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ABSTRACT: 

A very powerful technique f o r  computing the  LS 
estimates of an FIR f i l t e r ' s  impulse response,  is 
based on the  QR f ac to r i za t ion  of t he  input  da t a  
matrix.  The method cons i s t s  of two pa r t s .  F i r s t  
t he  input  matr ix  is fac to r i zed  i n t o  an orthogonal 
Q p a r t  and an upper t r i angu la r  R pa r t .  The unknown 
coeff ic ients  are then obtained from a t r i a n g u l a r  
l i n e a r  system of equations.  This paper presents  a 
new algorithm for solving the  above l i n e a r  system, 
and it is appropriate  f o r  adaptive processing. 
This is achieved v i a  a set of Givens ro t a t ions  
and a modified Faddeeva's scheme. 

1. INTRODUCTIDN 

Least squares FIR f i l t e r i n g  is of major importance 
i n  many Signal  Processing appl icat ions such as 
communications I 1 1  , Spec t r a l  ana lys i s  12 I , Control 
and System idendiffcat ion 131. A major t a sk  i n  
these  problems is t o  compute t h e  LS estimates of 
t he  unknown FIR system's impulse response,  based 
on t h e  minimization of t h e  t o t a l  squared e r r o r  
between t h e  actual and a des i r ed  response s igna l ,  
over a given t i m e  i n t e rva l .  

A very powerful technique for t h e  e f f i c i e n t  
computation of t h e  above est imates  i s  t h e  one 
exp lo i t i n  t h e  QR decomposition of t he  input  da t a  
matr ix  14$. According t o  t h i s  method QR decompo- 
s i t i o n  is achieved v i a  a sequence of Givens rota-  
t i o n s  (GR) and t h e  unknown coeff ic ients  are 
computed from t h e  r e su l t i ng  t r i a n g u l a r  matrix 
using back subs t i t u t ion  (BSI. It is wel l  known 
t h a t  t h i s  method is w e l l  s u i t e d  f o r  implementation 
on a t r i a n g u l a r  s y s t o l i c  array s t r u c t u r e  ,followed 
by a l i n e a r  a r r ay  t o  perform t h e  back subs t i t u t ion .  
The disadvantages of such a scheme are a )  a sepe- 
r a t e  l i n e a r  array i s  required f o r  BS, b )  B8 is not 
numerically robust  and c )  it is not appropriate  
f o r  continuous adaptive operation, s ince  new data  
cannot processed by t h e  above array s t r u c t u r e  
during BS. 

operations has been suggested i n  15 I ,cal led modified 
Fuddeeva algorithm, which a l l e v i a t e s  t h e  need f o r  
BS. The c e n t r a l  idea of t h i s  method is f i rs t  t o  
t r i angu la r i ze  t h e  input da t a  matrix v i a  a series 
of GR and then use t h e  obtained t r i angu la r  matr ix  
t o  compute t h e  unknown coe f f i c i en t s  ,performing 
Gaussian el iminat ion ( G E )  on a set of successive 
rows of t he  i d e n t i t y  matrix.  Although t h i s  scheme 
overcomes t h e  need f o r  backsubst i tut ion s t i l l  it 
is not appropriate  f o r  continuous adaptive opera- 
t i o n  and a l s o  the  processing elements must be able  
t o  switch between r o t a t i o n a l  mode (GR) t o  multiply/  
add mode (GE) . 

