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Abstract.

The major computational burden in fast transversal adaptive schemes

is contributed from the time updates of the associated forward and backward
predictors. In this paper the order of the predictors is assumed to be known and

less or equal than that of the filter.

This results in a new class of algorithms

trading off performance with computational complexity.

I.  Introduction.  Fast least squares adaptive
transversal schemes for multichannel filtering with
varying number of memory taps per chanmel have
been derived in [1] - {3]. The common feature of
all these algorithms is that for each time update of
the unknown fiiter's impulse response, time updates
for the forward as well as the backward
multichannel predictors are required. Furthermore
the order of these predictors is implicitely assumed
to be the same with the order of the filter to be
identified. This is a result of the partition
properties of the antocovariance matrix. However
this is not necessarily true and in many cases the
predictors' order is much less than the filter's
order. A typical example is that of an echo
canceller for the special single channel case.
There, the order of the filter may be of the order
of thousand, although the input signal can
adeqnately be predicted with orders of 15-20. The
aim of this paper is to overcome this apparent
contradiction by incoporating inte the problem the
a priori information about the predictors’ order.
This idea was first introduced in [4] where the
single channel case was treated.

The philosophy behind the proposed method is to
assume that the input signal can be described by a
multichannel AR model of order my m, (AR (m,,

my)) with my ¢ i, my ¢ j, where i, j the
numbers of filter taps associated with the input

channels. As a2 consequence the Least Squares
estimates of the (my, my) order multichannel

predictors will be updated via an available LS time
recursive scheme. Thus it is implicitely assumed
that the covariance matrix of order m; + m, + 2

is also updated in the usual Least Squares sense.
At this point we shall assume that the elements of
higher order covariance matrices, can be generated
from the above lower order Least Squares
counterparts. This is a natural assumption since
the input signal has been assumed to be AR (my,

m;). This way of computing the higher order

covariance lags <c¢an be considered as a
nonstationary generalization of a maximum
entropy extension of the autocorrelation series
for an AR process. Fach unknown element of the
covariance matrix s computed so that to maximize

the minimum prediction error power of the
forward or backward predictor of an appropriate
order. Exploitation of the properties of the
inverse of the resulting mafrix Ieads to an
expression relating in a step up step down manner
([1] - [3]) the gain vector of order ij with the LS
predictors of order m;, m, The proof which is

provided is mot simply a generalization of the one
given in [4] but it follows a different path revealing
certain physical ipsights of the method.

II. Problem formulation. We shall concise
ourselves in the two channel case. The idea can
obvionsly be extended to more general multinput
multioutpnt cases.

We are given two input signals x'(n), x%(n) and a
desired response signal z(n). We seek to compute,
in anuoptimal way, the coefficients of an FIR filter

j-1

i-1
y(1:1)=-‘§:c;l‘x1 (n-k)-}chzxz(u-k) 21
k=0 £= 0

so that y(m) to follow z(n) as close as possible. A
time iterative solution will be given based on the
stochastic Newton algorithm [5].

gy = gyfn-1) + wy(m) £,(n) (2.28)
where

ey (@[ @ Gt @ G @iy @) 22
& @=(z @ + ¢y @ %y @] 227
Xy (=

xin) ... xl@ - i+1) 2 (). xEo+DE 228
Eﬂ(n) is the gain vector defined as wy(n) =
- Rﬁ(u-l) gij(n) with

Ry (@) = B {3 () x} @) 226
We shall assume that the input signals are
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generated by a  multichannel AR process of

order m, m, and that
estimates of the forward Ap n, () and backward By, m, ()
predictors

31

[22 (;))]= Any 1, @ X, m, @) 2.30
-

e P

are available for each time instant: The hat in 2.3
denotes estimates of the corresponding quantities.

III. Extension of le mq (@) to Rij(n). This
will be caded out recursively. Assume that R, &),

k=n, n-1,..0 are known. The goal is to compute
Rp+1 +1 K, k=n, n-1,..0.

We know that Rp & =E {Epr 1] Z{Jr (k)}, Ry rat &) =

E {Xpﬂ 1 (K) K:}i-l r+ (k)}L .

Thus the unknown elements in Rp+1.r+1 &
are E{x!(k)x(k-p)) B{x2K)x2k-1)}E(x'(K)x2 k1)),
E{x2(k)xl(k-p)}. The rest of the elements are
equal with elements of Rwr k), k=n, n-1,.. In

order to compute the four unknown elements we
proceed as follows. We consider the Wiener
optimum forward predictor Ap (k). This is known

to be given by

1
Rer &-1) Apr (&) =-E V% &-1) *® 3.1
g ipr Apr xz ® .

and the corresponding minimum forward prediction
eITOr power trace

trace (E { ei, &) ef;. (k)}) =

ol
trace E -Xz ® [X (k). X (k)] +
x! (k)—
E e (1) Ap -
2 ®, I K1) | Ap () 32

The unknown plements of Rp+1 1 (&) will be

chosen so that the trace in 3.2 becomes maximum.
Consider the folowing partition

fp1r1 &1)
Xpr (1) = Spr xl k- 33
£ &r)

where Spr is an appropriately defined permutation
matrix. From 3.1 and 3.2 we can get

