 3,4,5). It has been widely recognized that the phase of the
Fourier transform is more important to describing an image than is its magnitude (see, for ex-
ample, Ref. 6). Phase-only matched filters (POMF) and symmetric phase-only matched filters
(SPOMF) have been proposed, and have been shown to provide better discrimination ability

and noise robustness than the MF (see, for example, Refs. 2,3,7 and the references within).

Filters in use in joint transform correlators have been proposed that further improve the

capabilities of the MF.® These filters are based on normalization of the correlation signal by the



background power spectrum. Methods for estimation of the power spectrum of the background

are given in Ref. 8.

A different way of viewing the design of template-matching filters has recently emerged. In
this new approach the problem of template matching is framed as one of image restoration, in
which the image to be restored is an impulse at the location of the object to be detected. To
our knowledge the first explicit application of this principle was reported in Ref. 9, in which
the use of expansion matching, i.e., self-similar non-orthogonal basis decomposition, was pro-
posed. More recently, the relationship between linear-minimum-mean-squared-error (LMMSE)
impulse restoration and template matching was recognized and impulse-restoration filters were
proposed for template-matching applications.'®!!12 In these papers it was demonstrated that
impulse restoration is a very powerful approach to template matching and has the potential
to provide better localization, class discrimination, and error tolerance than the MF and its
variants. Independently, the relationship between template matching and impulse restoration
was recognized in previous papers.!>1%!5 In these papers LMMSE-based impulse restoration was

used to find the displacement vector field (DVF') from noisy and/or blurred image sequences.

A critical shortcoming of the earlier work on impulse restoration has been the assumption
that the background and/or noise statistics are known, which is not the case in practice. In real-
istic applications, one is required to estimate these statistics from the observed image. Without

accurate estimates, the performance of impulse-restoration methods is severely compromised.



In Ref. 8 three different approaches to estimate the backgound power spectrum were intro-
duced. In Refs. 13,14,15 one-step periodogram-based approaches were proposed to estimate
the background statistics; in this paper, a new approach is proposed based on the expectation-

maximization (EM) algorithm.'®

In this paper we propose a new technique for template matching based on the approach of
restoring an impulse indicating the object location. We describe an expectation-maximization
(EM) algorithm ' that simultaneously estimates the impulse along with the statistics of the
noise and background. This algorithm is similar in philosophy to the application of EM to the
image-restoration problem in Ref. 17. A major advantage of the impulse-restoration viewpoint
is that it permits the substantial base of knowledge gained in the image-restoration field to be

brought to bear on the template-matching problem.

Another important issue not often addressed in the object-recognition literature is the quan-
titative evaluation of task performance. Frequently, figures of merit are used that only indirectly
measure the ability of an algorithm to detect and locate objects with accuracy. Such perfor-
mance measures include the mean-square error (MSE) between the filter output and the desired
impulse, and the peak-to-sidelobe (PTS) ratio of the filter output.’® While these measures cer-

tainly have some relationship with detection performance, they provide only indirect evidence.

To make quantitative evaluations of the performance of various techniques, we use an exten-

sion of the receiver operating characteristic (ROC) curve, called the localization ROC (LROC)



curve.'® The ROC curve, which plots the probability of detection versus the probability of false
alarm for the continuum of possible decision thresholds, is a comprehensive description of the
detection performance of an algorithm (see, for example, Ref. 20). The LROC curve plots the
probability of detection and correct localization of an object versus the false-alarm probability,
thus it also measures the ability of the detection algorithm to locate objects correctly. The
LROC curve thoroughly and directly describes the detection and localization capability of an

algorithm, thus it is much more informative than criteria such as MSE or PTS.

The remainder of this paper is organized as follows. In Section 2 we review the impulse-
restoration formulation for the template-matching problem. In Section 3 we introduce a maximum-
likelihood (ML) approach based on the EM algorithm that simultaneously estimates the back-
ground statistics and restores an impulse at the location of the template. In Section 4 we briefly
review the LROC curve. In Section 5 we present numerical experiments and LROC-based com-
parisons demonstrating the proposed impulse-restoration template-matching algorithm. Finally,

in Section 6 we present our conclusions and suggestions for future work.