Recently an a l t e r n a t i v e  method f o r  matrix 

In t h i s  paper,  t h e  algorithm given i n  151 i s  

first extended s o  t h a t  annullment of t h e  i d e n t i t y  
matrix through t h e  t r i a n g u l a r  matrix is achieved 
v i a  GR. This r e s u l t s  i n  s ca l ing  each of unknown 
parameters with a d i f f e ren t  s ca l ing  factor.However 
it is shown t h a t  each one of these sca l ing  f ac to r s  
can be r ead i ly  obtained i n  terms of GR parameters 
a t  p r a c t i c a l l y  no e x t r a  computational cost .  
Furthermore, if t h e  a r r ay  is t o  compute t h e  
unknown system's impulse response adaptively , on 
a sample by sample basis ,an a l t e r n a t i v e  scheme is 
adopted. While input  da t a  e n t e r  t h e  top row pro- 
cessing elements (PE) of t h e  t r i a n g u l a r  a r r ay ,  t h e  
corresponding Q-transfomed des i r ed  response 
vectors  e n t e r t h e  rightmost collumn boundary PES, 
f o r  each t i m e  i n s t a n t .  This is  equivalent t o  t h e  
annullment of successive Q-transformed desired 
response vectors  through t h e  transpose of t he  
t r i angu la r i zed  input  da t a  matrix.  Descaling and 
computation of t h e  unknown coe f f i c i en t s  are 
performed a t  t he  boundary PES along the  diagonal.  

2. FULL GR MODIFIED FADDEEVA ALGCRIMM 

Let us consider a l i n e a r  s e t  of equations 

A x  = b 2 . 1  

where and b are collumn vectors  and A is an mxm 
matrix.  In Faddeva's algorithm matrix t r iangula-  
r i z a t i o n  and computation of t h e  quant i ty  

ct A-' b t d, with 2 ,  d being a vector  and a s c a l a r  

respect ively,  a r e  performed i n  a s ing le  s tep.  This 
is achieved by t r i angu la r i z ing ,  v i a  Gaussian e l i -  
mination (GE), t h e  augmented square matrix [-a :] 2 . 2  

In mathematical form Gaussian el iminat ion may be 
expressed as 

2 . 3  

2 . 4  

L 

where L is lower and R upper t r i a n g u l a r  matrices. 
From 2 . 3 ,  2 . 4  we ge t  

d' = d + st A-' b 2 . 5  
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Thus by s e t t i n g  d-0 and f equal  t o  various u n i t  
vectors  &=I 0,. . .1,. , .O I 
ments of A - 1  b .  

, one can f i n d  t h e  e l e -  

L e t  us now assume t h a t  matrix A has already 
been t r i angu la r i zed .  Annulment of st through A w i l l  
be performed v i a  Givens r o t a t i o n s ,  instead of 
Gaussian el iminat ion,  due t o  t h e  superior  numerical 
performance of t h e  former technique. The l i n e a r  
transformation imposed by a sequence of Givens ro- 
t a t i o n s ,  which r o t a t e  st i n t o  a vector  of zeros ,  
has t h e  form of an (mtl)x(mtl)  matrix Q of t h e  
form 111 . 

2.6 

L 

where y is t h e  product of t h e  cosines  of t h e  M ro- 
t a t i o n  ang1es.Z is an mxm lower t r i a n g u l a r  matr ix  
and @ is a collumn vector.  From 2.6 and following 
s i m i l a r  arguments a s  above w e  obtain 

2 . 1  

where 

d' = (ct A-' b t d )  2.8 

Eq. 2.8 is t h e  same as 2 . 5  except t h e  sca l ing  fa- 
ctor If instead of ct a co l l ec t ion  of vectors  is 
used , 2.8 is geneGa3ized t o  

g' = r(f2A-l b t <) 2.9 

where 

2.10 ym) r =d iag  (y1,y2, ... 
However t h e  parameters y .  a re  e a s i l y  computed a 
cross  t h e  diagonal  e l emehs  of t h e  correspondin 
a r r ay  s t ruc tu re ,  as it has been suggested i n  167 . 
Thus f o r  g-g and C=I, 2.9 suggests t h a t  

A s  it is suggested i n  IS/ 2.9 can be used t o  per- 
form a number of d i f f e r e n t  matr ix  computations. 

3. M O D I F I E D  FADDEEVA ALGORITHM FOR ADAPTIVE 
OPERATION. 

In Least Squares FIR f i l t e r i n g  matrix A of t h e  pre- 
vious sec t ion  is t h e  upper t r i a n g u l a r  matrix of t h e  
QR f ac to r i za t ion  of t h e  input da t a  matrix,  is the  
Q transformed vactor  of t h e  desired response and 5 
is t h e  LS estimate of t he  impulse response 111 . 
In an adaptive mode of operat ion matr ix  A is cont i -  
nuously updated on a sample by sample bas i s .  Thus i n  
order t o  annul matrix I by r o t a t i n g  it through A ,  
adaptat ion of A has temporarily t o  cease.  This is 
obviously an undesirable f ea tu re .  Here an al terna-  
t i v e  scheme is suggested t h a t  overcomes t h i s  pro- 
blem. In order  t o  compute A-1 b , w e  choose t o  annul 
-bt through At ( 7 1 .  The (mt1)x (mtl)  transformation 

