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ABSTRACT:

A very powerful technique for computing the LS
estimates of an FIR filter's impulse response, is
based on the QR factorization of the input data
matrix. The method consists of two parts. First
the input matrix is factorized into an orthogonal
Q part and an upper triangular R part. The unknown
coefficients are then obtained from a triangular
linear system of equations. This paper presents a
new algorithm for solving the above linear system,
and it is appropriate for adaptive processing.
This is achieved via a set of Givens rotations

and a modified Faddeeva's scheme.

1. INTRODUCTION

Least squares FIR filtering is of major importance
in many Signal Processing applications, such as
Communications Il » Spectral analysis |2|, Control
and System idendification |3|. A major task im
these problems is to compute the LS estimates of
the unknown FIR system's impulse response, based
on the minimization of the total squared error
between the actual and a desired response signal,
over a given time interval.

A very powerful technique for the efficient
computation of the above estimates is the one
exploiting the QR decomposition of the input data
matrix |4]. According to this method QR decompo-
sition is achieved via a sequence of Givens rota-
tions (GR) and the unknown coefficients are
computed from the resulting triangular matrix
using back substitution (BS). It is well known
that this method is well suited for implementation
on a triangular systolic array structure,followed
by a linear array to perform the back substitution.
The disadvantages of such a scheme are a) a sepe-
rate linear array is required for BS, b) BS is not
numerically robust and ¢) it is not appropriate
for continuous adaptive operation, since new data
cannot processed by the above array structure
during BS.

Recently an alternative method for matrix
operations has been suggested in|5|,called modified
Fuddeeva algorithm, which alleviates the need for
BS, The central idea of this method is first to
triangularize the input data matrix via a series
of GR and then use the cbtained triangular matrix
to compute the unknown coefficients,performing
Gaussian elimination (GE) on a set of successive
rows of the identity matrix. Although this scheme
overcomes the need for backsubstitution still it
is not appropriate for continuous adaptive opera-
tion and also the processing elements must be able
to switch between rotational mode (GR) to multiply/
add mode (GE).

In this paper, the algorithm given in lsl is
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first extended so that annullment of the identity
matrix through the triangular matrix is achieved
via GR. This results in scaling each of unknown
parameters with a different scaling factor.However
it is shown that each one of these scaling factors
can be readily obtained in terms of GR parameters
at practically no extra computational cost.
Furthermore, if the array is to compute the
unknown system's impulse response adaptively, on

a sample by sample basis,an alternative scheme is
adopted. While input data enter the top row pro-
cessing elements (PE) of the triangular array, the
corresponding Q-transformed desired response
vectors enterthe rightmost collumn boundary PEs,
for each time instant. This is equivalent to the
annullment of successive Q-transformed desired
response vectors through the transpose of the
triangularized input data matrix. Descaling and
computation of the unknown coefficients are
performed at the boundary PEs along the diagonal,

2. FULL GR MODIFIED FADDEEVA ALECRITHM
Let us consider a linear set of equations
Ax = b 2.1

where x and b are ccllumn vectors and A is an mxm
matrix. In Faddeva's algorithm matrix triangula-
rization and computation of the quantity

t - . s
c A t b + d, with ¢, d being a vector and a scalar
respectively, are performed in a single step. This
is achieved by triangularizing, via Gaussian eli-
mination (GE), the augmented square matrix

In mathematical form Gaussian elimination may be
expressed as

W = 2.3
-t dl {0 gt
with
L o
W= 2.4
w1

where L is lower and R upper triangular matrices.
From 2.3, 2.4 we get

a'=d+ctaly 2.5



Thus by setting d=0 and»g equal to various unit
vectars §k=|0,...1,...0| , one can find the ele-
ments of =~ A~l b.

Let us now assume that matrix A has already
been triangularized. Annulment of gt through A will
be performed via Givens rotations, instead of
Gaussian elimination, due to the superior numerical
performance of the former technique. The linear
transformation imposed by a sequence of Givens ro-
tations, which rotate ¢' into a vector of zeros,
has the form of an (m+1)x(m+l) matrix Q of the
form |1} .

4 ~Z8
Q=y 2.6
g 1
where y is the product of the cosines of the M ro-
tation angles,Z is an mxm lower triangular matrix
and B is a collumm vector. From 2.6 and following
similar arguments as above we obtain

A D
Q =
e a
Z(A+g ¢¥)  Z(p-Bd)
Y + =
g A-c g° b +d
MRY b
. - 2.7
Lo 4
where
atz (Falp e+ 2.8

Eq. 2.8 is the same as 2.5 except the scaling fa-
ctor T. If instead of ¢t a collection of vectors is
5

used » 2.8 is generalized to
d' = rea b+ @) 2.9
where
I =diag (Yl’Y2’ v Ym) . 2.10

However the parameters y., are easily computed a
cross the diagonal elemeiits of the correspondin,
array structure, as it has been suggested in |6
Thus for d=0 and C=I, 2.9 suggests that
xzatp=rta S 2.1
As it is suggested in |5} 2.9 can be used to per-
form a number of different matrix computations.

