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Abstract
We consider some aspects of performance,
approximation, and robustness of the EASI

fequivariant adaptive separation by independence)
algorithms for adaptive blind source separation. This
algorithm class 1s useful for separating unknown
linear mixtures of unknown independent sources. We
characterize the nature of the optimum solutions in
this class of algorithms (that depend on some
nonlinear g function.) The result is used to establish
the nature of optimum quantizer nonlinearities, and
also to introduce robustness against deviations from
nominal source pdf assumptions.

1. Introduction

Separation of independent source sequences from a set
of observed linear mixtures of the sequences is
referred to as the blind source separation (bss)
problem, because it is usually assumed that nothing is
known about the mixing matrix, and about the sources
themselves apart from their mutual independence. We
will let s(k) = [s1(k), $:K),...ss(K)]' denote the n-
component vector time series of independent zero-
mean sources that are to be separated from an
observed mixture time series x(k) = A s(k). Here A is
an instantaneous nxn matrix that is unknown. One
has to identify A™'. This problem has attracted much
interest in the last fifteen years [1,2,3]. We will start
from a well-known approach and algorithm to identify
the matrix A™' and consider some particular aspects of
the solution, including its optimization and robustness.
We will consider the algorithm suggested by Cardoso
and Laheld [2], called the EASI algoritim
(equivariant adaptive separation via independence).
This algorithm is based on the idea of obtaining
through an on-line or adaptive scheme a sequence of
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estimates B(k) of A™”. It combines a pre-whitening
process with the optimization of a "contrast” function or
criterion function of the statistics of the output y=Bx
=[y1,...,ya]" With respect to the matrix B. The contrast
function is chosen such that it achieves an extreme
value when the y components are independent, under
the constraint of orthogonality (pre-whitening).
Specifically, if ¢(By=E{y[Bx]} is such a contrast
function, then it is shown in [2] that its minimization
leads to use of the adaptive algorithm

B(k+1) =B(k)- A H{y(K)]B(k) (D

where H[y] = y'[y] y* and ' is the gradient of v.
The EASI algorithm is obtained by modifying H(y)
two ways. A whitening constraint is added, and H is
made skew-symmetric, reflecting the fact that after a
whitening transformation the linear transformation of
y is reduced to an orthogonal rotation. Suppose y is
a sum of component functions yi(y;), then y ' has
components y;'(y;). In this case we may generalize
the algorithm by using any scalar function g in its
definition of H[y]. These modifications and
generalizations lead to the EASI algorithm based on

Hlyl =yy' - I+g®)y" ~ygy)' )

where g(y)=[g(y1), ., &yo)]"- The algorithm of (1)
with H defined as in (2) was developed and evaluated
for performance in {2].

The adaptive algorithm attempts to solve E{H[y]}=0.
This holds when the components of y are independent
with unit variance. We may also use the condition
E{H[y]}=0 as the basis of a batch algorithm [1].



2. Performance of the Adaptive Algorithm

It is of interest to comsider the choice of the scalar
function g in the above algorithm. For this it is
convenient to express the adaptation as an update for
the matrix C(k)=B(k)A which should converge to 1.
We find that

Clkt+1) = C(k) - AH[C(K)s(k)] C(k)

There are two aspects of performance that we are
interested in. One is stability and convergence rate of
the algorithm, the other is the variance of the solution
in the steady state, both obtained in the local case of
small step-size A.

A stability analysis has been conducted in [2], with
the result that a sufficient condition for stability of the
solution C=I depends on the sign of the parameters

K= E{g'(s)} — E{s:ig(s)} (3)

The result C=I is a stable solution if all the x; are
strictly positive. The definition of the x; is in terms of
unit-variance source sigmals s;, because of the
normalization inherent in the algorithm. If g(s)=s
then k; is -1xkurtosis, and the algorithm is stable for
sub-Gaussian sources with negative kurtoses. Note
that for a unit-variance Gaussian source x; is always
zero, and that for g(s)=s the «; are always zero for any
unit-variance source. The x; are stability indices and
characterize the exponential convergence rate for the

-off-diagonal terms. The diagonal terms have a

guaranteed stability.

