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ABSTRACT 
consider the convergence properties of the 

forgetting factor IUS algorithm in a stationary 
data environment. We study the dependence 
of the speed of convergence of RLS with re- 
spect to the initialization of the input sample 
covariance matrix and with respect to the ob- 
servation noise level. By obtaining estimates 
of the settling time we show that RLS, in a 
high SNR environment, when initialized with 
a matrix of small norm, has a very fast con- 
vergence. Convergence speed decreases as we 
increase the norm of the i n ~ t ~ ~ ~ a t i o n  matrix. 
In a medium SNR enviro ent the op t im~m 

d of the ~ g o r i t h m  is reduced, 
becomes more insensitive to initializa- 

a low SNR environment it is 
eferable to start the ~ g o r i t h ~  with a matrix 

The Recursive Least Squares (RLS) algorithm is 
one of the most well known algorithms used for 
adaptive filtering and system identification. Its 
success is mainly due to its exceptionally fast con- 
vergence speed that is considered as optimal in 
practice and as a measure for comparison (and de- 
sired goal) for other algorithms. 

Due to its nonlinear nature, the theoretical 
study of RLS seems to be quite complicated. Com- 
plexity increases significantly if we consider the 
forgetting factor RLS version, which is the most 
useful version of the algorithm since it is applied 
in problems where tracking is necessary. Several 
works in the literature deal with the problem of 
convernence of RLS in a stationarv environment 
and itgcorresponding performance &t steady state 

Although the performance of the algorithm, in 
PI ,121 ,[41,[31 J61- 

a stationvary environment, during th; transient 
phase is considered well studied, certain obsenra- 
tions coming from practice cannot be explained 
in a satisfactory manner with the existing theory. 
Specifically, it is observed in practice that RLS 
has a much faster convergence rate if the sam- 
ple covariance matrix (computed in the algorithm) 
is initialized with a “small” positive definite ma- 
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trix (usually of the form of 61) [5, page 484],[8, 
page 4761 suggesting that the initialization with a 
“large” matrix results in an inferior performance. 
Unfortunately the existing theory is not capable of 
distinguishing this performance of the algorithm, 
meaning that there is a need for further analysis 
that pays special attention to initialization. 

With the present paper we attempt to make a 
complete study of the performance of RLS under 
different initialization cases. We will show, by 
studying the mean and the covariance of the es- 
timation error vector, that the performance of the 
algorithm depends strongly on the initialization 
and the observation noise level. To compare the 
different initialization cases and be able to suggest 
the most preferable one, we will use the settling 
time as a measure of speed of convergence. With 
the help of this measure we will be able to show 
theoretically that the initialization with a “small” 
matrix is preferable for cases of high and medium 
SNR, while in the case of low SNR a “large” ma- 
trix is preferable. 

2. BACKGROUND MATERIAL 
Let us consider the following linear system 

where {yn} is the measurable scalar observation 
sequence, X,, the measurable vector input data 
sequence, [wn{ the additive observation noise and 
WO an unknown deterministic time invariant vec- 
tor. 

Since we are interested only in convergence 
speed and not in complexity and computational 
robustness, we assume infinite accuracy. Then we 
can show that RLS is equivalent to the following 
algorithm 

where A,  = Wn- WO is the estimation error vector 
with W, the estimate of WO at time n, p is the step 
size and we denote with v = 1 - p the forgetting 
fact or. 
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2.1. 
Initialization in the RLS algorithm is required in 
two places. That is in Wn (i.e. WO) and in the 
matrix R, (i.e. a). The vector WO is commonly 
selected to be zero while & = 61, where I is the 
identity matrix and 6 a constant which is either 
“small” [5, page 484],[8, page 4761 or “large” [4]. 
The convergence properties of the algorithm are 
completely different depending on the value of S 
being “small” or “large”. A fact that needs to be 
stressed here is that the same value of 6 applied 
to the same set of data can have a completely dif- 
ferent performance depending on the value of the 
step size 1-1 we use. This suggests that the notion 
of the size (“small” or “large”) cannot be defined 
in absolute terms but only in connection with the 
step size p. 

In our analysis we will be concerned with cases 
where the step size is small, that is, 1-1 E [O? 1-10] 
with po << 1. We can then distinguish a variable 
as “small” or “large” by comparing it to the step 
size p. Actually we need to distinguish three dif- 
ferent sizes for the variables. Specifically if a vari- 
able a(p) satisfies a(p) = @(pa)’ then a(p) can be 
characterized as “small” if a > 0, as “medium” if 
0 2 a > -1 and as “large” if -1 2 a. 

