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Thomas Bayes (1701-1761), shown in the upper left, first discovered “Bayes’ theorem” in a 
paper that was published in 1764 three years after his death, as the name suggests. However, 
Bayes in his theorem used uniform priors [1] and [2]. Pierre-Simon Laplace (1749-1827), 
shown in the lower right, unaware of Bayes’ work, discovered the same theorem in its general 
form in a memoir he wrote at the age of 25. In this memoir he also introduced “Bayesian 
Inference” to statistics [2]. Regarding these issues S. M. Stiegler writes in [3] “The influence 
of this memoir was immense. It was from here that “Bayesian” ideas first spread through the 
mathematical world, as Bayes’s own article was ignored until 1780 and played no important 
role in scientific debate until the twentieth century. It was also this article of Laplace’s that 
introduced the mathematical techniques for the asymptotic analysis of posterior distributions 
that are still employed today. And it was here that the earliest example of optimum estimation 
can be found, the derivation and characterization of an estimator that minimized a particular 
measure of posterior expected loss. After more than two centuries, we mathematicians, 
statisticians cannot only recognize our roots in this masterpiece of our science, we can still 
learn from it.” 

 



2 
 

 

Abstract 

Maximum Likelihood (ML) estimation is one of the most popular methodologies 

used in modern statistical signal processing. The Expectation Maximization (EM) algorithm 

is an iterative algorithm for ML estimation that has a number of advantages and has become a 

standard methodology for solving statistical signal processing problems. However, the EM 

has certain requirements that seriously limit its applicability to complex problems. Recently, a 

new methodology termed “variational Bayesian inference” has emerged, which relaxes some 

of the limiting requirements of the EM algorithm and is gaining rapidly popularity.  

Furthermore, one can show that the EM algorithm can be viewed as a special case of this 

methodology. In this paper we first present a tutorial introduction of Bayesian variational 

inference aimed at the signal processing community. Then, we use linear regression and 

Gaussian mixture modeling as examples to demonstrate the additional capabilities that 

Bayesian variational inference offers as compared to the EM algorithm.  

1. Introduction 

The maximum likelihood (ML) methodology is one of the basic staples of modern 

statistical signal processing. The expectation-maximization (EM) algorithm is an iterative 

algorithm that offers a number of advantages for obtaining ML estimates. Since its formal 

introduction in 1977 by Dempster et al. [4], the EM algorithm has become a standard 

methodology for ML estimation. In the IEEE community, the EM is steadily gaining 

popularity and is being used in an increasing number of applications. To substantiate this 

point in Figure 1(a) we show the number of IEEE journal papers per year1 for the period 

1988-2006 which refer to the EM algorithm. In this figure we observe an almost exponential 

growth during this time period. The first publications in IEEE journals making reference to 

the EM algorithm appeared in 1988 and dealt with the problem of tomographic reconstruction 
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of photon limited images [5] and [6]. Since then, the EM algorithm has become a popular tool 

for statistical signal processing used in a wide range of applications, such as recovery and 

segmentation of images and video, image modelling, carrier frequency synchronization, 

channel estimation in communications and speech recognition.  

The concept behind the EM algorithm is very intuitive and natural. EM-like 

algorithms existed in the statistical literature even before [4], however such algorithms were 

actually EM algorithms in special contexts. The first known such reference dates back to 

1886. There Newcomb considers the estimation of the parameters of a mixture of two 

univariate normals [7]. However, it was in [4] where such ideas were synthesized and the 

general formulation of the EM algorithm was established. A good survey on the history of the 

EM algorithm before [4] can be found in [8].  

The present article is not a tutorial on the EM algorithm. Such a tutorial appeared in 

1996 in the Signal Processing Magazine [9]. The present article is aimed at presenting an 

emerging new methodology for Statistical Inference which ameliorates certain shortcomings 

of the EM. This methodology is termed Variational Approximation and can be used to solve 

complex Bayesian models where the EM algorithm cannot be applied. Bayesian Inference 

based on the Variational approximation has been used extensively by the Machine Learning 

community since the mid 90 when it was first introduced.  As an indication of this, in Figure 

1(b) we show the number of papers per year at the Proceedings of Neural Information 

Processing Systems (NIPS) conference (one of the flagship conferences of this community), 

that use the Variational methodology from 1996, when the first such paper [12] appeared, till 

2006.  

In the IEEE community recently there is a budding interest in this methodology [28].  

To get a better feeling for this, Figure 1(c) shows the number of IEEE journal papers per 

year2 that use the Variational Bayesian methodology from 2000, when the first such paper 

[11] appeared, till 2006. Comparing Figures 1(a) and 1(c) one could say that in terms of trend 

                                                                                                                                                        
1 From IEEE Xplore 
2 From IEEE Xplore 
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line the present status of the Variational methodology is reminiscent to the status of the EM 

algorithm in the early 90s. To our knowledge this methodology has been already been applied 

to certain signal processing applications. For example, it has been applied to speech 

processing problems [31], [32], and [33], inverse problems in imaging; [17], [37], [36], [38], 

and [39], and processing of biomedical signals [34] and [35].  

The objective of this tutorial is to help popularize this methodology within the IEEE 

Signal Processing community. The rest of this tutorial paper is organized as follows: in 

Section 2 we introduce some basic concepts of Bayesian Inference. In Section 3 we present 

Graphical Models, a convenient tool for visualizing Bayesian models. In Section 4 we present 

the EM algorithm from a perspective that allows its subsequent generalization which is 

presented in Section 5 termed Variational EM. In Section 6 we use three different Linear 

Regression (LR) models as examples to demonstrate the theory in Sections 4 and 5. In 

Section 7 we use Gaussian Mixture Models (GMM) as another example to the previous 

theory. Finally, in Section 8 we present our concluding remarks. Also in Appendix-A of this 

tutorial paper we introduce MAP estimation and we show how a MAP-EM algorithm can be 

derived and in Appendix-B we discuss why Bayesian inferenc is tractable when using 

conjugate prior distributions. 
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Figure 1: Number of papers per year in (a) IEEE Journals referencing the EM algorithm, (b) 

NIPS Proceedings referencing the Variational Bayesian methodology, (c) IEEE Journals 

referencing the Variational Bayesian methodology. 

 

2. Bayesian Inference Basics 

Assume that x  are the observations and θ  the unknown parameters of a model that 

generated x . In this paper the term estimation will be used strictly to refer to parameters and 

inference to refer to random variables. The term estimation refers to the calculated 

approximation of the value of a parameter from incomplete, uncertain and noisy data. In 

contrast, the term inference will be used to imply Bayesian inference and refers to the process 

 

(a) 

 

(b) 

 

(c)  
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in which prior evidence and observations are used to infer the posterior probability ( )p |θ x  

of the random variables θ  given the observations x . 

One of the most popular approaches for parameter estimation is maximum likelihood 

(ML). According to this approach, the ML estimate is obtained as  

 ˆ arg max ( )ML p= ;
θ

x θθ . (2.1) 

where ( )p ;x θ  describes the probabilistic relationship between the observations and the 

parameters based on the assumed model that generated the observations x . At this point we 

would like to clarify the difference between the notation ( )p ;x θ  and ( )p |x θ . When we 

write ( )p ;x θ  we imply that θ  are parameters and as a function of θ  is called the likelihood 

function. In contrast, when we write ( )p |x θ  we imply that θ  are random variables.  

In many cases of interest direct assessment of the likelihood function ( )p ;x θ  is 

complex and is either difficult or impossible to compute it directly or optimize it. In such 

cases the computation of this likelihood is greatly facilitated by the introduction of hidden 

variables z . These random variables act as “links” that connect the observations to the 

unknown parameters via Bayes’ law. The choice of hidden variables is problem dependent. 

However, as their name suggests, these variables are not observed and they provide enough 

information about the observations so that the conditional probability ( )p |x z  is easy to 

compute. Apart from this role, hidden variables play another role in statistical modelling. 

They are an important part of the probabilistic mechanism that is assumed to have generated 

the observations and can be described very succinctly by a graph that is termed “graphical 

model”. More details on graphical models is given in Section 3.  

Once hidden variables and a prior probability for them ( )p ;z θ  have been introduced, 

one can obtain the likelihood or the marginal likelihood as it is called at times by integrating 

out (marginalizing) the hidden variables according to  

( ) ( ) ( ) ( )p p d p p d; = , ; = | ; ;∫ ∫x θ x z θ z x z θ z θ z . (2.2) 

This seemingly simple integration is the crux of the Bayesian methodology because 
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in this manner we can obtain both the likelihood function, and by using Bayes’ theorem, the 

posterior of the hidden variables according to 

 ( ) ( ) ( )
( )

|
;

p p
p

p
| ; ;

; =
x z θ z θ

z x θ
x θ

. (2.3) 

Once the posterior is available, inference as explained above for the hidden variables is also 

possible. Despite the simplicity of the above formulation, in most cases of interest the integral 

in Eq. (2.2) is either impossible or very difficult to compute in closed form. Thus, the main 

effort in Bayesian Inference is concentrated on techniques that allow us to bypass or 

approximately evaluate this integral.  

