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Abstract - A method for theoretically comparing a 
class of Adaptive Estimation Algorithms is presented. 
The method consists in defining for each algorithm in 
the class a quantity (the efficacy) that is theoretically 
computable, that depends only on the statistics of the 
data. The larger the efflcacy the better the algorithm 
performs. 

I .  INTRODUCTION 
In the last years many works in the area of adaptive signal 
processing algorithms are concentrated in defining methods 
that can compare in a fair way any two algorithms. The class 
that is usually considered is all algorithms that can be put 
under the following recursive formula 

en+> = 8, - pH(8,,Xn) ( 1 )  

where 8, is the state of the algorithm and X, the data vec- 
tor used for time n. This class contains most well known 
algorithms used in practice. For its analysis there exist ba- 
sically two directions, the deterministic and the stochastic. 
Here we will limit ourselves in the second direction, that is, 
in the stochastic approach. Under this type of analysis, the 
problem of comparison has led to the need of theoretically 
describing the transient and steady state behavior of an al- 
gorithm. Specifically two algorithms can be compared in a 
fair way when we compare their transient behavior (speed of 
convergence) while they are forced to  have the same steady 
state behavior (31. 

Works up to now were able to theoretically describe the 
steady state part of an algorithm using Central Limit Theorem 
type approaches, while for the transient part they continue to 
use simulations [I], [Z]. Notice also that for the steady state 
description there was the need to pass from the discrete to the 
continuous time and properly define an Ornstein-Uhlenbeck 
process. 

11. MAIN RESULT 
In this work we concentrate on a smaller algorithmic class. 
Specifically we consider algorithms that can be put under the 
form 

which corresponds to a linear, with respect to 0, general mod- 
el. This limited class contains many well known and wide- 
ly used algorithms as RLS, LMS, Leakage LMS, and Signed 
Regressor LMS. For algorithms satisfying (2) it is possible to 
theoretically describe their performance for both the transient 
and the steady state part. Also this can be achieved without 
passing to  the continuous time. The key result is the following 
theorem. 
Theorem 1. Let the da ta  vector X, be a stationary Markov 
process. Let also A = E{A(X,)} ,  B = E{B(X,)) .  Define 
the following two deterministic systems 

8n+i = ( I  - pA(Xn))en + p B ( X n )  (2) 

en+> = ( I  - PA)#, + p B  (3) 
e^,,, = ( I  - pA)dn - O(A(Xn) - A)en + pB(Xn) (4) 

If A is diagonalizable and has eigenvalues on the right complex 
half plane, then under suitable conditions on the process X,, 
for small enough p ,  we have UNIFORMLY IN TIME that 

( 5 )  E{llen - en11') = 0 ( p 2 )  

The practical meaning of Theorem 1 is that  the two processes 
0, and 8, are pointwise close to each other (not only their 
distributions as is the case with existing results). Thus if we 
are interested in up to 2-nd order statistics for e,,, we can 
approximate them by the corresponding statistics of e,, with 
an error o(@). 

111. EFFICACY OF A N  ALGORITHM 
Usually 0, is considered as an estimate to the Wiener solution 
8, = A-'B.  Thus the steady state performance of the algc- 
rithm is defined as the asymptotic error covariance matrix. 
This definition is not suitable if the data are not i.i.d. [2]. For 
many signal processing algorithms naturally enters the error 
e, = (e, - e,)'X, (for example in cases where a prediction 
error is used). We can thus use as performance measure its 
variance (also known as =excess mean square error" for many 
algorithms). The following theorem gives an approximation 
to the asymptotic variance U:. 

Theorem 2. Under the assumptions of Theorem 1 the excess 
mean square error satisfies 

U: = pt race{CxPx)  + o ( p )  (6) 

where CX = E { X , X L ) ,  A P x  + P x A '  = ~ ~ " = - , C R ( J ) ,  
C&) = E{R,+,Rb} and R, = (A(X, ) -A)~ , - (B(Z , ) -B) .  
Since the statistics of X ,  are known we can theoretically o b  
tain the variance U:. Notice that by specifying a value for the 
variance actually specifies the step size 8. 

In order to theoretically describe the transient behavior of 
8,,notice that this behavior can be approximated by the one 
of 8,. Since from (4) all transient phenomena decrease to 
zero as ( I  - pA)" as measure for speed of convergence can 
be used the settling time t ,  = trace{(I - (I - FA))-') = 
p-'trace{A-'). To  compare any two algorithms we set a 
common U: and just compare the corresponding t.. Since U: 
is the same, we can instead compare the product tea: which 
is independent of p.  This quantity is exactly what we call 
eficacy of the algorithm. Clearly the larger it is, the faster 
the algorithm converges. 
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