2. BACKGROUND

A. Object Recognition as Impulse Restoration

In this section, the formulation of object recognition as an impulse-restoration problem is

reviewed. For notational simplicity, images are represented throughout the paper by one-



dimensional signals. Consider the observed image g(n), n = 0,1,... ,N' — 1 in which the

known object f(n) is located at the unknown position ng. One can then represent the image by

g9(n) = f(n —no) + b(n), (1)

where b(n) is the combined background and noise. The goal of template matching is to find the

location ng of the known object f(n) within the image g(n). Equation (1) can be rewritten as

g(n) = f(n) % &(n —no) + b(n), (2)

where 8(n — ng) represents a discrete impulse function located at ng and x denotes convolution.

Using a matrix-vector notation and circular convolutions we write Eq. (2) as
G=F§+5, (3)

where ¢, b and § are N x 1 vectors representing g(n), b(n) and §(n), respectively. In the rest
of this paper, small letters with arrows represent vectors and capital letters represent matrices.
In Eq. (3) § is a vector having zeros everywhere except in element ng which has a value of
1. The matrix F' is an N X N circulant matrix constructed from the template f(n) such that
F§ represents the convolution f(n) x §(n — no). In general, the equivalency of Egs. (2) and
(3) can be guaranteed by choosing N > N'.2! Note that if each image vector is obtained by

lexicographic ordering of a two-dimensional image, then F' is a block-circulant matrix.

In this formulation it becomes apparent that the problem of detecting and locating the

template can be viewed as a restoration problem in which §(n — m) is the signal to be restored
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and the template f(n) is the point spread function (PSF).

B. LMMSE Formulations

An LMMSE framework can be used to estimate § from the observation g in Eq. (3). We will
assume signals & and b to have zero mean with covariance matrices Cs and Cb, respectively.
Moreover, we assume signals & and b to be stationary; thus, Cp is an N X N circulant covariance
matrix with eigenvalues equal to the power-spectrum coeflicients Sy(k), & = 0,1,..., N — 1.
Since § is a discrete impulse function, Cs = I, where I is the N x N identity matrix and

, k=0, 1,...,N — 1. We also make the assumption that b and § are uncorrelated.

In previous work, LMMSE estimates of & have been sought. To find the LMMSE estimate

for § one minimizes with respect to § the Bayesian mean square error
Bmse(é) = E[(6 — 6)?), (4)

while constraining the estimator to be linear. One can find the LMMSE estimate for the linear
observation model in Eq. (3) using the orthogonality principle which gives the following well-

known solution 22

§=(F'Cy ' F 4 Cy1) I FIC, ™G = (F'Cy I F + 1)1 FIC, 71, (3)

where the superscript ¢ denotes the transpose of a matrix. Note that § cannot be determined

using Eq. (5) without accurate knowledge of Cb.



Because F' and C, are assumed circulant Eq. (5) can be written in the discrete Fourier

transform (DFT) domain ! as

o PRGR)
A= TRP + Vo (R

=0,1,...,N—1, (6)

where A(k) is the k** DFT component of 3: F(k) and G(k) represent the k** DFT components
of the template and the observed image, respectively, and Sy(k) is the k** eigenvalue of the
covariance matrix of the background, and * denotes conjugation. In the rest of this paper,
indexed capital letters represent DFT quantities. Clearly, the computation of A(k) using Eq.
(6) requires the knowledge of Sy(k), the power spectrum of the combined background and noise.
Filters identical to the LMMSE estimator in Eq. (6) were used in Ref. 11; in Ref. 9 the
background was assumed white with variance 03?, i.e., Sp(k) = 03?2,k = 0, 1,...,N — 1. But

neither Ref. 9 nor Ref. 11 offered a systematic approach for estimating o4% or Sp(k).

In Ref. 14 the following periodogram estimate for Sy(k) was used for impulse restoration

|G(R)|* — | F(k)*

Se(k) = I ,

k=0,1,...,N—1. (7)

In Ref. 23 it was proven that this is equivalent to the maximum-likelihood (ML) estimate of
Sp(k), therefore, we refer to the use of Egs. and (6) and (7) as the LMMSE-ML method. By
definition the power spectrum S;(k) cannot be negative. However, owing to inconsistencies
between the data and the assumed model, mainly due to the assumption that the signal and the
background are uncorrelated, it was observed that the periodogram estimator yields a negative

value for the power spectrum at many frequencies. These negative values were observed to
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degrade the performance of the LMMSE estimate. So the following constrained ML (CML)
estimate of Sp(k) was introduced in Ref. 23

G(R)|* — | F(k)|*
N

Sp(k) = max{0, }, k=0,1,...,N—1. (8)

The main difficulty in the impulse-restoration problem arises from the fact that, in most
practical applications, the power spectrum S;(k) of the background in Eq. (6) is unknown and

must be estimated. A solution is offered in the following section.