Such methods can be classified into two broad categories. The first is numerical 

sampling methods also known as Monte Carlo techniques and the second is deterministic 

approximations. This paper will not address at all Monte Carlo methods. The interested reader 

for such methods is referred to a number of books and survey articles on this topic, for 

example [10] and [11].  

As it will be shown in what follows, the EM algorithm is a Bayesian inference 

methodology that assumes knowledge of the posterior ( )|p ;z x θ  and iteratively maximizes 

the likelihood function without explicitly computing it. A serious shortcoming of this 

methodology is that in many cases of interest this posterior is not available. However, recent 

developments in Bayesian inference allow us to bypass this difficulty by approximating the 

posterior. They are termed “Variational Bayesian” and they will be the focus of this tutorial.  

 

3. Graphical Models 
 

Graphical Models provide a framework for representing dependencies among the 

random variables of a statistical modelling problem and they constitute a comprehensive and 

elegant way to graphically represent the interaction among the entities involved in a 

probabilistic system. A graphical model is a graph whose nodes correspond to the random 

variables of a problem and the edges represent the dependencies among the variables. A 
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directed edge from a node A to a node B in the graph denotes that the variable B stochastically 

depends on the value of the variable A. Graphical models can be either directed or undirected. 

In the second case they are also known as Markov Random Fields [11], [24] and [25]. In the 

rest of this tutorial, we will focus on directed graphical models also called Bayesian 

Networks, where all the edges are considered to have a direction from parent to child denoting 

the conditional dependency among the corresponding random variables. In addition we 

assume that the directed graph is acyclic (i.e. contains no cycles). 

Let ( ),G V E=  be a directed acyclic graph with V being the set of nodes and E the 

set of directed edges. Let also sx  denote the random variable associated with node s  and 

( )sπ  the set of parents of node s . Associated with each node s  is also a conditional 

probability density ( )( )|s sp x xπ  that defines the distribution of sx  given the values of its 

parent variables. Therefore, for a graphical model to be completely defined, apart from the 

graph structure, the conditional probability distribution at each node should also be specified. 

Once these distributions are known, the joint distribution over the set of all variables can be 

computed as the product: 

 ( ) ( )( )| .s s
s

p x p x xπ=∏  (3.1) 

The above equation constitutes a formal definition of a directed graphical model [13] as a 

collection of probability distributions that factorize in the way specified in the above equation 

(which of course depends on the structure of the underlying graph). 

In Figure 2 we show an example of a directed Graphical Model. The random 

variables depicted at the nodes are a,b,c and d. Each node represents a conditional probability 

density that quantifies the dependency of the node from its parents. The densities at the nodes 

might not be exactly known and can be parameterized by a set of parameters iθ . Using the 

chain rule of probability we would write the joint distribution as: 

( ) ( ) ( ) ( ) ( )1 2 3 4, , , ; ; ; | , ; , , ; .p a b c d p a p b a p c a b p d a b cθ θ θ θ=θ  (3.2) 
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However, we can simplify this expression by taking into account the independencies that the 

graph structure implies. In general, in a graphical model each node is independent of its 

ancestors given its parents. This means that node c does not depend on node a given node b, 

and node d does not depend on a given nodes b and c. Thus, from (3.1) we can write: 

( ) ( ) ( ) ( ) ( )1 2 3 4, , , ; ; ; | ; , ;p a b c d p a p b a p c a p d b c=θ θ θ θ θ . (3.3) 

Another useful characterization arising in graphical modeling is that in the presence 

of some observations, usually called dataset, the random variables can be distinguished as 

observed (or visible) for which there exist observations and hidden for which direct 

observations are not available. A useful consideration is to assume that the observed data are 

produced through a generation mechanism, described by the graphical model structure, which 

involves the hidden variables as intermediate sampling and computational steps. It must also 

be noted that a graphical model can be either parametric or nonparametric. If the model is 

parametric, the parameters appear in the conditional probability distributions at some of the 

graph nodes, ie. these distributions are parameterized probabilistic models. 

Once a graphical model is completely determined (ie. all parameters have been 

specified), then several inference problems could be defined such as computing the marginal 

distribution of a subset of random variables, computing the conditional distribution of a 

subset of variables given the values of the rest variables and computing the maximum point in 

some of the previous densities. In the case where the graphical model is parametric, then we 

have the problem of learning appropriate values of the parameters given some dataset with 

observations. Usually, in the process of parameter learning, several inference steps are 

involved.  
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Figure 2: Example of directed Graphical Model. Nodes denoted with circles correspond to 
random variables, while nodes denoted with squares correspond to parameters of the model. 

Doubly circled nodes represent observed random variables, while single circled nodes 
represent hidden random variables. 

 
 

4. An alternative view of the EM algorithm 

In this paper we will follow the exposition of the EM in [10] and [13]. It is 

straightforward to show that the log-likelihood can be written as  

 ln ( ) ( ) ( )p F q KL q p; = , +x θ θ , (4.1) 

with  

 
( )( ) ( ) ln

( )
pF q q d

q
⎛ ⎞, ;

, = ⎜ ⎟
⎝ ⎠

∫
x z θθ z z

z
, (4.2) 

and  

 
( )( ) ( ) ln

( )
pKL q p q d

q
⎛ ⎞| ;

= − ⎜ ⎟
⎝ ⎠

∫
z x θz z

z
, (4.3) 

where ( )q z  is any probability density function. ( )KL q p  is the Kullback-Leibler 

divergence between ( )p | ;z x θ  and ( )q z , and since ( ) 0KL q p ≥ , it holds that 

ln ( ) ( )p F q; ≥ ,x θ θ . In other words, ( )F q θ,  is a lower bound of the log-likelihood. 
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Equality holds only when ( ) 0KL q p = , which implies ( ) ( )p q| ; =z x θ z . The EM 

algorithm and some recent advances in deterministic approximations for Bayesian inference 

can be viewed in the light of the decomposition in Eq. (4.1) as the maximization of the lower 

bound ( )F q,θ  with respect to the density q  and the parameters θ .  

In particular the EM is a two step iterative algorithm that maximizes the lower bound 

( )F q,θ  and hence the log-likelihood. Assume that the current value of the parameters is 

OLDθ . In the E-step the lower bound ( )OLDF q,θ  is maximized with respect to ( )q z . It is 

easy to see that this happens when ( ) 0KL q p = , in other words, when 

( ) ( )OLDq p= | ;z z x θ . In this case the lower bound is equal to the log-likelihood. In the 

subsequent M-step, ( )q z  is held fixed and the lower bound ( )F q,θ  is maximized with 

respect to θ  to give some new value NEWθ . This will cause the lower bound to increase and 

as a result, the corresponding log-likelihood will also increase. Because ( )q z  was determined 

using OLDθ  and is held fixed in the M-step, it will not be equal to the new posterior 

( )NEWp | ;z x θ  and hence the KL distance will not be zero. Thus, the increase in the log-

likelihood is greater than the increase in the lower bound. If we substitute 

( ) ( )OLDq p= | ;z z x θ  into the lower bound and expand Eq. (4.2) we get  

( ) ( | ) ln ( ) ( | ) ln ( | )

( ) ,

OLD OLD OLD

OLD

F q p p d p p d

Q constant

, = ; , ; − ; ;

= , +
∫ ∫θ z x θ x z θ z z x θ z x θ z

θ θ
 (4.4) 

where the constant is simply the entropy of ( )OLDp | ;z x θ  which does not depend on θ . The 

function  

( | )
( ) ( | ) ln ( ) ln ( ) ,OLD

OLD OLD
p

Q p p d p
;

, = ; , ; = , ;∫ z x θ
θ θ z x θ x z θ z x z θ  (4.5) 

is the expectation of the log-likelihood of the complete data (observations + hidden variables) 

which is maximized in the M-step. The usual way of presenting the EM algorithm in the 

Signal Processing literature has been via use of the ( )OLDQ ,θ θ  function directly, see for 
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example [9] and [16].  

In summary the EM algorithm is an iterative algorithm involving the following two 

steps  

 ( )Compute      ,OLDp: | ;E - step z x θ  (4.6) 

( )Evaluate        argmaxNEW OLDQ: = ,
θ

M - step θ θ θ . (4.7) 

Furthermore, we would like to point out that the EM algorithm requires that 

( )p | ;z x θ  is explicitly known, or at least we should be able to compute the conditional 

expectation of its sufficient statistics 
( | )

ln ( | ) OLDp
p

;
;

z x θ
z x θ , see (4.5). In other words, we 

have to know the conditional pdf of the hidden variables given the observations in order to 

use the EM algorithm. While ( )p | ;z x θ  is in general much easier to infer than ( )p ;x θ , in 

many interesting problems this is not possible and thus the EM algorithm is not applicable.  