Bp.1 -1 &1
épt(k}=sll' [Ai"lézl (k)] +Spr[—p 1 1'121 (k ):| k's'pl(k) 3."‘“

where B (k) is the backward multichannel

predictor.
t
% (k-p)
Rpr(k)ﬂpr(k)='E Xpr(k} xz(k-r) 3‘1[3
and
Kb ()=-ap (k)(_B,In 1 (1) €+
1
x &P 2
3.4

Lz (k_r)} [ @, £ @) ) v

where

C=E {gpio &0 [ 2 @, @)

ay ¢ K)=rp (4B () E {xp (0 K £ 6 r>]} 345

1
) x D) 1 2
gk =E Lz (k—r)][ x kp)x (kr) ]

Substituting 3.4 into 3.2 we obtain

(%]

g

trace (E {ef,, (14] egr (k)}) = trace (E {e:}lr.leg.l M}}

 trace [k @ af ¢ 00 K6:0) 35

However of, (k) is a positive definite matrix thus

the left hand side of 2.7 achieves its maximum
value for Kfy, (k) = 0. Thus the unknown elements

are given by



1
x & ([ 2
Lz (k-r)][x k), X (k)] =

- Bpiri&DE {zpm vl w fo) a6
and this is equivalent to

Apir1 B

Apr @ = Spr[ 0, ] ¥=nn1.. 3.7

If instead of the forward predictor we consider the
backward one, similar arguments will lead to

0,

k=1 nl... 38
Bpir1 (k-l)] "

Bpr(k) =Tpr [

Furthermore the resulting unknown elements are
identical with those resulting from the forward
predictor. Following the above procedure we
can obtain Rﬁ(n)

starting from Rp, m, (@). & is obvioss from the method
above that i-m; = j-m, This is a restriction and
we cannot siart from an arbitrary couple my, m,
to reach ij. The permutation matrix T is defined
from the following partitioning.

5 ®
%1 &) =Tpr % (k) 39

1 &

The resulting covariance matrices can be shown to
be positive definite.

Iv. The algorithm. In this section the
properties of the above extended matrix will be
used to derive the novel algorithm. Define

1 1

1 2
e ® g &k
A KE 4la
- o d®
11 i
b
Y ® b 418

e S

From the definitions in the previous section and
the partition properties 3.3 and 3.9 it is shown that
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Rin T ° @ Thst it +
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iHH i B o Rﬂl @-1) B
T bl @B At 42
il Ay () 1 44 #

From 4.2, 3.7, 348 and 4.1c we can show that.

il
R @) =

!

¢ 0 1 ~ o ~
T ] Tist p1 A @) O, @) At @) 430
i1+ Q lel (n_ 1) 1 Ty My
it 1 ™ t
- 100y @ Oip om, @ O
At @ = - o _mzt :nz Tin w 43P

2 t 2
01 gy (@) Oim 8m ® Opm,
Also using the backward predictor we obtain

-1
Ry m) O

-1 Q| &
Ria m @) = S 3a o! S +

+ E -1 +my) u,},bl m, @i +m )E‘ i+my) 4da

Ehere
Bt k)=
t 1 t 1z
Oim, bn, ® Oym bm® 1 0
1 I T ™ Sil p1 44
Oim, bu ® Opm, bn, ® 01

afnl m, (k) above is defined as

1
of &) = E [xz (k)] Ko Lol +
x (k)
+ An m, ® E{;mlm, @b |2 @, ¢ (k)]} 41y

Combining 4.3 and 4.4 with the definition of gain,
the following step up - step down recursions ave
obtained

Wi @ =
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0
Tistgn 0 +
wij (0-1)

~ -f f
A @D tym, @0 emm @ 450

Ead 1

Wi ()
Wi @ =S| ©
0

AP ~b . b ;
+ 18 (bmy -1) i, m, (it 1) e,y (obimy) 4P

where °;11 m, » "Su m, the a priori forward and backward
errors of order m; my,.
Finally we shall obtain the relation between f-_ij(n)

defined in 2.2y and the corresponding prior error
(. This can easily be shown to be

T
gy @)= 1T° o o @ 4.6a
where
oy @) = x5 @ Wy @ 46p

From 4.4 and 45 we obtain the following.

hi £ f
ay (o) = ay (1) + 5 o, m, @ Gy, @-1) ey m, @

4 R . b .
- i— £m, m, @) O, m, @HAFE-1) emy o, @mpD) 47

Combination of 2.20, 450, B, 45y, 4.6 and 4.7
gives the mnew  algorithm. The complexiby is 2
( + 1) + S(m;+m, ). ¥ the input mode} is a true
AR (m; m,) then by increasing (m, m, ) to @ j)
there is no gain in performance. It however this
is not true, then varying (m; m, ) from a
minimum value to ({ j) & whole range of
algorithms results trading off performance with
computational complexity.
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