3. MAXIMUM-LIKELIHOOD IMPULSE RESTORA-
TION

The purpose of impulse restoration is to obtain an estimate of § which is as close as possible
to the true impulse §. Restoration filters of the kind described in the previous section require

knowledge of the background statistics Sp(k) to accomplish this goal.

In this section we derive a new iterative restoration filter that does not require advance

knowledge of Sy(k). This filter estimates a set of unknown parameters which is defined by
6= {5, Gy} (9)
where & denotes the impulse and ()} represents the background covariance matrix.
The ML estimator of 8 is given by

barz = arg max log p(g9) (10)

10



where p(g]6) is the likelihood function of g given §. We now assume the background to obey
a Gaussian probability density function (PDF) with zero mean and covariance matrix Gy, i.e.,
b~ N(0,C%). We further assume that § ~ N(0,Cs). Assuming & and b to be stationary signals,
Cy is an N x N circulant covariance matrix, the eigenvalues of which are the power-spectrum
coefficients Sp(k), k =0, 1, .. .N — 1. Because § is a delta function, Cs = I, where I is the

N X N identity matrix. This implies that Ss(k) = &, k=0, 1, . .. N — 1. We also make the

L
N?

assumption that b and § are uncorrelated; therefore, because they are Gaussian, they are also

independent.

In this formulation the number of parameters to be estimated is 2N: N power-spectrum
coefficients of b and N elements of 6. Therefore, the number of parameters far exceeds the
number of observations N (the number of pixels in the observed image). In an effort to reduce the
number of parameters to be estimated, we model the background as a low-order two-dimensional

autoregressive (AR) process with causal support,’ i.e.,
b(n) = b(n)* a(n) + v(n) (11)

where a(n) represents the background AR-model coefficients that minimize E(v(n)?). The
modeling error is a zero-mean Gaussian random process with covariance matrix C, = o21I.

Using a matrix-vector notation and circular convolutions we write Eq. (11) as

b= Ab+7. (12)



Thus,

Cy = o(I — A)™N(I — A) (13)

where A is a circulant matrix containing the model parameters a(n) such that the matrix
multiplication is equivalent to convolution. Using the AR model for the background, we can

rewrite our set of unknown parameters as 6 = {g, A}. Hence the likelihood function becomes

p(g]0) = N(F&, F*F + o*(1 — A)™Y(I — A)™). (14)

By substituting Eq. (14) into Eq. (10), the ML estimate of  is obtained as
byz = arg max {~log (|[F'F + Gy|) — (§ — FE)[F'F + Co] (g — Fé)} (15)

where C} is the covariance matrix of b as in Eq. (13). Unfortunately, this is a complicated
nonlinear function which cannot be optimized directly. Therefore, we propose to employ the
EM algorithm to obtain a solution for Eq. (15). The EM algorithm is a general iterative method

to compute ML estimates if the observed data can be regarded as incomplete.*®

We rewrite the matrix-vector form of the imaging equation (1) as follows:
] = HZ, (16)
where we have defined 7 = [§!, 5]t and I is an N x N identity matrix.

In applying the EM algorithm, one defines a set of complete data and a set of incomplete

data.'® Here, the vector Z represents the complete data, consisting of the background b and the

12



impulse g; the observation vector g represents the incomplete data. As its name suggests, the
EM algorithm consists of two steps: the expectation step (E-step) and the maximization step
(M-step). In the E-step, one computes the conditional expectation of the likelihood function of
the complete data parameterized by the observed data ¢ and the current estimate of the relevant
parameters. In the M-step this expectation is maximized. The EM algorithm can be expressed

as the alternating iterative computation of the following equations:

E-step:
Q(8;6") = Elin(p(7;6))|g, 0" (17)

M-step:

g0+ = arg max [Q(6;6D)]. (18)

We will assume the complete data and the observation to be stationary Gaussian random
signals. The Gaussian assumption results in linear equations for the E-step and the M-step.
Moreover, the stationarity that we assume yields circulant covariance matrices. Using the diag-
onalization properties of the DFT for circulant matrices the EM algorithm can be represented

in the DFT domain as a set of scalar equations.!”