 

5. The Variational EM framework 

One can bypass the requirement of exactly knowing ( )p | ;z x θ  by assuming an 

appropriate ( )q z  in the decomposition of Eq. (4.1). In the E-step ( )q z  is found such that it 

maximizes ( )F q,θ  keeping θ  fixed. To perform this maximization, a particular form of 

( )q z  must be assumed. In certain cases it is possible to assume knowledge of the form of 

( )q ;z ω , where ω  is a set of parameters. Thus, the lower bound ( )F ,ω θ  becomes a function 

of these parameters and is maximized with respect to ω  in the E-step and with respect to θ  

in the M-step, see for example [13].  

However, in its general form the lower bound ( )F q,θ  is a functional in terms of q, 

in other words, a mapping that takes as input a function ( )q z , and returns as output the value 

of the functional. This leads naturally to the concept of the functional derivative, which in 

analogy to the function derivative, gives the functional changes for infinitesimal changes to 
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the input function. This area of mathematics is called calculus of variations [18] and has been 

applied to many areas of mathematics, physical sciences and engineering, for example fluid 

mechanics, heat transfer and control theory to name a few.  

Although there are no approximations in the variational theory, variational methods 

can be used to find approximate solutions in Bayesian inference problems. This is done by 

assuming that the functions over which optimization is performed have specific forms. For 

example, we can assume only quadratic functions or functions that are linear combinations of 

fixed basis functions. For Bayesian inference a particular form that has been used with great 

success is the factorized one, see [19] and [20]. The idea for this factorized approximation 

stems from theoretical physics where it is called mean field theory [21].  

According to this approximation, the hidden variables z  are assumed to be 

partitioned into M  partitions iz  with 1 ,i … M= , . Also it is assumed that ( )q z  factorizes 

with respect to these partitions as  

 
1

( ) ( )
M

i i
i

q q z
=

=∏z . (5.1) 

Thus, we wish to find the ( )q z  of the form of Eq. (5.1) that maximizes the lower bound 

( )F q,θ . Using Eq. (5.1) and denoting for simplicity ( )j j jq z q=  we have  

( )

( ) ln ( ) ln

ln ( ) ln

ln ( ) ln ln

 ln ( ) ln ln

( ) ln

i i
ii

i i j i i
ii i j

j i i j j j j i i i
i ji j

j j i j j j i i i
i j

i ij
i j

F q q p q d

q p dz q q dz

q p q dz dz q q dz q q dz

q p z dz q q dz q q dz

KL q p q q dz

≠≠

≠

≠

⎡ ⎤, = , ; −⎢ ⎥⎣ ⎦

= , ; −

⎡ ⎤
= , ; − −⎢ ⎥

⎣ ⎦
= , ; − −

=− −

∑∏∫

∑∏ ∏ ∏∫ ∫

∑∏∫ ∫ ∫

∑∫ ∫ ∫

∑

θ x z θ z

x z θ

x z θ

x θ�

� ,∫

 (5.2) 

where ( )ln ( ) ln ( ) ln ( )j i ii j i j
p z p p q dz

≠ ≠
, ; = , ; = , ; ∏∫x θ x z θ x z θ� . Clearly the bound in 

Eq. (5.2) is maximized when the Kullback-Leibler distance becomes zero, which is the case 



14 
 

for ( ) ( )j j jq z p z= , ;x θ� , in other words the expression for the optimal distribution ( )j jq z∗  is  

 ln ( ) ln ( )j j i j
q z p const∗

≠
= , ; +x z θ . (5.3) 

The additive constant in Eq. (5.3) can be obtained through normalization, thus we have  

 
exp ln ( )

( )
exp ln ( )

i j
j j

ji j

p
q z

p dz

⎛ ⎞
⎜ ⎟⎜ ⎟≠∗ ⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟≠⎝ ⎠

, ;
=

, ;∫
x z θ

x z θ
. (5.4) 

The above equations for 1j … M= , ,  are a set of consistency conditions for the 

maximum of the lower bound subject to the factorization of Eq. (5.1). They do not provide an 

explicit solution since they depend on the other factors ( )i iq z  for i j≠ . Therefore, a 

consistent solution is found by cycling through these factors and replacing each in turn with 

the revised estimate.  

In summary, the Variational EM algorithm is given by the following two steps: 

Variational E-Step: Evaluate ( )NEWq z  to maximize ( ), OLDF q θ  solving the system 

of Eq. (5.4). 

Variational M-Step: Find ( )arg max ,NEW NEWF q=
θ

θ θ . 

At this point it is worth noting that in certain cases a Bayesian model can contain only 

hidden variables and no parameters. In such cases the Variational EM algorithm has only an 

E-step in which ( )q z  is obtained using Eq. (5.4). This function ( )q z  constitutes an 

approximation to ( )|p z x  that can be used for inference of the hidden variables. 

 

6. Linear Regression 

In this section we will use the linear regression problem as an example to demonstrate the 

Bayesian Inference methods of the previous sections. Linear regression was selected because 

it is simple and constitues an excellent introductory example. Furthermore, it occurs in many 

signal processing applications ranging from deconvolution, channel estimation, speech 
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recognition, frequency estimation, time series prediction and system identification.  

For this problem, we consider an unknown signal ( )y ∈ℜx , N∈Ω⊆ℜx  and want to 

predict its value ( )t y∗ ∗= x  at an arbitrary location ∗ ∈Ωx , using a vector 1( )T
Nt … t= , ,t  of 

N  noisy observations ( )n n nt y ε= +x , at locations 1( )T
N…= , ,x x x , n ∈Ωx , 1n … N= , , . 

The additive noise nε  is commonly assumed to be independent, zero-mean, Gaussian 

distributed:  

 1( ) ( 0 )p N β −= | , ,ε ε I  (6.1) 

where β  is the inverse variance and 1( )T
N…ε ε= , ,ε .  

The signal y  is commonly modelled as the linear combination of M  basis functions 

( )mφ x :  

 
1

( ) ( )
M

m m
m

y w φ
=

= ,∑x x  (6.2) 

where 1( )T
Mw … w= , ,w  are the weights of the linear combination. Defining the design 

matrix 1( )M…φ φ= , ,Φ , with ( )1( ) ( ) T
m m m N…φ φ φ= , ,x x , the observations t  are modelled as 

 = +t Φw ε , (6.3) 

and the likelihood is  

 1( ; , ) ( )p Nβ β −= | , .t w t Φw I  (6.4) 

In what follows we will apply the theory in Section 4 and 5 to the linear regression 

problem and demonstrate three methodologies to compute the unknown weights w  of this 

linear model. First, we apply typical ML estimation of the weights which are assumed to be 

parameters. As it will be demonstrated, since the number of parameters is the same as the 

number of our observations, the ML estimates are very sensitive to the model noise and over 

fit the observations. Subsequently, to ameliorate this problem a prior is imposed on the 

weights which are assumed to be random variables. First, a simple Bayesian model is used 

which is based on a stationary Gaussian prior for the weights. For this model, Bayesian 
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inference is performed using the EM algorithm and the resulting solution is robust to noise.  

Nevertheless, this Bayesian model is very simplistic and does not have the ability to capture 

the local signal properties. For this purpose it is possible to introduce a more sophisticated 

spatially varying hierarchical model which is based on a non-stationary Gaussian prior for the 

weights and a hyperprior. This model is too complex to solve using the EM algorithm. For 

this purpose, the variational Bayesian methodology described in Section 5 is used to infer 

values for the unknowns of this model.  Finally, the three methods are used to obtain 

estimates of a simple artificial signal, in order to demonstare that the added complexity in the 

Bayesian model improves the solution quality. In Figure 3(a), (b) and (c) we show the 

graphical models for the three approaches to Linear Regression. 

The simplest estimate of the weights w  of the linear model is obtained by 

maximizing the likelihood of the model. This ML estimate assumes the weights w  to be 

parameters, as shown in the graphical model of Figure 3(a). The ML estimate is obtained by 

maximizing the likelihood function ( ) 222( ; , ) 2 exp
2

NN

p ββ π β− ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

t w t Φw . This is 

equivalent to minimizing 
2( )LSE = −w t Φw . Thus, in this case the ML is equivalent with 

the least squares (LS) estimate  

1( ; , ) ( ) ( )T T
LS LSw wp Eargmax argminβ −= = = .w t w w Φ Φ Φ t  (6.5) 

In many situations and depending on the basis functions that are used, the matrix 

TΦ Φ  may be ill-conditioned and difficult to invert. This means that if noise ε  is included in 

the signal observations, it will heavily affect the estimation LSw  of the weights. Thus, when 

using maximum likelihood linear regression (MLLR), the basis functions should be carefully 

chosen to ensure that matrix TΦ Φ  can be inverted. This is generally achieved by using a 

sparse model with few basis functions, which also has the advantage that only few parameters 

have to be estimated.  
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                    (a)                                 (b)                                     (c) 

Figure 3. Graphical models for linear regression solved using (a) direct ML 

estimation (model without prior), (b) EM (model with stationary prior), (c) 

variational EM (model with hierarchical prior). 