3. MODIFIED FADDEEVA ALGORITHM FOR ADAPTIVE
OPERATION.

In Least Squares FIR filtering matrix A of the pre-
vious section is the upper triangular matrix of the
QR factorization of the input data matrix, b is the
Q transformed vactor of the desired response and x
is the LS estimate of the impulse response |i|

In an adaptive mode of operation matrix A is conti-

nuously updated on a sample by sample basis. Thus in

order to annul matrix I by rotating it through A,
adaptation of A has temporarily to cease. This is
obviously an undesirable feature. Here an alterna-
tive scheme is suggested that overcomes this pro-
blem. In order to compute A"lb sWe choose to annul
-bt through At |7|. The

(m+1)x (m+1) transformation

matrix can be written as

U 92
Q= 3.1
t
921 Y2
t t t
A QA" - gt
Q = =
t t .t t
b 321 A q22 b
t t
Q & -yt 3.2
. .
°
Hence the required solution is given by
xzAlp=q. / 3.3
¥= 2= 95,792 .

Next we shall show that q21/q22 can be eﬁpressed

directly in terms of the rotation angles, which
result from the annulment of -b% through At via
Givens rotations.

Lemma.
Define
't
e, © sy
(€D)
Q =| o Im—l ) 3.4a
. t
sy © ey
Y(l) = e 3.4b

and the recursive relations

I, ¢ 0 o
(k+1) _| t t (k)
Q =12 Ser 2 ka1 | @
0 e Lnya,
Ot =S O‘t
L2 k+1 kel
(k+1) k
Y = Oy ¥ 3.5b

where Ik is the k-dimensional identity matrix and
¢ s § ~ are cosines and sines, respectively,of the

Givens rotations. Show that

L0 g g0
kO o o L, o 3.6a
B(k)t 9t 1
where
R R T
1 %1% 1527 %
Proof:

a) Obvious for k=1

b) Assume that for all k such that 1<k<n<m. Q(k) is
given by 3.6a. Rewrite for k=n 3.6a as
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(n) o _Z(n) B(n)

z e |4
t -(n) t
o o
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-(n)
0 ° Y I o
g(n)t o Qt 1
Then using 3.5a the follewing is obtained.
(n+l) (n) .
= . 3.8a
Q cn+1 Y D . E
with
-1 ,(n)
“ne1 z e
_ -1 (n)t -{m b
D= Sp+1 “nt1 8 Y 3.8
0 o
(n)t _ -1 _-(n)
8 Snel n1 Y
-1 (n) L (m)
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-1 _-(n)
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Define -1 Z(n) .
n+l =
z(ntd) o 3.9a
-1 (n)t _-(m)
2'n+1 n+1P i _
and
(neldt _ [ (0t _ -1 -(n)
8 | Sne1 ne1 Y 3.9b
Then if Z(n) is lower triangular, Z(n+1)is also

lower triangular. Moreover taking into account that
e and s; are cosines and sines

-1 (n) ()
“Chsy 2 g
_Z(n+l) 8(n+l) = 3.10
Sav1/Cne1
Also
S -8 -8
R N e B
1 %1% 1827 %

From the above lemma and the fact that Q in 3.1
results from a series of rotations of the type
described in the lemma, it is readily shown that
3.3 becomes

=3 it} -8 t
X = R-lb =J [-—1, ——2—',... 'C—E——BT] 3.12
Cl ClC2 1%

where the exchange matrix J results from the fact
that the above lemma refers to annulment through an
upper triangular matrix, while A" is a lower
triangular matrix.

Figure 1 shows the triangular systolic stru-
cture, which realizes the above algorithm. There
are two opposite data flows. Data enter the top
row and are then reflected by the rightmost col-
lumn cells back to angle-computing PEs.
Moreover the computational hyperplanes for each
function are parallel, but schedule vectors assume
opposite directions. This means that the computa-
tions on a given input data row are propagated
from top left to the bottom right element and vice
versa, while the matrix elements involved in each
computation should remain available in the respe-
ctive elements. As a consequence, each (i,j) ele-
ment must include a FIFO queue of size 2(2m-j-1)+1,
where the triangular matrix element r;. is saved
until used in the second angle computa%ion/rota4
tion. Note that the coefficients are produced
doubly skewed, due to the length of the data path
hetween two successive boundary PEs. Each pro-
cessing element must be able to perform two full
angle computations (boundary elements) or rotations
(intermidiate elements). In this way the updates of
the triangular matrix and of the filters'
coefficients take place concurrently.

Conclusion: A new scheme has been discussed for the
adaptive computation of an FIR filter's impulse
response. The algorithm can be implemented via a
systolic triangular array without the need of a
backsubstitution step.
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The proposed array for adaptive
computation of the unknown coefficients
on a sample by sample basis.