By evaluating the conditional expectation of the complete-data likelihood function as shown

in Appendix A, The E-step can be written, for k=0, 1, .. N —1, as

13



£ (k)G(k)

Dy =
Mt = reyp + N3O "
M) - VS DG (20)

|F(k)+ NSO (k)

Oy — _FELE (k)
R CIN D) o

where F(k) and G(k) represent the k** DFT components of the template and the observed image,

respectively; MY

5|g(k) and lef;(k) represent the k** DFT components of the conditional mean

of the impulse and the background, respectively; Slgf;(k) is the k** eigenvalue of the conditional
covariance matrix of the background parameterized by the observation; and g,gl)(k) is the kth
eigenvalue of the autocorrelation matrix of the background based on the AR model. The index

[ is the iteration index of the algorithm.

In Appendix A we show that the M-step is obtained by taking the partial derivative of the
expectation of the likelihood function with respect to the background AR-model parameters
which are contained in the matrix A and setting it to zero. This leads to the set of normal
equations

RPaMY = ROT = 7, (22)
where Rl()l) is an N X M matrix containing the first M columns of the N x N (N > M)
conditional autocorrelation matrix of the background given the observation R,()l), where M is the

order of the AR model and 1 = [1,0 ...,0]%. Thus, the normal equations can be written as

A = gD (23)

14



where 7_'£l) is an N x1 vector representing the inverse DFT of S,El)(k) and @ = [a(1),(2),...,a(M))].

In Appendix A we show that the DFT of fél) is found by

1
S(k) = S{{)(k) + N|M(1)(k)|2, k=0,1,... N—1. (24)

blg

Consequently S,El)(k) is the kt* eigenvalue of the circulant matrix R,(,l).

Taking Eq. (13) to the DFT domain the AR-modeled power spectrum of the background b
is given by
()’

SWpy=—2v7) _ p_01. . N—1. 25
b ( ) |1_A(l)(k)|27 )y L ) ( )

4. LOCALIZATION RECEIVER OPERATING CHAR-
ACTERISTICS CURVE

The receiver operating characteristics (ROC) curve is a comprehensive way to describe the de-
tection performance of a human or machine observer. The ROC curve is a plot of the probability
of correct detection Pp versus the probability of false alarm Pg for the continuum of possible
decision thresholds. Thus, it summarizes the range of trade-offs between missed detections and
false alarms. In comparing two detection algorithms, the one having a strictly higher ROC
curve can be said to be superior in the sense that for any specified false alarm probability, the
detection probability is higher (likewise, for a specified detection probability, the false alarm

rate is lower).
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The limitation of the ROC curve in characterizing an object-recognition algorithm is that
it only captures the ability of the algorithm to decide correctly whether an object is present
somewhere in a given scene. Thus, it fails to account for errors in localization which can be
quite significant. For example, if the algorithm mistakenly identifies a non-target object as a
target, this is treated by the ROC curve as a correct decision as long as a target happens to be

present somewhere else in the scene.

The localization ROC (LROC) curve remedies this shortcoming by taking into account lo-
calization performance as well as detection performance. An LROC curve is a plot of the
probability of detection and correct localization versus the probability of false alarm. Thus, a
decision is said to be correct only if the object is both detected and located correctly by the

object-recognition algorithm.

The experimental method we used to compute LROC curves is described in the following

section. For a detailed description of recent results and extensions of the LROC curve see Ref.

19.

5. EXPERIMENTAL RESULTS

In this section we describe numerical experiments that compare the proposed EM-based impulse-
restoration filter with previous implementations of the LMMSE impulse-restoration filter and

different types of MFs. Monte-Carlo studies were performed to evaluate the performance of the

16



different algorithms. Multiple synthetic images were generated by randomly varying the object

locations and noise realizations.

We compared the phase only matched filter POMF, 2 given by

A(k):%,k:o,l,...w—l, (26)

the symmetric phase only matched filter SPOMF,? given by

A(k):%,k:m,qu. (27)

and previous LMMSE filters given in Eq. (6) that use the ML and the CML estimates of the

background statistics defined in Egs. (7) and (8), respectively.

We also evaluated the performance of the MF variants described in Ref. 8. The first approach

in Ref. 8 models the backgound as

b(n) = g(n) — f(n — no), (28)

where b(n) represents the backgound, g(n) represents the observation image, and f(n — ng) is
the template located at the location of the target in the observation. Since the location of the
target is not normally known a prior:, a uniform distribution of the target location is assumed.