Let us now see how we can initialiie the €US al- 
gorithm using the above definition. Consider first 
the vector WO. The most common selection for ini- 
tialization is WO = 0 corresponding to A0 = -WO 
which is a Q( 1) vector. For our study we will more 
generally assume that A0 = A where A = 8(1) is 
a deterministic vector. For the initialization of R, 
we will assume that RQ = p a R  with R a determin- 
istic positive definite matrix satisfying R = 8(1). 
Clearly case a > 0 corresponds to a “small” initial 
d u e ,  0 2 LY > -1 to a “medium” and -1 2 a 
to a “large” one. Referring to the algorithm in 
(2) this results in & = p ” R  and &o = pa& with 
E = RA = 8(1). 

3. ASSUMPTIONS AND MAIN 

We will assume that the process {Xn} is generated 
by the following linear state space model 

Initialization of the  RLS Algorithm 

RESULTS 

(3) 

where the system { D , E , F }  is output reachable, 
that is, the matrix [ F E , F D E , .  . . , FD7-lE] is 
of full rank, with T being the degree of the min- 
imal polynomial of D.  We also assume that the 
matrix D has all its eigenvalues strictly inside the 
unit circle. This model generates a data sequence 
{ X n }  with rational spectra. We need to make the 
following assumptions regarding certain processes 
involved in our analysis. 

= 0(f) means that the norm of a(f) is bounded 
and below by f times some constant while 

a(f) = O ( f )  that the norm is bounded only from above. 
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A l .  The input process { [ n }  in (3) is a stationary 
zero mean white noise sequence that satisfies 
the following conditions 

0 There exist constants K > 0, +y > 0, xo > 
0 such that for all vectors p (of proper 
length) with l l f l l l  = 1 we have for the 
probability P(IPtCII 5 z) 5 Kzr, for aU 
0 5 2 20. 

E{ll[n118} < CX), where E{.}  denotes ex- 
pectation. 

AZ. The observation noise {w,} in (1) is white, 
zero mean, with bounded variance U;. The 
noise {wn} is also independent of the process 
{ [ n }  and thus of the data process {X,}. 

Next our main goal is to study the behavior of 
the power of the estimiztion error vector A, for the 
RLS algorithm defineld in (2). For our study we 
are going to assume that Assumptions AI,  A 2  are 
valid. Although not explicitly stated we assumed 
(and will continue to assume) that the moments 
of the process {t} and thus of {Xni are 8(1) 
quantities. This will not be the case t ough with 
the variance of tbe observation noise because 
our intention is to study RLS in a high, medium 
and low SNR environment. Consequently, later in 
this section, we will relate 0: to the step size p. 

Let us now try to analyze the power E{llA,112}. 
The power satisfies 

E{IIAnII2} = I I E { A ~ } I I ~  + trace{cov{A,)) (4) 

where Cov{T} = E{(T - E{T})(T - E{T})t}  de- 
notes the covariance of the random vector T. Be- 
cause of the above decomposition we will study 
separately the mean and the covariance. 

By assumption the additive observation noise 
w n )  is a zero mean white process independent of I Cn}, thus it will also be independent of the data 

process { X , }  and consequently of the matrix &. 
This allows us to write 

E{An} = E{RilEn} = ~ * V ” E { R - ~ } €  (5) 

and 

where 
COV(A,} = U, + Vn (6) 

U, = p2”v2nco.v{~-1E} 

We have now the following theorem where we esti- 
mate the mean and the two parts of the covariance 
matrix. 
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the following relations hold for n 2 no 

Proof: 
The above theorem constitut 

The proof can be found 
ain tool 
e of the 

ext we are confronted with the problem of es- 

udying the mean and the 
ation error vector. 

to estimate the time n, (sett1 
the power to achieve “small” values. More specif- 
ically we will try to esti ate the smallest possible 
time ns for which we have 

E{llAn112} = O(p2‘), for all 12 2 n, (12) 

where E > 0. If such a condition cannot be satisfied 
for any e > 0 and any n then n, = OQ. As we will 

respectively we have 

E{An} = O(p‘) for a l l n z  nm 
Un = O(p2‘) for all n 2 n, (13) 
V, = O(p2‘) for aU n 2 n, 

There is a slight ambiguity in our definition for 
the settling time coming from the fact that the 
parameter E is not explicitly de 
this problem with the following 

We will say that an ~ ~ t i a l ~ a t i o n  
case a1 is preferable to an initialization case a2, if 
there exists €0 > 0 such that the first case has a 
smaller settling time for all 

With the above definition 
ity by considering values of 
largest possible “small” values for the expression 

Definition: 

p2t . 
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n a 

Table 1. Estimates of the settling for different com- 
binations of the parameters a and p. 