The steady state covariance matrix of C(k) -1 can

also be found [2,4] and from this the steady-state

variance of the ij-th term C;y(k) of the matrix C(k)
may be obtained. For identically distributed sources

for which x=«, we find that
Al
- Vaey= S+ @
v=E{g ()} —E*{s g(s)} (5)

;The constant additive term 1/2 in the variance
““expression comes from the pre-whitening part of the

algorithim.  Stability analysis also shows that the

-exponential convergence rate for the skew-symmetric

g-dependent part of the algorithm is Ax, whereas for

L the symmetric pre-whitening part it is simply A,
‘independent of g. 'We also find that the steady-state
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variance of Cy(k) is independent of g A fair
comparison of two algorithms should be based on
both the exponential convergence rate as well as
steady state error variance, and Moustakides {5] has
introduced the notion of the local "efficacy” of an
adaptive algorithm as a ratio of its exponential
convergence rate and its steady state error variance.
In our context the exponential convergence rate is
A min{1,x}, so that the efficacy is
min(1,x)
Q= Ty

_+.~__

4 2%
This is a maximum when =1, under which constraint
the efficacy is found to be

1
0= —

1

1,7

4 2¢?
This leads to a criterion of performance P(g) as a
function of g given as

2
PR = 6)
Y

We will call this the "bss efficacy”. This is
independent of amplitude scaling of g. To enforce the
condition k=1, we may scale it in amplitude after
finding the maximizing g.

Before we continue with a consideration of the bss
efficacy, we should note that this same quantity occurs
in the asymptotic variance expression for the Cy(k) in
the batch-mode algorithm [1]. It also arises in the
asymptotic variance result for a batch-mode algorithm
minimizing a contrast function that is a generalization
of the kurtosis, with the fourth-power function
replaced by a function G with derivative g [6].

3. Optimization of BSS Efficacy and
Mean-Squared Error of Fit

There have been several analyses of what we call the
bss efficacy and its variants, and the results have
given the optimum g function. We will give below a
simple approach to establishing that the optimum
function maximizing the bss efficacy is any function
of the form

&) =ag (s)+bs @)
where
g, 0= A0 ®)

f(s)



the familiar optimum nonlinearity arising in locally
optimum signal detection and in M-estimation; here f
is the unit-variance common pdf of the independent
sources. Related results have also been given in {7,1]

For this express the bss efficacy as

_(B{lg(9)-cs)lguo(s)-sIH>
([g(s)~ sE {sg()} 1"}

P® ®

where ¢ is any constant. This follows from the unit-
variance condition on the identified sources. In
particular, set c=E{sg(s)}. Now from the Schwarz

inequality, it follows that P(g) is upper bounded by

E{[gw(s)»sz}= I(h~1, where I is the Fisher.

information function. This maximum value of P(g) is
obtained with

g65) —sEfsgl5)} = alg () ]

where a is any constant, and this leads directly to the
result of (7).

It is particularly significant that the optimum function
is any linear-biased version of g, In fact for any
function g(s), the bss efficacies obtained with g(s) and
g(s)+bs are exactly the same. A stronger statement
can be made: the adaptive algorithm is invariant to
any linear bias of the function g.

Mean-Square Error of Fit to gw(s)
Let us now consider the discrepancy measure:

Alg; a, b)=Ef[ag(s) +bs ~g_(5) )&, (10)

under the pdf fof s. This is the mse between a scaled
and linear-biased version of g(s) and gw(s). We
expect that the best (minimum) value of A for a given
function g used in the adaptive algorittm also
indicates the efficacy of that nonlinearity, because we
know that a best nonlinearity after scaling and linear
biasing should be gw(s). An equivalent discrepancy

measure is
Dig: o B) = Effeg@-Bs ~@ <91 } (1D

Minimizing D with respect to the parameters o and 3,
we find the optimum values satisfy
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o= Lile(s) - sEtsg(s)Hg10(5) - 51}
E{[g(s)} - sE{sg(s)]*}
B= o Efsg(s)}

and the resulting best value D*(g) of the mean-square
discrepancy of g(s) from gw(s) is easily found to be

and

D*g) =1() -1 -P(g)

Thus minimizing D(g,a,B) wrt g and a, 3 is the same
as maximizing the bss efficacy. This result provides
an interesting connection between bss efficacy
maximization and optimizing the fit of a scaled and
linearly biased nonlinearity g to g, It provides
clearer insight as to the nature of the best g function

that should be used if one is restricted to a specific
class of functions to choose from.