Using this assumption, the following form for the power spectrum of the background is obtained:
Se(k) = |G(k)* + |F (k). (29)

We will refer to this filter in the experiments as MF-Model(1). Notice that this is identical to

an LMMSE filter in which the power spectrum of the observation is used as an approximation

17



of the background power spectrum. The second MF approach in Ref. 8 models the background

as
b(n) = w(n — no)g(n), (30)
where w(n — ng) is a window function centered at the location of the object that has a value

of 0 within the template and 1 elsewhere. By again by assuming a uniform distribution of the

target location the background power spectrum ia approximated as

So(k) = |G(k)]* x W ()P, (31)

where x denotes convolution and W (k) represents the k* DFT component of the window func-

tion. We will refer to this filter as MF-Model(2).

The third MF approach in Ref. 8 uses the power spectrum of the observation as as estimate
for the background power spectrum. This approach is based on the assumption that the size of

the template is much smaller than the scene. This matched filter turns out to be identical in

form to the LMMSE-ML filter defined in Sect. 2.B.

To establish the upper performance bound of the impulse-restoration template-matching
approach, we implemented an exact LMMSE filter which assumes perfect knowledge of the
noise and background statistics was also used. Of course, such information is never available
in practice. The exact LMMSE filter serves only as a basis for judging the other more realistic
approaches. The true statistics were only provided to the exact LMMSE filter. For purposes

of implementing the exact LMMSE filter the actual background was determined based on the
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imaging model of Eq. (3) by placing zeros at the location of the object (see, for example, Fig. 1).
The sum of the periodogram power-spectrum estimate of the true background, plus the known

variance of added white noise, was used as the background statistics for the implementation of

the exact LMMSE filter in Eq. (6).

As stated before, the EM algorithm uses an AR model for the background. A 2 x 2 AR
image model with causal support as shown in Fig. 2 was used to model the background. In our
experience it was observed that the performance of the EM algorithm is not very sensitive to

the order of the AR model in this application.

A. Experiment 1: LROC Analysis

In this experiment, LROC analysis was used to quantify the performance of various algorithms in
detecting and locating objects within a scene. Test scenes of dimension 256 x 256 were generated
by embedding the three objects shown in Fig. 3 at random locations within a background terrain
image. These scenes were then degraded by blur and white Gaussian noise to represent the effects
of the imaging system. The scenes were blurred with a Gaussian-shaped point spread function
with full width at half maximum (FWHM) of 3 pixels. White Gaussian noise with ¢ = 20 was
used, where o represents the standard deviation. Examples of the noisy blurred scenes used in

the experiment are shown in Fig. 4.

In each experimental trial, an object-recognition filter was applied to the generated scene.
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The peak of the output was taken to be the restored impulse, and the value at the peak was
used as a decision variable z. If z exceeded a decision threshold 7', then the object was said
to be present at the location of the peak; otherwise, the object was said to be absent. The
performance of the algorithm for various thresholds is summarized by the LROC curve which
plots the probability of detection and correct localization (Ppr) versus the probability of false

alarm (Pg). These probabilities were obtained by numerical evaluation of the following integrals

PDL:/T p(z|Hy)dz

Pp — /T " p(z| Ho)da, (32)

where p(z|H;) is the conditional probability density function (PDF) of z given hypothesis H;.
The null hypothesis Hy is that the object is absent; the alternative hypothesis H; is that the

object is present.

In this study the conditional PDFs p(z|H;) and p(z|Hy) were obtained using the following
procedure. Two sets of 100 images were generated each with a different noise realization and
with different random object locations. In one set of images, all three objects were present in
each scene (see, for example, Fig. 4); in the other set, the object of interest was absent (see,
for example, Fig. 5). In the case where the object of interest was present, each algorithm
was applied to every image, and the magnitude z of the peak value of the restored impulse
was recorded, provided that the peak correctly indicated the target location. The normalized

histogram of these values was then used as p(z|H;). To find p(z|Hy) the set of images was

20



used in which the object of interest was absent. Again, the algorithms were applied to each
image, but the magnitude of the peak value of the restored impulse was recorded regardless
of its location. The normalized histogram of the recorded peak values of the restored impulse
obtained was used as p(z|Hp). Different points of the LROC curves were obtained by varying

the decision threshold 7" and computing the integrals in Eq. (32).