6.1. EM-based Bayesian Linear Regression 

A Bayesian treatment of the linear model begins by assigning a prior distribution to 

the weights of the model. This introduces bias in the estimation but also greatly reduces its 

variance, which is a major problem of the maximum likelihood estimate. Here, we consider 

the common choice of independent, zero-mean, Gaussian prior distribution for the weights of 

the linear model: 

 1

1

( ; ) ( 0 )
M

m
m

p N wα α −

=

= | ,∏w . (6.6) 

This is a stationary prior distribution, meaning that the distribution of all the weights is 

identical. The graphical model for this problem is shown in Figure 3(b). Notice that here the 

weights w  are hidden random variables and the model parameters are the parameter α  of the 

prior for w  and the inverse variance β  of the additive noise. 

Bayesian inference proceeds by computing the posterior distribution of the hidden 
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variables:  

 
( ) ( )( )

( )
p pp

p
β αα β
α β

| ; ;
| ; , = .

; ,
t w ww t

t
 (6.7) 

Notice, that the marginal likelihood ( )p α β; ,t  that appears on the denominator can be 

computed analytically:  

1 1( ) ( ) ( ) ( 0 )Tp p p d Nα β β α β α− −; , = | ; ; = | , + .∫t t w w w t I ΦΦ  (6.8) 

Then, the posterior of the hidden variables is:  

 ( ) ( )p Nα β| ; , = | , ,w t w μ Σ  (6.9) 

with  

 Tβ= ,μ ΣΦ t  (6.10) 

 1( )Tβ α −= + .Σ Φ Φ I  (6.11) 

The parameters of the model can be estimated by maximizing the logarithm of the marginal 

likelihood ( )p α β; ,t  which yields 

 

( ){ }11 1 1 1

,
( , ) argmin log T T T

ML ML
α β

α β β α β α
−− − − −= + + +I ΦΦ t I ΦΦ t . (6.12) 

 
Direct optimization of (6.12) presents several computational difficulties, since its 

derivatives with respect to the parameters ( ),α β  are difficult to compute. Furthermore, the 

problem requires a constrained optimization algorithm since the estimates of ( ),α β have to 

be positive since they represent inverse variances. Instead, the EM algorithm described in 

Section 4, provides an efficient framework to simultaneously obtain estimates for ( ),α β  and 

infer values for w . Notice, that although the EM algorithm does not involve computations 

with the marginal likelihood (6.8), the algorithm converges to a local maximum of it. After 

initializing the parameters to some values ( )(0) (0),α β , the algorithm proceeds by iteratively 

performing the following steps: 
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• E- step 

Compute the expected value of the logarithm of the complete likelihood : 

( ) ( )

( ) ( )

( )

( )

( )

( ) ln ( )

ln ( ) ( ) .

t t

t t

t

p

p

Q p

p p
α β

α β

α β α β

α β α β
| ; ,

| ; ,

, ; , = , ; , =

| ; , ; ,
w t

w t

t w t w

t w w
 (6.13) 

This is computed using equations (6.4) and (6.6) as  

 
( ) ( )

( )

2 2( )

2 2

( ) ln ln const
2 2 2 2

ln ln const.
2 2 2 2

t N MQ

N M

β αα β β α

β αβ α

, ; , = − − + − +

= − − + − +

t w t Φw w

t Φw w
(6.14) 

These expected values are with respect to ( ) ( )( )t tp α β| ; ,w t  and can be computed from 
(6.9), giving 

( )
( )

2( ) ( ) ( )

2( ) ( )

( ) ln [ ]
2 2

ln [ ] const, 
2 2

t t T t

t t

NQ tr

M tr

βα β β

αα

, ; , = − − + +

− + +

t w t Φμ Φ Σ Φ

μ Σ
 (6.15) 

where ( )tμ  and ( )tΣ  are computed using the current estimates of the parameters ( )tα  and 

( )tβ :  

 ( ) ( ) ( )t t t Tβ= ,μ Σ Φ t  (6.16) 

 ( ) ( ) ( ) 1( )t t T tβ α −= + .Σ Φ Φ I  (6.17) 

• M-step 

Maximize ( ) ( )tQ α β, ; ,t w  with respect to the parameters α  and β : 

 ( 1) ( 1) ( )
( )( ) ( )t t tQargmax α βα β α β+ +

,, = , ; ,t w . (6.18) 

The derivatives of ( ) ( )tQ α β, ; ,t w  with respect to the parameters are:  

 ( )
( ) 2( ) ( )( ) 1 [ ]

2 2

t
t tQ M trα β

α α
∂ , ; ,

= − + ,
∂
t w μ Σ  (6.19) 

( )
( ) 2( ) ( )( ) 1 [ ]

2 2

t
t T tQ N trα β

β β
∂ , ; ,

= − − +
∂
t w t Φμ Φ Σ Φ . (6.20) 

Setting these to zero, we obtain the following formulas to update the parameters α  and β :  
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 ( 1)
2( ) ( )[ ]

t

t t

M

tr
α + = ,

+μ Σ
 (6.21) 

 ( 1)
2( ) ( )[ ]

t

t T t

N

tr
β + = .

− +t Φμ Φ Σ Φ
 (6.22) 

Notice, that the maximization step can be analytically performed, in contrast to direct 

maximization of the marginal likelihood in (6.8), which would require numerical 

optimization. Furthermore, equations (6.21) and (6.22) guarantee that positive estimations for 

the parameters α  and β  are produced, which is a requirement since these represent inverse 

variance parameters. However, the parameters should be initialized with care, since 

depending on the initialization a different local maximum may be attained. Inference for w  is 

obtained directly since the sufficient statistics of the posterior ( )p α β| ; ,w t  are computed in 

the E-step. The mean of this posterior (Eq (6.16)) can be used as Bayesian linear minimum 

mean square error (LMMSE) inference for w . 

6.2. Variational EM-Based Bayesian Linear Regression 

In the Bayesian approach described in the previous section, due to the use of a 

stationary Gaussian prior distribution for the weights of the linear model, exact computation 

of the marginal likelihood is possible and Bayesian inference is performed analytically. 

However, in many situations, it is important to allow the flexibility to model local 

characteristics of the signal, which the simple stationary Gaussian prior distribution is unable 

to do. For this reason, a non-stationary Gaussian prior distribution with a distinct inverse 

variance mα  for each weight is considered: 

 1

1

( ) ( 0 )
M

m m
m

p N w α−

=

| = | ,∏w α . (6.23) 

However, such a model is over-parameterized since there are almost as many observations as 

parameters to be estimated. For this purpose the precision parameters 1( )T
Mα α= , ,α …  are 

constrained, by treating them as random variables and imposing a Gamma prior distribution 
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to them according to 

 
1

( ) ( )
M

m
m

p a b Gamma a bα
=

; , = | ,∏α . (6.24) 

This prior is selected because it is “conjugate” to the Gaussian [13]. Furthermore, we assume 

a Gamma distribution as prior for the noise inverse variance β :  

 ( ) ( )p c d Gamma c dβ β; , = | , . (6.25) 

The graphical model for this Bayesian approach is shown in Figure 3(c) where the 

dependence of the hidden variables w  on the hidden variables α  is apparent. Also the 

parameters , ,a b c and d of this model and the hidden variables that depend on them are also 

apparent.  

Bayesian inference requires the computation of the posterior distribution  

 
( | , ) ( | ) ( ) ( )( , , | )

( )
p p p pp

p
β ββ =

t w w α αw α t
t

. (6.26) 

However, the marginal likelihood ( ) ( | , ) ( | ) ( ) ( )p p p p p d d dβ β β= ∫t t w w α α w α  cannot 

be computed analytically, and thus the normalization constant in Eq. (6.26) cannot be 

computed. Thus, we resort to approximate Bayesian inference methods and specifically to the 

variational inference methodology. Assuming posterior independence between the weights w  

and the variance parameters α  and β , 

( ) ( ) ( ) ( ) ( )p a b c d q q q qβ β β, , | ; , , , ≈ , , = ,w α t w α w α  (6.27) 

the approximate posterior distributions q can be computed from (5.3) as follows. Keeping 

only the terms of ln ( )q w  that depend on w , we have:  
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( ) ( )

( ) ( )
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1 ( ) ( )
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ln ( ) ln ( ) const

ln ( ) ( ) const
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2 2
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q q

q q

q q
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m q q
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β

β

β
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β

β

β α

β α

β β

=

=

= , , , +

= | , | +

= | , + | +

= − − − − +

=− − + − +

=− + −

∑

∑

α

α

α

α

w t w α

w w α

w w α

t Φw t Φw

t t t Φw w Φ Φw

w Φ Φ A w w

1 1

const

1 const,
2

T

T T− −

+

= − − +

Φ t

w Σ w w Σ μ

 (6.28) 

where 1 Mdiag( ,..., )α α=A . 

