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Abstract. The major computational contribution in fast transversal adaptive algorithms comes from updating the
associated forward and backward predictors, of the input time series, which are implicitely assumed to be of the same
order as the unknown system. However it is quite common in practice to extract all the predictable information of the
input series with predictors of much lower order. This paper presents a method that incorporates an apriori information
about the predictors’ orders, assumed to be less or equal to that of the multichannel system to be identified. This
results to a new class of algorithms trading off performance to computational complexity. The general multichannel
problem with different number of taps per channel is treated. The applicability of the proposed algorithm to Decision

Feedback Equalization is demonstrated.

1. Introduction

The design of efficient adaptive algorithms for multi-
channel systemn identification is of major importance in
a wide range of disciplines such as seismic signal pro-
cessing, wide band adaptive array design, digital com-
munications, control, etc. [1]. The major computation-
al contribution in fast transversal adaptive algorithms
comes from updating the associated forward and back-
ward predictors of the input time series, which are im-
plicitely assumed to be of the same order as that of the
unknown system [1]. However it is quite common in
practice to extract all the predictable information of the
input time series with predictors of much lower order.
This idea was successfully exploited in the recently sug-
gested class of Fast Newton Transversal Filters [4] where
the prediction part was assumed to be of a lower order
than that of the filtering part.

In general the number of taps in a multichannel FIR
system need not be the same for the different channels
involved (i.e. feedforward and feedback section). This
is for instance the case in Decision Feedback Equaliza-
tion which is the application of interest in this paper.
Although such a case could be dealt by using the same
number of taps for all channels, expecting the algorithm
to zero the extra taps, this leads to an unnecessary com-
putational increase and also may affect the accuracy of
the obtained solution. In this paper the more general
case of different number of taps per channel is treated.
Simulation results verify that performance is traded off
against complexity, by varying the predictor’s order.

2. Formulation of the Problem
Let us assume two input signals z!(n), z?(n) which are
combined by the linear system

m {
g(n) = - ch,-.rl(n— i+1) —Zczjrz(n —-7+1) (1)
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A recursive solution to the problem of estimating the
unknown system’s parameters, based on input - desired
output samples is given by the well-known Stochastic
Newton method [1]

cmi(n) = Cmi(n — 1) + woi(n)[d(n) + €y (n = 1)Zmi(n))
2

where ¢mi = [e11, €12, . . .C1m, €21, €22, - . . €21)! is the pa-
rameter vector and 2, (n) = [z!(n),z!}(n-1),...2'(n-
m+1),z%3(n),z%(n~1),...2%(n = {4 1)}* The gain vec-
tor is given by wmi(n) = —y(n)R;}(n)zmi(n) where
Rmi(n) is an estimate at time n of the input data cor-
relation matrix and (n) is a properly chosen positive
gain sequence. In this paper, extending the idea intro-
duced in [4] for the single channel case, this estimate of
Rmi(n) is produced by extrapolating the sample corre-
lation matrix of a lower order R,,(n)}, where r, s de-
note the prediction orders of the two input sequences
respectively (with r < m and s < {). Note that the
multichannel case is not treated here as a straightfor-
ward generalization of the single channel case, having
matrices in the place of scalars. The multichannel or-
der evolution required by the algorithm, is achieved in
steps involving each channel separately and leads to an
algorithm involving scalar operations only.

Let us assume that the matrix R,,(n) is known and
we seek to make an estimate of Ry 41,.41(n). If the latter

matrix i1s partitioned as
K L
Lt M

then the unknown elements in the above matrix are,
the upper right element of K (denoted as pl'(n)), the
upper right element of M (denoted as p?%(n)), the upper
right element of L (denoted as g,(n)), and the lower left
element of L (denoted as p_,(n)).

Rej1s41(n) = ( (3)



The above elements are computed from respective
prediction problems following a saddle point approach.
The involved prediction problems are defined as follows,
a) Given the input samples z'(n — 1),...z!(n -
r), zX(n —1),...z%(n — s + 1) predict z2(n). The cor-
responding predictor, prediction error and error power

are denoted as A2,_,(n), e/Z_ (n) and af?_,(n) respec-
tively.
b) Givenz'(n—-1),...z'(n—r), z%(n),...2%(n—s+1),

predict xl(n) The respective prediction quantities are
denoted as A1 ,(n), &l(n) and a{l(n). N

¢) Given z!(n), ...z (n—r+1), z%(n),...z3(n—-5+1),
predict z!(n — r). The respective prediction quantities
are denoted as Bl (n), et!(n) and all(n).

d) Given z!(n),.. .xl(n —r), 2¥(n),...2%(n -5 + 1),
predict z2(n — s) . The respective prediction quantities
are denoted as B?,,(n), e!%,,(n) and a?%, (n).