In Fig. 6 we show the conditional PDFs p(z|H,) and p(z|H;) for the exact LMMSE, EM-AR,
MF-Model(1), MF-Model(2), LMMSE-CML, SPOMF, LMMSE-ML, and POMF filters for the
case where the tank was the object of interest. These figures illustrate that good discriminating

capability results from non-overlapping p(z|Ho) and p(z|H;). For example the hypotheses are

almost perfectly distinguished by the exact LMMSE if the decision threshold 7' is 175.

The LROC curves are shown in Fig. 7. The LROC curves in Fig.7 indicate that the proposed
EM-based approach with AR modeling performes best overall among the template matching
filters tested. Other methods worked better in some cases, but were inconsistent and so did not

perform as well overall.

B. Experiment 2: Robustness Comparison

In this experiment, we compare the robustness of the proposed algorithms as the noise increases
using the 256 x 256 Lena image and the 21 x 21 template, both shown in Fig. 8. White additive

noise was used to degrade the scene. Twenty different noise levels, with noise standard deviation
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ranging from 10 to 100 in increments of 10, were used to degrade the scene (see, for example, Fig.

9). For each noise level the experiment was repeated 50 times with different noise realizations.

N

50 where N is the number of times that the maximum

The probability Ppz, was found as Ppr, =

of the output of the restored delta was positioned correctly at the object location.

In Fig. 10 plots of Ppy, versus the noise standard deviation are shown for the exact LMMSE,
EM-AR, MF-Model(1), MF-Model(2), LMMSE-CML, SPOMF, LMMSE-ML, and POMF algo-
rithms. This plot shows that the proposed EM-AR filter is the best among all filters that do not
require prior knowledge of the location of the object. In Fig. 11 the restored impulses for the
exact LMMSE, EM-AR, MF-Model(1), MF-Model(2), LMMSE-CML, SPOMF, LMMSE-ML,
and POMF algorithms are shown for a specific noise realization when the standard deviation
is 30. Notice that the proposed EM-AR filter gives the closest approximation to an ideal delta
function among all filters that do not require prior knowledge of the location of the object. A

mean square error metric MSE for the restored impulse was used to compare different algorithms.

MSE is defined by
1 N

MSE = ~ ;(3@) — 8(no))? (33)

where 3(2) is the normalized restored impulse as shown in Fig. 11 and ng represents the location
of the object. In Table 1, the mean square error (MSE) values for the restored impulses are
tabulated for different filters for the case of ¢ = 30.These values represent the average MSE over

all the 50 cases for ¢ = 30. The table shows that the EM-AR filter gives the lowest average
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MSE among all filters that do not require prior knowledge of the location of the object.

6. CONCLUSIONS AND FUTURE WORK

In this paper restoration-based template-matching filters were used to detect objects within a
noisy, blurred scene. The main challenge involved in the impulse-restoration approach is good
estimation of the background statistics. To address this, we propose a new iterative approach
based on the EM algorithm that simultaneously estimates the background statistics and restores
a delta function at the location of the template. Our algorithm models the background as an

AR process with causal support.

Our numerical experiments verified the importance of accurately estimating the background
statistics to the success of the template-matching impulse-restoration approach. The proposed
EM-AR approach was superior to the variants of the matched filter that we tested. When the
background statistics are not estimated accurately, impulse restoration-based template matching
cannot realize its full potential. Our numerical experiments also show that the advantage of the

proposed approach over previous methods increases with the strength of the noise in the scene.

We are currently studying application of this approach to photon-limited images and to the

more difficult problems of object rotation and scaling.
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7. APPENDIX A: THE EXPECTATION
MAXIMIZATION ALGORITHM

Let us assume the complete-data set 2’ to obey the following Gaussian likelihood function:
p(76) = | 21C, | eap| —%zto;lz], (A—1)
in which 6 is the set of the unknown parameters in Eq. (9).
Taking the logarithm of Eq. (A-1) we get
In(p(%6) = — 5[ In(| 270, )+ 7°C, 721 = K — {In(| O, ) +7°C7 ). (A-2)

Then, the expected value of the logarithm of the conditional PDF required by the E-step of the

EM algorithm in Eq. (17) is given by
1
QU6 =K — { B[In(| C. |) / §; 0V ]+ E[§'C;'Z [ ¢; 00 ] = K —Y(6;6"). (A-3)