Notice, that this is the exponent of a Gaussian distribution with mean μ  and 

covariance matrix Σ  given by  

 Tβ= ,μ ΣΦ t  (6.29) 

 ( ) 1Tβ
−

= + .Σ Φ Φ A  (6.30) 

Therefore, ( )q w  is given by:  

 ( ) ( )q N= | , .w w μ Σ  (6.31) 

The posterior ( )q α  is similarly obtained by computing the terms of ln ( )q α  that 

depend on α :  

( ) ( )

( )

2

1 1 1 1

2

1 1

1 1

ln ( ) ln ( )

ln ( ) ( )

1 ln ( 1) ln
2

1 1ln
2 2

ln ,

q q

q

M M M M

m m m m m
m m m m

M M

mm
m m

M M

m mm
m m

q p

p p

w a b

a w b

a constb

β
β

α α α α

α

α α

= = = =

= =

= =

= , , ,

= |

= − + − −

⎛ ⎞ ⎛ ⎞= − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − +

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

w

w

α t w α

w α α

��

 (6.32) 

This is the exponent of the product of M  independent  Gamma distributions with 

parameters a�  and mb� , given by  
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 1 2a a= + / ,�  (6.33) 

 21
2m mb b w= + .�  (6.34) 

 

Thus, ( )q α  is given by:  

 
1

( ) ( )
M

m m
m

q Gamma a bα
=

= | , .∏α ��  (6.35) 

The posterior distribution of the noise inverse variance can be similarly computed as:  

 ( ) ( )q Gamma c dβ β= | , ,��  (6.36) 

with  

 2c c N= + / ,�  (6.37) 

 
21

2
d d= + − .t Φw�  (6.38) 

The approximate posterior distributions in equations (6.31), (6.35) and (6.36) are then 

iteratively updated until convergence, since they depend on the statistics of each other, see for 

details [29]. 

Notice here, that the ‘true’ prior distribution of the weights can be computed by 

marginalizing the hyper-parameters α  

1

1

1

( ) ( ) ( )

( 0 ) ( )

( ).

M

m m m m
m

m

m
m

p b p p a b d

N w Gamma a b d

St w

α α α

λ ν

−

=

=

; , = | ; ,

= | , | ,

= | ,

∫

∏∫

∏

w a w α α α

 (6.39) 

and is a Student-t pdf, 
( 1)/21/2 2(( 1) / 2) ( )( | , , ) 1

( / 2)
xSt x

ν
ν λ λ μμ λ ν
ν πν ν

− +
⎡ ⎤Γ + −⎛ ⎞= +⎜ ⎟ ⎢ ⎥Γ ⎝ ⎠ ⎣ ⎦

, with 

mean 0μ = , parameter /a bλ =  and degrees of freedom 2aν = . This distribution, for 

small degrees of freedom ν , exhibits very heavy tails. Thus, it favours sparse solutions, 
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which include only few of the basis functions and prunes the remaining basis functions by 

setting the corresponding weights to very small values. Those basis functions that are actually 

used in the final model are called relevance basis functions. 

Notice, that for simplicity we have assumed fixed the parameters a , b , c  and d  of the 

Student-t distributions. In practice we can often obtain good results by assuming 

uninformative distributions, which are obtained by setting these parameters to very small 

values, i.e. 610a b c d −= = = = . Alternatively, we can estimate these parameters using a 

Variational EM algorithm. Such an algorithm would add an M-step to the described method, 

in which the Variational bound would be maximized with respect to these parameters. 

However, the typical approach in Bayesian modeling is to fix the hyperparameters to define 

uninformative hyperpriors at the highest level of the model. 

6.3. Linear Regression Examples 

Next, we present numerical examples to demonstrate the properties of the previously 

described linear regression models. We also demonstrate the advantages that can be reaped by 

using the variational Bayesian inference. An artificially generated signal ( )y x  is used so that 

the “ground truth” is known. We have obtained 50N =  samples of the signal and added 

Gaussian noise of variance 2 24 10σ −= × , which corresponds to signal to noise ratio 

6.6SNR dB= . We used N  basis functions and, specifically, one basis function centred at 

the location of each signal observation. The basis functions were Gaussian kernels of the form  

 2

21
2

( ) ( ) exp( )i i iK
φσ

φ = , = − −x x x x x . (6.40) 

In this example we set 0a b= = , in order  to obtain a very heavy-tailed, uninformative 

Student-t distribution.  

We then used the observations to predict the output of the signal, using i) ML 

estimation, Eq. (6.5) ii) EM-based Bayesian inference, Eq. (6.16) and iii) variational EM- 

based Bayesian inference, Eq. (6.29). Results are shown in Fig. 4(a). Notice, that the ML 

estimate follows exactly the noisy observations. Thus, it is the worst in terms of mean square 
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error. This should be expected, since in this formulation we use as many basis functions as the 

observations and there is no constraint on the weights. The Bayesian methodology overcomes 

this problem since the weights are constrained by the priors. However, since this signal 

contains regions with large variance and some with very small variance, it is clear that the 

stationary prior is not capable of accurately modelling its local behaviour. In contrast, the 

hierarchical non-stationary prior is more flexible and seems to achieve better local fit. 

Actually, the solution corresponding to the latter prior, uses only a small subset of the basis 

functions, whose locations are shown as circled observations in Fig. 4(a). This happens 

because we have set 0a b= = , which defines an uninformative Student-t distribution. 

Therefore, most weights are estimated to be exactly zero and only few basis functions are 

used in the signal estimation. Those basis functions that are actually used in the final model 

are called relevance basis function and the vectors where they are centered are called 

relevance vectors and denoted as (RV) in Fig. 4(a). The relevance basis functions are plotted 

in Fig. 4(b) in order to demonstrate how the signal estimation is obtained by addition of these 

basis functions.  
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Figure 4. Linear regression solutions obtained by ML estimation, EM-based Bayesian 

inference and variational-EM Bayesian inference. 
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7. Gaussian Mixture Models 

Gaussian mixture models (GMM) are a valuable statistical tool for modelling 

densities. They are flexible enough to approximate any given density with high accuracy and 

in addition, they can be interpreted as a soft clustering solution. They have been widely used 

in a variety of signal processing problems ranging from speech understanding, image 

modelling, tracking, segmentation, recognition, watermarking, and denoising.  

A GMM is defined as a convex combination of Gaussian densities and is widely used 

to describe the density of a dataset in cases where a single distribution does not suffice. To 

define a mixture model with M  components we have to specify the probability density 

( )jp x  of each component j  as well as the probability vector 1( )M…π π, ,  containing the 

mixing weights jπ  of the components ( 0jπ ≥  and 
1

1M
jj

π
=

=∑ ).  

An important assumption when using such a mixture to model the density of a dataset 

X  is that each datum has been generated using the following procedure:  

1. We randomly sample one component k  using the probability vector 1 M…π π, , .  

2. We generate an observation by sampling from the density ( )kp x  of component k .  

 

 

 

            

(a)                                                        (b) 

Figure 5. Graphical models (a) for  a single Gaussian component, (b) for a 

Gaussian mixture model. 
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The graphical model corresponding to above generation process is presented in Figure 5 (b), 

where the discrete hidden random variable Z  represents the component that has been 

selected to generate an observed sample x , i.e. to assign the value =X x  to the observed 

random variable X . In this graphical model the node distributions are ( ) jP Z j π= =  and 

( ) ( )jP Z j p= | = =X x x . For the joint pdf of X  and Z  it holds that  

 ( ) ( ) ( )p Z p Z p Z, = |X X , (7.1) 

and through marginalization of Z  we obtain the well-known formula for mixture models:  

1 1

( ) ( ) ( ) ( )
M M

j j
j j

p p Z j p Z j pπ
= =

= = = | = = =∑ ∑X x X x x . (7.2) 

In the case of GMMs, the density of each component j  is ( ) ( )j j jp N= ; ,x x μ Σ  

where d
j ∈ℜμ  denotes the mean and jΣ  is the d d×  covariance matrix. Therefore  

 
1

( ) ( )
M

j j j
j

p Nπ
=

= ; ,∑x x μ Σ . (7.3) 

A notable convenience in mixture models is that using Bayes’ theorem it is 

straightforward to compute the posterior probability ( ) ( )P j p Z j| = = |x x  that an 

observation x  has been generated by sampling from the distribution of mixture component j :  

1

( )( ) ( )( )
( ) ( )

j j j
M

l l ll

Np Z j p Z jP j
p N

π

π
=

| ,| = =
| = =

| ,∑
x μ Σxx

x x μ Σ
. (7.4) 

This probability is sometimes referred to as the responsibility of component j  for generating 

observation x . In addition, by assigning a data point x  to the component with maximum 

posterior, it is easy to obtain a clustering of the dataset X  into M  clusters, with one cluster 

corresponding to each mixture component.  