The minmax part of the saddle point approach is
equivalent with making the minimum error power to be
maximum with respect to the corresponding unknown
element of matrix R,41541(n). Thus, for example, the
unknown element g_.(n) will be estimated so as the re-
sulting optimum predictor A%,_,(n) to have the worst
possible prediction error power. Using the partitionings
of Table 1 (where the definitions of the involved permu-
tations and partitionings are given) and the well-known
matrix inversion lemma for partitioned matrices [1], it
can be shown after some algebra [5] that A2, (n) sat-
isfies the following order update

A2,_ (n) = Srymy ( Arnpea(n) )

and the estimated value of the unknown element is given

by

(4)

ﬁ—r(n) = —'Brl't—ls—l('n - 1)E{xr—l;—l(ﬂ - 1)132(11)}

where E{-} is an estimate of E{-}. As we shall
see the actual computed estimates of the autocor-
relation elements are of no interest to us. It is
the equivalent predictor’s order update which will be
exploited.  Similar order updates can be obtained

for the rest of the predictors, that is, A\}.,_H(n) =
-~ ~ t

(A“(") 0)", B, (n) = (0 BZE(n) ), Br(n)=

(0 B, (n) )l, where B!_,,(n) and B2 (n) are

intermediate auxiliary vectors computed via the rela-

tions B!_ “(n) =T._ 1,( 0 Bt 1o- (n=1))" and
r ls(n) ( rs 1(71-—1) )

Continuing the above procedure, the matrix Rpi(n) can
be recursively estimated from R.,(n). Note that, with
our method, this is possible only if m—r = {—s, impos-
ing a restriction on the order of the matrix R.,(n). It
can also be shown that the matrix extrapolated in the
above way remains positive definite [5]. Furthermore it-
s inverse, if viewed as a 2 x 2 block matrix, results in
banded blocks. Specifically, in the places of the unknown
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elements of the extrapolated matrix, we have zeros in its
inverse Rpi(n).

3. The Multichannel FNTF Algorithm

Let us write the recursion of eq. (2) in the LS a-posteriori
error formulation, i.e.

cmi(n) = cmi{n—1)+ wmi(n)emi(n) (5)

where
emi(n) = d(n) + ¢} (n)2mi(n) (6)
wmi(n) = —A‘lR;‘}(n — Dzmi(n) (7N

We assume that Ry,(n — 1) is a scaled estimate of the
correlation matrix extrapolated from a lower order co-
variance matrix K y1,41(n — 1) which is computed as a
least squares estimate. It is well known that the essence
in deriving a fast algorithm is to achieve a fast compu-
tation of the Kalman gain vector (i.e. vector wp,(n) in
our case). Notice that a constant weighting sequence A
has been adopted to allow for slow time variation track-
ing. As it has already been pointed out in the previous
section the extrapolated matrices will not be explicitely
involved. It is their related prediction (state space) pa-
rameters and their interrelation which will be accounted °
for, as it is always the case with fast algorithms.

Let us now define the partitioning AZ s(n) =
( ai'(n) aj*(n) ) for the predlctor A%(n) and
similarly for the resting predictors A 5(n), B} ;(n) and

:J(")' Applying successively the updatmg procedure
as in eq. (4) and using the definitions of Table 1 we
finally obtain

a?!(n)

1 Om-r

Tm = 1
+ ( A?nl(n) ) 0_22(71)
Ol—s

(8)

For the rest predictors it can be shown, in a similar way,
that

) ) a,'(n) o)

1
( Aylnl+1(")

(11)



Starting from the respective definitions and using the
above updating formulae the following relations are ob-
tained for the involved errors

. .
Jemi(m) = efi(n)

eﬂ)l“(") = e;;ﬂ(”) (12)
em-{;ll(n) = ez+1,(n—m+r)

Sl(n) = ebl(n—m+r)

and similar relations can be obtained for the involved
powers. Now using (8)-(12) and following similar step-
s as in the two-channel staircase algorithm of [3] the
corresponding two-channel FNTF algorithm of Table 2
results. It i1s readily observed that the computations
associated with the filtering part contribute to the com-
plexity in proportion to the systems order m,l. The
contribution to the complexity of the prediction part is
linearly depended on the predictors orders r,s. Specif-
ically, the overall complexity of the algorithm of Table
2 is 10(r + s) + 2(m + 1) MADS per time recursion,
while the respective complexity of the algorithm of [3]
is 12(m + 1) MADS. Recently an exact block version of
the algorithm has been developed reducing complexity
to a portion of LMS per input sample [6].