It is easy to show that

Y(6;600) = In(| C, |) + trace] Cz_le|g(l) ], (A—4)
with
T D (D) <
R,W=E[22]§; 60]=0,,0+ /‘g@; (#g@;) , (A—5)
Thus, we can write
140 (1 1
Y(6;00) = in( | C. | ) + trace[ C;'CY) 1+ (B4)) C.7 S, (A—6)
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Because of the definition of Z'in Eq. (16) and since § and b are assumed uncorrelated we get

I,0 Csto , 0 . B B
G = l 0, G ]  Grts = l 067|ng|9 ] , and g = [ (sle)’s (fbig)” ) (A-T)

Using the definition of Cp in Eq. (13) we can write Eq. (A-6) as

1

Y(0;69) = In| o®(I— A NI — A | + trace{C{) + I — AN - AYCSY

élg
L+ S — AT = A (4-8)
Since we assume an AR model with causal support, A is a strictly upper-triangular matrix.
Hence,
In| c2(I - A (I—-A)"| = Inl =0 (A-9)
Thus, we can write

1 I (1), (1 (1 (1
Y(6;6Y) = trace{Cayy + — (I — AYCH) + Ay (g 11 — AV} + (g gy (A-10)

A is a circulant matrix containing the model parameters, and CIEl; is a circulant matrix since we

assume stationarity. For circulant matrices it is easy to show that
trace{ X'AX} = N(z*AZ), (A—11)

and

trace{Xdd' X'} = trace{AZz*A} = d* X' Xa, (A—-12)

where X and A are N x N circulant matrices and Z and d are N X 1 vectors representing the

first columns of X and A, respectively. Hence we obtain

1
o2
UU

Y (8;61) = trace{Csy + — (I — & )'[N - ) + M{YM{YI(T — &)} + (). (A-13)

blg blg\“"blg
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in which 1 =1[10...0 o = [a(1)...a(M),0,0...0]*, where M is the order of the AR model
and a(k) is the k** parameter of the AR model; and M)y is an N x N circulant matrix constructed

by circular shifting of fi,.

Letting
! ! 1.« !
B = Gy + - My (M), (A—14)
we can write
N - 5 > (1) \¢
Y (6;0) = trace{Cyy + — (I — ') BT — o)} + ({) ) ), (A-15)

v

Using the diagonalization properties of the DFT for circulant matrices, from Eq. (A-14) we

can write

SO (k) = SO (k) + |Mm(Whnk:0,L”.N—1. (A—16)

blg blg
where S,El)(k) is the k** eigenvalue of R(l) S(l)(k) is the k** eigenvalue of the covariance matrix of
the background parameterized by the observation obtained by Eq. (21); and lef;(k) represents

the k** eigenvalue of the matrix Méllg, found as the k™ DFT component of the vector fis,.

A. The M-step

Taking the partial derivative of Y(8;6()) in Eq. (A-15) with respect to @ and setting it to zero

we obtain

= (141 -
ROGHY _ g7 _ 70 (A—17)
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So the AR parameters are found by solving a set of normal equations. Since o contains M < N

non zero unknown coefficients we calculate the least squares estimate of a(*+1)

G0+ — (RO RO (RM YD (A—18)

where Rl()l) is an N X M matrix containing the first M columns of R,()l).

From Eq. (13), the update equation of the power spectrum of the background b under the

AR model is then given by

0, (o,0)? B
Sb (k)—m, k—o,l,...,N_].. (A._].g)

where o, 1s the standard deviation of the driving noise of the AR model. It is calculated from

7, and & %, according to
1 M 1
(09 =r(0) = Y- (k) (), (A-20)
k=1

-0, . (1
is a version of &) zero-padded

and AW(k) represents the k* DFT component of o , where o

to length N.

B. The E-step
When the vectors 2 and § are related by Eq. (16) it can be shown ?? that the the conditional

mean is given by
g = CHY(HC,HY 5= | s |. (A-21)
b
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In the DFT domain Eq. (A-21) gives, for k=0, 1, .. N — 1,

(k)G (k)

O] _ _
Mool®) = Tr e+ NS0 (A=22)
lef;(k) __ NSRG() (A—23)

|F(k)2 4+ NSP(k)

For Gaussian z and § with § = HZ it can be shown ?? that the conditional covariance

_ 05/97 0

Cz/g - [ 0 , Cb/g ] = Cz - Cth(HCZHt)_lﬂcz. (A—24:)

Thus,

Cb/g =0y — Cb(FFt + Cb)_le. (A—25)