7.1. EM for GMM training 

Let { }1d
n n n … N= | ∈ℜ , = , ,X x x  denote a set of data points to be modelled using 
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a GMM with M  components: 
1

( ) ( )M
j n j jj

p Nπ
=

= | ,∑x x μ Σ . We assume that the number 

of components M  is specified in advance. The vector θ  of mixture parameters to be 

estimated consists of the mixing weights and the parameters of each component, i.e. 

{ }1j j j j … Mπ= , , | = , ,θ μ Σ .  

Parameter estimation can be achieved through the maximization of the log-likelihood:  

 log ( )ML argmax p= ;θθ X θ , (7.5) 

where assuming independent and identically distributed observations the likelihood can be 

written as  

11 1

( ) ( ) ( )
N N M

n j n j j
jn n

p p Nπ
== =

; = ; = ; ,∑∏ ∏X θ x θ x μ Σ . (7.6) 

From the graphical model in Fig. 5(b) it is clear that to each observed variable 

n ∈x X  corresponds a hidden variable nz  representing the component that was used to 

generate nx . This hidden variable can be represented using a binary vector with M  elements 

jnz , such that 1jnz =  if nx  has been generated from mixture component j  and 0jnz =  

otherwise. Since 1jnz =  with probability jπ  and 
1

1M
jj

π
=

=∑ , then nz  follows the 

multinomial distribution. Let { }1n n … N= , = , ,Z z  denote the set of hidden variables. Then 

( )p |Z θ  is written  

 
1 1

( ) jn
N M

z
j

n j

p π
= =

; =∏∏Z θ , (7.7) 

and  

 
1 1

( | ; ) ( ) jn
N M

z
n j j

n j

p N
= =

= ; ,∏∏X Z θ x μ Σ . (7.8) 

As previously noted, the convenient issue with mixture models is that we can easily compute 

the exact posterior ( 1 )jn np z = | ;x θ  of the hidden variables given the observations using Eq. 

(7.4). Therefore application of the exact EM algorithm is feasible.  
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More specifically, if ( )tθ  denotes the parameter vector at EM iteration t , the 

expected value of the posterior ( )( | ; )tp z x θ  of hidden variables jnz  is given as  

 
( ) ( ) ( )

( )
( ) ( ) ( )

1

( )

( )

t t t
j n j jt

jn M t t t
j n j jj

N
z

N

π

π
=

; ,
=

; ,∑
x μ Σ

x μ Σ
. (7.9) 

The above equation specifies the computations that should be performed in the E-step for 

1j … M= , ,  and 1n … N= , , .  

The expected value of the complete log-likelihood log ( )P ,X Z  with respect to the 

posterior ( )( )tp | ;Z X θ  is given by  

 ( )
( )

( | ; )
( ) log ( ) t

t
p

Q p, = , ;
z x θ

θ θ X Z θ , 

( ) ( )( | ; ) ( | ; )
log ( ) log ( )t tp p

p p= | ; + ;
z x θ z x θ

X Z θ Z θ , 

( ) ( )

1 1 1 1
log log ( )

N M N M
t t

jn j jn n j j
n j n j

z z Nπ
= = = =

= + ; , .∑∑ ∑∑ x μ Σ  (7.10) 

In the M-step the expected complete log-likelihood Q  is maximized with respect to 

the parameters θ . Taking the corresponding partial derivatives equal to zero and using a 

Lagrange multipliers for the constraint 
1

1M
jj

π
=

=∑  we can derive the following equations 

for the updates of the M-step:  

 ( 1) ( )

1

1 ,
N

t t
j jn

n
z

N
π +

=

= ∑  (7.11) 

 
( )

( 1) 1
( )

1

,
N t

jn nt n
j N t

jnn

z

z
+ =

=

= ∑
∑

x
μ  (7.12) 

 
( ) ( ) ( )

( 1) 1
( )

1

( )( )N t t t T
jn n j n jt n

j N t
jnn

z

z
+ =

=

− −
= ∑

∑
x μ x μ

Σ . (7.13) 

The above update equations for GMM training are quite simple and easy to 

implement. They constitute a notable example on how the employment of EM may facilitate 

the solution of likelihood maximization problems.  
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Figure 6. EM-based GMM training using 20 Gaussian components. 

A possible problem of the above approach is related to the fact that the covariance 

matrices may become singular, as shown in the example presented Fig 6. This figure provides 

the contour plot of a solution obtained when applying EM to train a GMM with 20 

components on a two-dimensional dataset. It is clear that some of the GMM components are 

singular, ie., their density is concentrated around a data point and their variance along some 

principal axis tends to zero.  Another drawback of the typical maximum likelihood approach 

for GMM training is that it cannot be used for model selection, ie. determination of the 

number of components. A solution to those issues may be obtained by using Bayesian GMMs.  

7.2. Variational GMM training 

7.2.1. Full Bayesian GMM 

Let { }n=X x  be a set of N  observations, where each d
n ∈ℜx  is a feature vector. 

Let also ( )p x  be a mixture with M  Gaussian components  

 
1

( ) ( )
M

j j j
j

p N xπ
=

= ; ,∑x μ T , (7.14) 
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where jπ⎧ ⎫
⎨ ⎬
⎩ ⎭

=π  are the mixing coefficients (weights), j
⎧ ⎫
⎨ ⎬
⎩ ⎭

=μ μ  the means (centers) of the 

components, and j
⎧ ⎫
⎨ ⎬
⎩ ⎭

=T T  the precision (inverse covariance) matrices (it must be noted that 

in Bayesian GMMs it is more convenient to use the precision matrix instead of the covariance 

matrix).  

 

              

(a)                                                    (b) 

Figure 7. (a) Graphical model for the full Bayesian GMM. (b) Graphical model 

for the Bayesian GMM of [30]. Notice the difference in the role of π  in the two 

models. Also the parameters of the priors on , ,π μ Σ are fixed, thus they are not 

shown. 

A Bayesian Gaussian mixture model is obtained by imposing priors on the model 

parameters ,π μ  and T . Typically conjugate priors are used, that is Dirichlet for π  and 

Gauss-Wishart for ( ),μ T . The Dirichlet prior for π  with parameters jα⎧ ⎫
⎨ ⎬
⎩ ⎭

 is given by  

 11
1

1
1

( )
Dir( )

( )
j

M
Mjj

M jM
jjj

… αα
α α π

α
−=

=
=

Γ
| , , =

Γ

∑
∏

∏
π , 

where ( )xΓ  denotes the Gamma function. Usually, we assume that all jα  are equal, ie. 

0jα α= , 1j … M= , , .  

The Gauss-Wishart prior for ( ),μ T  is 

1 1
( ) ( ) ( ) ( )M M

j j j j jj j
p p p p

= =
, = , = |∏ ∏μ T μ T μ T T , where 0 0( ) ( )j j j jp N β| = ; ,μ T μ μ T  
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(with parameters 0μ  and 0β ) and ( )jp T  is the Wishart distribution  

( 1) 2 1
2

2 ( 1) 4 2
1

exp
W( )

2 (( 1 ) 2)

d
j j

j dd d d n
i

tr

i

ν

ν
ν

π ν

− − / ⎧ ⎫
⎨ ⎬
⎩ ⎭

/ − / − /
=

| | −
| , =

| | Γ + − /∏
T VT

T V
V

, 

with parameters ν  and V  denoting the degrees of freedom and the scale matrix respectively. 

Notice, that the Wishart distribution, is the multidimensional generalization of the Gamma 

distribution. In linear regression we used the Gauss – Gamma prior, assuming independent 

precisions iα  and thus assigning them independent Gamma prior distributions. Here, 

however, because there may be significant correlations between data, we could use the 

Wishart prior to capture these correlations. 

The graphical model corresponding to this Bayesian GMM is presented in Fig. 7(a). 

This is a full Bayesian GMM and if all the hyperparameters (ie. the parameters 0 0α μ β ν, , ,  

and V  of the priors) are specified in advance, then the model does not contain any parameter 

to be estimated, but only hidden random variables ( )h = , , ,Z π μ T  whose posterior ( )p |h X  

given the data must be computed. It is obvious that in this case the posterior cannot be 

computed analytically, thus an approximation ( )q h  is computed by applying the variational 

mean-field equations (5.3) to the specific Bayesian model [30].  