4. Piecewise Constant (Quantizer) g Functions

In applications it may be very desirable to implement
a simple g function from a restricted class of
possibilities, in particular an M-interval quantizer, in
the EASI algorithm or its variants. This might be
useful to lessen computation or the data transmission
burden, to obtain easily on-line-optimized g functions
within the class, and to obtain algorithms more robust
to mismatch between assumed and actual source
distributions.

Let Qu be the class of M-interval quantizers g, so that
in the k-th interval Iy = (4.,,%) the level is o To
optimize the choice of these intervals and associated
levels for g=q €Qu, consider the discrepancy measure
of (11) written as:

M
DaB)= X[ (ax~e-lgio - dFGI (12
k=1 "7

Here F is the unit-variance distribution function with
pdf f of each source. Writing the conditions for
minimization with respect to choice of the # and the
o4, We get the expressions

-

—5Ci[1- 13
oF, t(1-B] (13a)
9—"—%‘-’—-"—ﬂ=gw(tk)-tk[1~m (13b)

and




M
B= ZQkSAk (13¢)
k=1

where —8f =)+, OF: =F(t)-F(t.), the
s4,= ‘k sdF(s)and 5C, = SAVSF,
Lpy

Note that the above conditions giving the optimum
quantizer parameters for the bss algorithm parallel
those for locally optimum quantization in a known-
signal detection setting [8). The key difference is that
there is a linear bias term included in the gw(s)

function, which gives rise to the terms in B in the
above equations.

Consider a unit-variance generalized Gaussian source

pdf of the form f(s)=Kexp(—k|s|™), giving the result
gw(s) =km|s|™sgn(s). For a sub-Gaussian source with

m>2, the LO function increases quickly. To obtain
for example a good 4-interval symmetric quantizer,
the viewpoint of approximating some linear biased
version of the LO function suggests biasing this
function downwards and approximating the result
with a quantizer with a negative level for an interval
[0,t3) and a positive level for [1;,«0). Indeed, Figure 1
shows the optimum 4-interval quantizer for the unit-
variance generalized Gaussian pdf with m=3, and also
the optimal linear-biased version of g that this
approximates. For this case the optimum parameters
gave B= —0.152 . This quantization result is counter-
intuitive if a free linear bias is not taken into account.

3 r T - T 5
gLO(s)-(l-B)s and four-
2l interval optimum quantizer

-3 -1.788 -1 0 1 1.788 3
input s

Flgure 1. 4-Interval Optzmum Quantization for
m=3 Generalized Gaussian Sources
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We have to also consider the condition that x defined
in (3) should be set to value 1, by suitable amplitude
scaling of the result. We find that for the quantizer

M
_Zax5fk -
k=1

function, the value of k is x=

M
=—Zak[5fk +84;]. For the above quantizer this
k=1
is 0.0975, so that we should scale up the quantizer
levels by 10.26. Note also that for m=3 the Fisher
information I() is 1.132, so that g, or iis biased
version must also be scaled by 1/0.132 or 7.58.