TO proceed with the estimation of the settling 
time n, we must distinguish different SNR envi- 
ronments. We will thus assume that o; = O(pP) 
where p is a real parameter. According to our def- 
inition, p > 0 corresponds to high SNR, 0 2 p > 
-1 to medium and -1 2 p to low SNR. Notice 
that under the above form of noise power the lim- 
iting value of Vn can be shown to be of the forq 
O(pf’+’). Clearly if -1 2 p (low SNR) the limiting 
value is no longer “small” and the algorithm has 
a bad steady state performance. According to our 
definition, such a case has infinite settling time. 

We can estimate the three different settling 
n, using Theorem1 and form Ta- 
ttling time ns = min{n,, n,, n,) as 
a and p. We must stress that for 
d in the table there exists an inter- 

val ( O E O )  where the estimate of the settling time 
is d d .  

SCUSSION OF THE RESULTS 
Let us consult Table 1 and try to draw conclusions 
for the performance of RLS. 
Case of High SNR (p > 0) 
From Table 1, by comparing the different expres- 
sions for ns, we have that the settling time is in- 
creasing with decreasing a. For “small” initial val- 
ues (a > 0) RLS converges almost instantly and is 
basically insensitive to “small” initialization. For 
“medium” initialization values the settling time in- 
creases with increasing initial value. Finally for 
“large” initial values we have the worst possible 
settling time. 
Case of Medium SNR (0 2 p > -1) 
In this noise environment the optimum speed of 

thm is significantly reduced as compared 
revious case. On the other hand RLS 

e rather insensitive to the initialization 
value. For all a >_ p, corresponding to “small” 
and part of “medium” initialization values, the 
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performance of RLS is almost indistinguishable. 
The settling time starts to increase signi 
only when the initial value becomes large enough 
( p  > a) and continues to have the worst perfor- 
mance for "large" values. 
Case of Low SNR (-1 1 p) 
Even though the settling time is infinite for this 
m e  we can still draw conclusions regarding the 
most preferable initialization. It is possible to 
show that the leading part of the power for this 
case is part Vn of the covariance matrix. This part, 
can be shown, to have smaller values when the 
algorithm is initialized with "large" initial value. 
Thm suggests that for this SNR case, initialization 
with a "large" d u e  is preferable [7]. 

Comments: For high SNR the optimum settling 
time is @(l) while for medium SNR it becomes 
@(@-"). In other words the optimum speed of 
convergence for RLS depends on the SNR value 
ancl increases with increasing SNR. Also for the 
most practically interesting SNR cases (high and 
medium SNR) the performance of RLS seems to 
have a lim ization provided 
the initial ugh. This char- 
~ t ~ ~ ~ s t ~ e  ractiee [8, page 
474. 

The RLS algorithm, once in steady state, has a 
reduced ability to track abrupt changes in the re- 

ompared to its convergence 
t phase. Indeed if 
is of the order of 

ue and we have seen 
that this yields the worst possible settling time (for 
medium and high SNR). 

5. UL 
FIR system where the vector WO 

sed of ten random numbers in the in- 
$ 11. The data process {&) satisfies 

quence generated by passi 
system with trans 

n zn-1 - 0 -  ~ n - s ] ~  where { 

1 -I- 2z-I f 3zW2 H ( z )  = 
(1 - 1.1314~-' + 0.64~-')(1 + 0.9z-l) 

(14 
TQ the output prQc~ss W:Xn we add a zero mean 
white noise {wn}. 

We apply the RLS algorithm with forgetting 
factor Y = 0.995. For the initialization 
a = 1,0, -0.5, -1. The initialization matr 
selected to be 52 , with 5; the variance ofz, and 
WO = 0. We apply the algorithm on 100 inde- 
pendent sets of data and for each time step n, we 
compute the corresponding sample mean estima- 
tion error power. Figs. l(a), (b) and (c) depict the 
performance of RLS for SNR values 40 db, 10 db 
and -2Qdb (corresponding to high, medium and 
low SNR). We can see that there is exact agree- 
ment between the simulations and our conclusions 
in Section 4. 

Figure 1. Performance of RLS 
tisns, (a) SN~=4Qd~, (I$) SN 

nt 
k 

2Qdb. 
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