In the DFT domain Equation (A-25) becomes

Sy (k)

Syio(k) = Se(k) — ‘
ool) = S8 = Ry + i)
Thus, from Eq. (A-26) we obtain
2¢(l)
5§f3(k) _ FRIESTR) g 0,1, ..N—1. (A—27)

|F(k)2 + NSO (k)

(A—26)

In this EM formulation the conditional mean fis|4 is equivalent to the LMMSE estimate for §in

Eq. (6). Since the AR model is assumed for the background statistics, S,El)(k) in Egs. (A-22),

(A-23) and (A-26) is replaced by g,gl)(k) which yields Egs. (19), (20) and (21), respectively.
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Figure 1: Examples of the backgrounds used by the exact LMMSE filter. The object of interest
is the tank. The exact LMMSE filter is unrealistic. It was studied only to determine a theoritical
upper bound on the performance.

a(2,2) a(2,1) a(2,0)

a(1,2) a(1,1) a(1,0)

a(0,2) a(0,1) °

Figure 2: 2 x 2 autoregressive image model with causal support.
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Figure 3: Object templates.



Figure 4: Examples of noisy test scenes with the object of interest present (in this case, tank).
The noise level is ¢ = 20. In each realization, the objects are placed randomly within the scene.

Figure 5: Examples of noisy scenes with the object of interest absent (in this case, the tank).
The noise level is o = 20.

34



Exact LMMSE
0. T T T T T T 0. .
08 i 0.35
i
n 0.3
0.8 n . :
N
"\
" 0.25
A
0.4 ! .
| 0.2
0.3 \ 1
' 0.15
N
02 [ .
[ 0.1+
-
-
0.1+ [ i 004
‘ \
' \
0 R L | | | | | | 0 i
50 100 150 200 250 300 350 400 450 50C 50
MF-Model(1) MF-Model(2)
0.35 : : : ‘ 035 ‘ — ‘
) X|HL |
i Heley o
03 i : . 0.3 o 1
L) ! 1
o n
0.29 e — 0.29 L B
i [
02 o 1 0.2 Lo 1
i |
P b
I 1 [
01% Lo 1 015 - i
Lo [
i
0.1+ 0.1 o d f
!
.
0.08- 0.08 / i
'
!’ \\
50 100 T000 2000 3000 4000 5000 600
SPOMF
0.35 : 03—~ -
.
A
0.3 1 0.3 £ f
o
n :
'
0.25 L ] 025 Lo i
N N
{s Lo
P Lo
0.2 [ 1 0.2 Lo ,
T Co
1 1 1 1l
P Lo
0.15 [ | 014 PN |
' \
\ \
0.1 ! | J 0.1 1
| \
' \
0.08- 1 0.08 i
L L > L L L L L v L S L L
50 100 250 300 35C 200 400 600 800 1000 1200 1400 1600 1800 200(
025 0 POMF
0.35 |
0.2 1
0.3 1
! 1
I
015 T ] 025 1
;
o
1 oh 0.2 4
I v
|
0.1 R |
’ 1 v 0.1% 1
' o
' ‘
| ! 0.1 4
' )
0.08 . |
[N
. 0.08- ]
:
\ PR NIEN . ’
100 200 300 400 500 600 700 800 90C 50 100 150 260 250 30¢

Figure 6: The conditional PDFs for ¢ = 20 when the
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Figure 7: LROC curves for 0 = 20. Overall, the EM-AR algorithm outperforms all but the exact
(unrealistic) LMMSE filter which makes use of the unknown object location. Other methods
did outperform the EM-AR algorithm in some specific situations, but were inconsistent and did
not perform as well overall.
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Figure 8: Lena scene and the template.
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Figure 9: Examples of Noisy Lena Scenes for Different Noise Levels. Clockwise from top left,

o=>5,0 =230, 0 =50, and ¢ = 100.
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Figure 10: Plot of the probability of correct localization as a function of noise standard deviation.
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Figure 11: Examples of the restored impulse for o = 30.
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Table 1. Mean Squared Error values for Different Filters for o = 30

| e
Exact LMMSE | 4.4 x 1073
EM-AR 1.6 x 1072
MF-Model(1) | 3.7 x 1072
MF-Model(2) | 1.2 x 107!
LMMSE-CML | 4.2 x 1072
SPOMF 5.5 x 1072
LMMSE-ML | 1.2 x 107!
POMF 1.3 x 107!
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