The mean-field approximation assumes q  to be a product of the form  

 ( ) ( ) ( ) ( , )Z Tq q q qπ μ= .h Z π μ T  (7.15) 

and the solution is given by eq. (5.3). After performing the necessary calculations, the result is 

the following set of densities:  

 
1 1

( ) jn
N M

z
Z jn

n j

q r
= =

=∏∏Z , (7.16) 

 ( ) ( { })jq Dirπ λ= |π π , (7.17) 

 
1

( ) ( ) ( )
M

T j j T j
j

q q qμ μ
=

, = |∏μ T μ T T , (7.18) 
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1

( ) ( )
M

j j j j j
j

q Nμ β
=

| = ; ,∏μ T μ m T , (7.19) 

 
1

( ) ( )
M

T j j j
j

q W η
=

= ; ,∏T T U . (7.20) 

and the detailed formulas for updating the parameters ( jn j j j j jr λ β η, , , , ,m U ) of the densities 

can be found in [30]. By solving the above system of equations using a simple iterative update 

procedure we obtain an optimal approximation ( )q h  to the true posterior ( )p |h X  under the 

mean-field constraint.  

 The typical approach in Bayesian modelling is to specify the hyperparameters α , ν , 

V , 0μ , 0β  of the model so that uninformative prior distributions are defined. We follow this 

approach, although it would be possible to incorporate an M-step to the algorithm, in order to 

adjust these parameters. However, this is usually not followed. 

An advantage of the full Bayesian GMM compared to GMM without priors is that it 

does not allow the singular solutions often arising in the maximum likelihood approach where 

a Gaussian component becomes responsible for a single data point. A second advantage is 

that it is possible to use the Bayesian GMM for directly determining the optimal number of 

components without resorting to methods such as cross-validation. However, the 

effectiveness of the full Bayesian mixture is limited for this problem, since the Dirichlet prior 

does not allow mixing weight of a component to become zero and to be eliminated from the 

mixture. Also in this case the final result depends highly on the hyperparameters of the priors 

(and especially of the parameters of the Dirichlet prior) that must be specified in advance 

[13]. For a specific set of hyperparameters, it is possible to run the variational algorithm for 

several values of the number M  of mixture components and keep the solution corresponding 

to the best value of the variational lower bound.  

7.2.2. Removing the prior from the mixing weights 

In [22] another example of a Bayesian GMM model has been proposed that does not 
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assume a prior on the mixing weights jπ⎧ ⎫
⎨ ⎬
⎩ ⎭

, which are treated as parameters and not as 

random variables. The graphical model for this approach is depicted in Fig. 7(b). 

In this Bayesian GMM, which we will call CB model from the initials of the two 

authors of this work, Gaussian and Wishart priors are assumed for μ  and T  respectively  

 
1

( ) ( 0 )
M

j
j

p N β
=

= | ,∏μ μ I , (7.21) 

 
1

( ) ( )
M

j
j

p W ν
=

= | , .∏T T V  (7.22) 

This Bayesian model is capable (to some extent) to estimate the optimal number of 

components. This is achieved through maximization of the marginal likelihood ( )p ;X π  

obtained by integrating out the hidden variables { }= , ,h Z μ T   

 ( ) ( )p p d; = , ;∫X π X h π h , (7.23) 

with respect to the mixing weights π  that are treated as parameters. The variational 

approximation suggests the maximization of a lower bound of the logarithmic marginal 

likelihood  

( )[ ] ( ) log log ( )
( )

pF q q d p
q
, ;

, = ≤ ;∫
X h ππ h h X π

h
, (7.24) 

where ( )q h  is an arbitrary distribution approximating the posterior ( )p |h X . A notable 

property is that during maximization of F , if some of the components fall in the same region 

in the data space, then there is strong tendency in the model to eliminate the redundant 

components (ie. setting their jπ  equal to zero), once the data in this region are sufficiently 

explained by fewer components. Consequently, the competition between mixture components 

suggests a natural approach for addressing the model selection problem: fit a mixture 

initialized with a large number of components, and let competition eliminate the redundant.  

Following the variational methodology our aim is to maximize the lower bound F  of 

the logarithmic marginal likelihood log ( )p ;X π :  
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( )[ ] ( ) log
( )

pF q q d d
q
, , , ;

, = , ,
, ,∑ ∫

Z

X Z μ T ππ Z μ T μ T
Z μ T

, (7.25) 

where q  is an arbitrary distribution that approximates the posterior distribution 

( )p , , | ;Z μ T X π . The maximization of F  is performed in an iterative way using the 

Variational EM algorithm. At each iteration two steps take place: first maximization of the 

bound with respect to q  and, subsequently, maximization of the bound with respect to π .  

To implement the maximization with respect to q  the mean-field approximation has 

been adopted (eq. (5.1)) that assumes q  to be a product of the form  

 ( ) ( ) ( ) ( )Z Tq q q qμ=h Z μ T . (7.26) 

After performing the necessary calculations in eq.(5.3), the result is the following set of 

densities:  

 
1 1

( ) jn
N M

z
Z jn

n j

q r
= =

=∏∏Z , (7.27) 

 
1

( ) ( )
M

j j j
j

q Nμ
=

= | ,∏μ μ m S , (7.28) 

 
1

( ) ( )
M

T j j j
j

q W η
=

= | ,∏T T U , (7.29) 

where the parameters of the densities can be computed as:  

 
1

jn
jn M

knk

rr
r=

=
∑
�
�

, (7.30) 

{1 1
exp log

2 2
TT T T

jn j j j n n n j j n j jtrr π
⎫⎧ ⎫⎛ ⎞⎪ ⎪⎪⎜ ⎟⎨ ⎬⎬⎜ ⎟⎪ ⎪⎪⎝ ⎠⎩ ⎭⎭

= | | − − + +T T x x x μ μ x μ μ� ,(7.31) 

 1

1

N

j j j jn n
n

z−

=

= ∑m S T x , (7.32) 

 
1

N

j j jn
n

zβ
=

= + ∑S I T , (7.33) 

 
1

,
N

j jn
n

zη ν
=

= +∑  (7.34) 
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1

N TT T T
j jn n n n j j n j j

n

z
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠=

= + − − +∑U V x x x μ μ x μ μ . (7.35) 

The expectations with respect to ( )q h  used in the above equations satisfy the 

equations: 1
j j jη −=T U , 

1
log (0 5( 1 )) ln 2 lnd

j j ji
i dψ η

=
| | = . + − + − | |∑T U , where ψ  

denotes the digamma function, defined as 
'( )ln ( )
( )

d xx
dx x

Γ
Γ =

Γ
, j j=μ m , 

1T T
j j j j j

−= +μ μ S m m  and jn jnz r= . It can be observed that the densities are coupled 

through their expectations, thus an iterative estimation of the parameters is needed. However 

in practice a single pass seems to be sufficient for the variational E-step.  

After the maximization of F  with respect to q , the second step of each iteration of 

the training method requires maximization of F  with respect to π , leading to the following 

simple update equation for the variational M-step:  

 

1

1 1

N
jnn

j M N
knk n

r

r
π =

= =

= .∑
∑ ∑  (7.36) 

The above Variational EM update equations are applied iteratively and converge to a local 

maximum of the variational bound. During the optimization some of the mixing coefficients 

converge to zero thus the corresponding components are eliminated from the mixture. In this 

way complexity control is achieved. This happens because the prior distribution on μ  and T  

penalizes overlapping components. Qualitatively speaking, the variational bound can be 

written as a sum of two terms: the first one is a likelihood term (that depends on the quality of 

data fitting) and the other is a penalty term due to the priors that penalizes complex models. 
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(d) 

Figure 8. Variational Bayesian GMM training using the model presented in [22]. 

(a) Initialization with 20 Gaussian components, (b), (c) model evolution during 

EM iterations, (d) final solution. Notice the avoidance of singularities.  

 Fig. 8 provides an illustrative example of the performance on this method using the 

two dimensional dataset already presented in Fig. 6. The method starts with twenty 

components and, as the number of iterations increases, the number of components gradually 

decreases (some πj become zero) and, finally, a good GMM model for this dataset is attained. 

It can also be observed, that the existence of the prior on the covariance matrices, does not 

allow to reach singular solutions in contrast to the GMM solution without priors presented in 
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Fig. 6. 

The CB in general constitutes an effective method exhibiting good performance in the 

case where the components are well separated. However its performance exhibits sensitivity 

on the specification of the scale matrix V  of the Wishart prior imposed on the precision 

matrix. In [23] an incremental method for building the above mixture model has been 

proposed. At each step learning is restricted in the data region occupied by a specific mixture 

component j , thus a local precision prior can be specified based on the precision matrix jT . 