4. Application to DFE

The above derived algorithm is directly applicable to
Decision Feedback Equalization. To show its applica-
bility and its performance we conducted the following
experiment. A binary pseudorandom sequence was used
as the bit information sequence sent to a channel which
indroduced intersymbol interference. The channel was a
linear phase FIR filter with an impulse response spread-
ing over 15 successive bits. A 20dB (SNR) white Gaus-
sian noise was added at the output of the channel. The
introduced distortion was rather severe due to the large
dynamic range and the deep nulls which were present
in the frequency response of the channel. Equalization
of channels with deep nulls suggest the use of Decision
Feedback Equalizers (DFE). A typical DFE consists of
the feedforward anticausal part and the feedback causal
part, and its output is given by

N, N,
Bt)=) cyt+ M —i)+y dit-j+1) (13)
i=1 j=1

where {y(t)} is the received sequence and {Z(t)} is a se-
quence consisted of the correct symbols in the training
mode and the detected symbols in the decision direct-
ed mode respectively. A symbol rate decision feedback
equalizer is a typical two channel system identification
task. The inputs in the two channels are the sequences
{y(t)} and {Z(t)} respectively. The equalizer parame-
ters ¢! and c? are estimated so that the error Z(t) — Z(t)
is minimizeci. The equalizer used by this experiment
consisted of 20 feedforward and 20 feedback taps. Five
curves are shown in Figure 1. Curve 1 (the lower one)
corresponds to the two-channel RLS algorithm. Curve
2 (dashed line) corresponds to the MFNTF algorithm
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with two-channel predictors of orders 15,15. As we can
see an almost negligible degradation in performance re-
sults at a computational saving of the order of 25%.
Curve 3 (dotted line) corresponds to the MFNTF algo-
rithm with predictors of orders 10,10. Curve 4 (dash-
dotted line) corresponds to the MFNTF algorithm with
predictors of orders 5,5. The latter has converged at
about 2000 samples. In all the above cases the forget-
ting factor A was taken equal to 0.99. The top curve cor-
responds to the Normalized LMS which at about 4000
samples (not shown in the figure) converges to the same
misadjustment level as that of Curves 3 and 4. Thus
we have demonstrated that the use of the multichannel
Fast Newton algorithm provides the means of trading
off performance with computational complexity having
RLS at one end and NLMS at the other.
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zi;(n) = ( -"31(") 5:—1,'(") )‘

2ij(n) (zhoa(n) 2(n—j+1))
Zij(n) T (2% (n) =4 (n—1))
zi(n) = Sy ( =n) 2ln-i+1) )




TABLE 2: The MFNTF Algorithm

Define:
[ 11 (n) ] [ 1 21 7 r 1
n -
pr+l( ) — x r' (x'('ﬂ)l) ll(n _ 1) : [ pr;;l((n) = 1 c{(’"n)l) agl(n _ 1)
n s ~ arg(n—
P ] - n ) Pitn) | | a(n 1)
[- (n-1) 11 ] [ b“-("l" 1)
Qr+1(n) 1 ¢22..m) r;;l q, (71) 1 e'l(n) T
- L1 hd - = 12
a331(n) Xar, -0 | b(n-1) | 2;%1(n) XoHE=D | 5 (n—1)
=3 - 8 1 o L 1
k=n—~m-+r, [ple denotes the k-th element of the vector p
- Available from the previous recursion of the MFNTF: wpi(n — 1), ami(n —1)

- Available from any LS multichannel algorithm:

~f1
eN+1

(n), el2(n), e2i(k), €23y, (k)

P3+1(") Pa+1(") Pr+1(")y P32(")y q (k) Q:+1(k) 9r+1(k) ‘1:+1(k)

Prediction Part

Wmi+1(n) = Tmig1 [ 0wy, (n—1) ] = Tmi41 [ pii(n) O, pi*(n) Of_, ]

Wnpns1(n) = [ 0 @l (n) | = [ (D) 0L, pI3(n) O, |

[ w; . (n) 0 ] = Wmpntr(n) + [ o _, ‘13#‘1(") 0;_, ‘131’1 (k) ]t

[ wy(n) O ] = +11wm+11(")+[ 0f,_, q;''(k) O, ‘133—'1 (k) ]t

ami(n) = ami(n - 1)+ [Pr+1]12{.1+1(") + [pPhi)ief2(n) — (@22 ]s 41682, (k) — (g!2,]s41€82 (k)

Filtering Part

emi(n) = d(n) + chyy(n — ) (n)

emi(n) = emi(n)/ami(n)

emi(n) = emi(n — 1) + wmi(n)emi(n) e
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