matr ix  can be wr i t t en  as 

3.1 

3.2 

Hence t h e  required so lu t ion  is given by 

3.3 
-1 

A b = 421/922 

Next w e  s h a l l  show t h a t  Sz1/q2, can be expressed 
d i r e c t l y  i n  terms of t h e  r o t a t i o n  angles ,  which 
r e s u l t  from t h e  annulment of -bt through At v i a  
Givens ro t a t ions .  

Lema. 
Define 

c1 s 

Q (1) ';;I' 

y ( 1 )  I c 
1 

and t h e  recursive r e l a t i o n s  

3.4a 

3.4b 

where Ik is t h e  k-dimensional i d e n t i t y  matrix and 

ck , sk 
Givens ro t a t ions .  Show t h a t  

are cosines  and s ines ,  respect ively,of  t h e  

Proof: 

a )  Obvious for k-1 

b )  
given by 3.6a. R e w r i t e  f o r  k:n 3.6a as 

Assume t h a t  f o r  a l l  k such t h a t  l<_k<_nim. Q(k) is 



Then using 3.5a the  following is obtained. 

3.8a 

Then i f  Z(n) is lower t r i a n g u l a r ,  Z("+l)is also 
lower t r i angu la r .  Moreover t ak ing  i n t o  account t h a t  
c. and s .  a r e  cosines and s ines  

Also 
- S  ] 3.11 2 - S  

( k ) t  p, --,..., 
1 2  c1c2 ' . .% 

From t h e  above lemma and t h e  f a c t  t h a t  Q i n  3 . 1  
r e s u l t s  from a series of ro t a t ions  of t h e  type 
described i n  t h e  l e m a ,  it is read i ly  shown t h a t  
3 . 3  becomes 

Figure 1 shows t h e  t r i a n g u l a r  s y s t o l i c  stru- 
cture, which r e a l i z e s  t h e  above algorithm. There 
a r e  two opposite da t a  flows. Data e n t e r  t he  top  
row and are then r e f l e c t e d  by t h e  rightmost col-  
lumn cells 
Moreover t h e  computational hyperplanes f o r  each 
funct ion a re  p a r a l l e l ,  but schedule vectors  assume 
opposite d i r ec t ions .  This means t h a t  t h e  computa- 
t i o n s  on a given input  da t a  row are propagated 
from top  lef t  t o  t h e  bottom r i g h t  element and vice 
versa ,  while t h e  matrix elements involved i n  each 
computation should remain ava i l ab le  i n  t h e  respe- 
c t ive  elements. A s  a consequence, each ( i , j )  ele- 
ment must include a FIFO queue 
where t h e  t r i a n g u l a r  matrix element ri. is saved 
u n t i l  used i n  the  second angle computa?ion/rota- 
t i on .  Note t h a t  t h e  coe f f i c i en t s  are produced 
doubly skewed, due t o  t h e  length of t h e  data  path 
between two successive boundary PES. Each pro- 
cessing element must be  able  t o  perform two f u l l  
angle computations (boundary elements) or ro t a t ions  
( in t e rmid ia t e  elements).  In t h i s  way t h e  updates of 
t he  t r i a n g u l a r  matrix and 
coe f f i c i en t s  take place concurrently.  
Conclusion: A new scheme has been discussed f o r  t h e  
adaptive computation of an FIR f i l ter ' s  impulse 
response.  The algorithm can be implemented v i a  a 
s y s t o l i c  t r i angu la r  array without t he  need of a 
backsubst i tut ion s t ep .  

back t o  angle-computing PES. 

of s i z e  Z(%- j - i ) t l ,  

of t h e  filters'  
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Figure 1. The proposed array for adaptive 
computation of the unknown coeff ic ients  
on a sample by sample basis. 
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