In order to achieve this behavior, a modification to the generative model of Fig. 7 was made 

that restricts the competition in a subset of the components only. 

 

8. Summary 

The EM algorithm is an iterative methodology that offers a number of advantages for 

ML estimation. It provides simple iterative solutions, with guaranteed local convergence, for 

problems where direct optimization of the likelihood function is difficult. In many cases it 

provides solutions that satisfy several constraints for the estimated parameters, for example 

covariance matrices are positive definite, probability vectors are positive and sum to one, etc. 

Furthermore, the application of EM does not require explicit evaluation of the likelihood 

function.  

However, in order to apply the EM algorithm we must have knowledge of the 

posterior of the hidden variables given the observations. This is a serious drawback since the 

EM cannot be applied to complex Bayesian models.  However, complex Bayesian models can 

be very useful since, if properly constructed, they have the ability to model salient properties 

of the data generation mechanism and provide very good solutions to difficult problems.  

The variational methodology is an iterative approach that is gaining popularity within 

the signal processing community to ameliorate this shortcoming of the EM algorithm. 

According to this methodology an approximation to the posterior of the hidden variables 

given the observations is used. Based on this approximation Bayesian inference is possible by 
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maximizing a lower bound of the likelihood function which also guarantees local 

convergence. This methodology allows inference in the case of complex graphical models, 

that in certain cases provide significant improvements as compared to simpler ones that can 

be solved via the EM.   

This issue was demonstrated in this tutorial paper within the context of linear 

regression and Gaussian mixture modeling, which are two fundamental problems for signal 

processing applications. More specifically, we demonstrated that complex Bayesian models 

that were solved by the variational methodology, in the context of linear regression were able 

to better capture local signal properties and avoid ringing in areas of signal discontinuities. In 

the context of Gaussian mixture modeling, the models solved by the variational methodology 

were able to avoid singularities and to estimate the number of the model components. These 

results demonstrate the power of the variational methodology to provide solution to difficult 

problems that have plagued signal processing applications for a long time.  The main 

drawback of this methodology is the lack of results that allow (at least for the time being) 

assessing the tightness of the bound that is used.    

 

APPENDIX A: Maximum A Posteriori (MAP): Poor Man’s 

Bayesian Inference 

One of the most commonly used methodologies in the statistical signal processing 

literature is the maximum a posteriori (MAP) method. MAP is often referred to as Bayesian, 

since the parameter vector θ  is assumed to be a random variable and a prior distribution 

( )p θ  is imposed on θ . In this appendix we would like to illuminate the similarities and 

differences between MAP estimation and Bayesian inference. For x  the observation and θ  

an unknown quantity the MAP estimate is defined as 

 ( )ˆ argmaxMAP p= |
θ

θ θ x . (A.1) 
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Using, Bayes theorem the MAP estimate can be obtained from 

 ˆ argmax ( ) ( )MAP p p= |
θ

θ x θ θ , (A.2) 

where ( )p |x θ  is the likelihood of the observations. The MAP estimate is easier to obtain 

from Eq. (A.2) than (A.1). The posterior in Eq. (A.1) based on Bayes’ theorem is given by  

 
( ) ( )( )

( ) ( )
p pp

p p d
|

| =
|∫

x θ θθ x
x θ θ θ

, (A.3) 

and requires the computation of  the Bayesian integral in the denominator of Eq. (A.3) to 

marginalize θ .   

From the above it is clear that both MAP and Bayesian estimators assume that θ  is a 

random variable and use Bayes’ theorem, however, their similarity stops there. For Bayesian 

inference the posterior is used and thus θ  has to be marginalized. In contrast for MAP the 

mode of the posterior is used. One can say that Bayesian inference, unlike MAP averages 

over all the available information about θ .  Thus, it can be stated that MAP is more like 

“poor man’s” Bayesian inference.    

The EM can be used to also obtain MAP estimates of θ . Using Bayes’ theorem we 

can write  

ln ( ) ln ( , ) ln ( ) ln ( | ) ln ( ) ln ( )p p p p p p| = − = + −θ x x θ x x θ θ x . (A.4) 

Using a similar framework as for the ML-EM case in Section 4 we can write 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

ln , || ln ln

                , ln ln ,

p F q KL q p p p

F q p p

| = + + −

≥ + −

θ x θ θ x

θ θ x
 (A.5) 

where in this context ( )ln p x is a constant. The right hand side of Eq. (A.5) can be 

maximized in an alternating fashion as in the EM algorithm. Optimization with respect to 

( )q z gives an identical E-step as for the ML case previously explained. Optimization with 

respect to θ  gives a different M-step since the objective function now contains also the term 

( )ln p θ . In general the M-step for the MAP-EM algorithm is more complex than in its ML 

counterpart, see for example [26] and [27]. Strictly speaking in such a model MAP estimation 
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is used only for the θ  random variables, while Bayesian inference is used for hidden 

variables z . 

 

Appendix B: Conjugate Distributions 

Conjugate priors play an important role in facilitating Bayesian calculations. More 

specifically, assume a Bayesian model with hidden variables z , observed variables x ,  prior 

distribution ( )p z  and conditional likelihood ( )p |x z . Then, the marginal likelihood is 

given by 

 ( ) ( ) ( ) ( )p p d p p d= , = |∫ ∫x x z z x z z z , (B.1) 

which cannot always be computed analytically. The marginalized likelihood is essential in 

order to compute the posterior distribution according to 
( | ) ( )( | )

( )
p pp

p
=

x z zz x
x

 which is 

used for Bayesian inference. Thus, it is important to find prior that when multiplied with a 

likelihood distribution allows analytical computation of the marginalization integral. A 

common practice is to chose the prior distribution such that it has the same form as the 

likelihood, so that the resulting posterior distribution has the same form as conditional 

likelihood when viewed as a function of the hidden variable. Such prior distributions allow 

closed form marginalization of the hidden variables and are said to be conjugate to the 

likelihood distribution.  

For example consider a Gaussian conditional likelihood zero mean with hidden 

variable α  the precision ( ) ( )11 222 1( | ) 2 exp 2p x xα π α α
−

= − . This likelihood when 

viewed as a function of α  has the form of a Gamma pdf given 

by
( ) ( )1( ; , ) exp

a
abp z a b z zb

a
−= −

Γ
. Thus, the marginalization of the precision of a Gaussian 

pdf when a Gamma conjugate prior is used for it is doable in closed form according to 
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( ) ( ) ( )
( )
( ) ( )

( )1
2 2

1
2

1
2; , / ; , ,

22

aaa b xp x a b p z p a b da b
a

α α
π

− +Γ + ⎛ ⎞
= = +⎜ ⎟Γ ⎝ ⎠
∫  (B.2) 

and gives the well known Student-t pdf.  

Unfortunately, given an arbitrary likelihood distribution, a conjugate prior 

distribution does not always exist. However, many distributions of interest belong to the 

exponential family and those most times conjugate priors distributions. Table 1 shows the 

formula of some common distributions, and Table  2 shows their conjugate prior distributions 

and the resulting posteriors. 

 

Normal distribution 
( ) ( ) ( )1/2/2 11( | , ) 2 exp

2
N TN π −− −⎡ ⎤= − − −⎢ ⎥⎣ ⎦

x μ Σ Σ x μ Σ x μ  

Gamma distribution ( ) 1 1Gamma( | , ) a a bxx a b b a x e− − −= Γ  

Wishart Distribution { }( 1) 2 1
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Multinomial distribution 
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n
x
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i
i
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N

x
π
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=

= ∏
∏
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N x
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Dirichlet distribution 
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1
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1

( )
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j

M
Mjj

M jM
jjj

… αα
α α π

α
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=
=

Γ
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Γ

∑
∏

∏
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Table 1. Formulas for common probability distribution functions. 

 

 

Likelihood Conjugate prior 

distribution 

Posterior distribution 

( )N | ,x μ Σ  ( )0 0N | ,μ μ Σ  ( ) ( ) ( )( )1 1 11 1 1 1 1 1
0 0 0 0N | ,n n x n

− − −− − − − − −+ + +μ Σ Σ Σ μ Σ Σ Σ  
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( )2N | ,x μ σ  2Gamma( | , )a bσ −  ( )2 2
1

Gamma | / 2, ( ) / 2n
ii

a n b xσ μ−
=

+ + −∑  

( )N | ,x μ Σ  ( )1Wishart | ,ν−Σ V  ( ) ( )( )1
1

Wishart | , n T
i ii

nν−
=

+ + − −∑Σ V x μ x μ  

( )Multinomial |x π  Dir( | )π a  
1

Dir( | )n
ii

x
=

+∑π a  

Table 2. Conjugate prior distributions. Here, n  denotes the number of 

observations and   
1

n
ii

x x
=

= ∑  denotes then mean of x . 
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