5. Robuétness of Performance

One application of the idea of best approximation of
and invariance to a linear-biased version of gw(s) is in

obtaining nonlinearities g that provide better
robustness against deviations from the nominal
assumption about the unit-variance fthan is offered by
gw(s). In the case of a sub-Gaussian pdf of the type

considered in the last section, the function gw(s) may

increase rapidly, as s™’, with m>2. The optimum
nonlinearity maximizing the bss efficacy and yielding
k=1 is actually g,(s) =gw(s)/(1(,‘)-] ). Suppose however

that the actual pdf p is a mixture of the form (7-g)/,(s)
+ en(s), where f, is a variance-o” version of fand 7 is
a Gaussian pdf with variance >1 such that p has unit
variance. This means that the actual pdf p has heavier
Gaussian tails than the nominal. With £o(s) an odd
power law nonlinearity of the form s™'sgn(s), the
algorithm performance may degrade considerably in
the presence of the Gaussian "outlier” contamination.
One approach to getting a more robust solution is to
start by adding a negative linear bias, to obtain g,(s) —
bs. The resuiting function descends from 0 to a
negative value before eventually rising again towards
large positive values. Suppose we now modify it by
setting its value to 0 whenever g,(s)-bs becomes
positive (for s>0, and symmetrically for s<0). By
making & reasonably large, the mean-square
discrepancy between the "limited” function and the
original LO function (accordingly linearly-biased) is
small, and the performance of the algorithm can be
expected to remain good for the nominal case. In the
presence of Gaussian contamination the limiter
solution should provide better performance. Before
using this function, the amplitude scale of the limiter
should be adjusted to get a nominal value of 1 for the
resulting x value.
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Figure 2

This approach is equivalent to ome in which the
function g,(s) is modified beyond a point s, to be
linear with slope b, here s;b=g,(s,). The linear
increase rather than the power law increase beyond s,
provides the robustness against more Gaussian rather
than sub-Gaussian behavior in the tails. In Figure 2
we illustrate the nature of the robust nonlinear
solutions that we are led to by the above
considerations. The figure shows the limiter
nonlinearities obtained for different values of 5 for the
generalized Gaussian pdf with m=3. The dashed parts
of the curves are the parts that are limited off to 0, the
values of b increasing from left to right.

For »=8 and beyond, the bss efficacy using the limiter
is more than 3/4 of the maximum for the nominal
generalized Gaussian (m=3) pdf. Figures 3 and 4
show some typical results of running the algorithm
with the unmodified (EASI) optimum g function and
the limited version with 5=8. These figures show the
elements of the C matrix as a function of time. For
Figure 3 the source pdf was the unit-variance nominal
generalized Gaussian with m=3; the EASI algorithm
used the optimum function g,(s) whereas the robust
limiter used the amplitude scaled function of Figure 2
with 5=8. In Figure 4 the source pdf was changed to a

mixture pdf p(s)= (1-€)fos) + €Ns(s)
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where f(s) is the m=3 generalized Gaussian pdf with
variance 6°=7/9 and the pdf n; is the Gaussian
contaminating pdf with variance 3. This makes
the variance of p remain 1, with £=0.1

We are generally able to get rather better performance
from the robust limiter. While we are able to obtain
good robustness of performance with this approach,
we have not yet succeeded in proving any specific
minimax robustness property for useful classes of
source pdf's. One complication is that the pdf's are
constrained to be of unit-variance, so that results of
the type established in earlier work on robust
detection and estimation are not applicable.

»,
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Figure 3 Example Performance, Nominal
Generalized Gaussian (m=3) pdf
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Figure 4 Example Performance, Contaminated
Generalized Gaussian (m=3) pdf



One might consider also what happens in the case of
super-Gaussian pdf's. For example, for the double-
exponential source pdf (special case of generalized
Gaussian with m=1) the function g,(s) is proportional
to sgn(s). The lack of robustness we are concerned
with arises from the terms g(y)y" in the algorithm of
(2). (We will ignore the problem of robust pre-
whitening here; one may implement a general version
of this with appropriate nonlinear functions of y in
place of y in yy".) It is of interest to note that the
algorithm of (2) is invariant not only to a linear-bias
imposed on g(s), but also to a g(s)-bias imposed on
the linear term s. Thus, the algorithm is the same if
we replace g(y) by [g() —by] and also y by [y-ag()];
we should have ab=1 to prevent degeneracy. Just as
we suggested truncating the function [g.(¥)-dy]
above, we can also implement a modification of
[y-ag,(»»)] with a suitable value of a.

6. Conclusion

We have considered the choice of the nonlinearity g(s)
for the EASI algorithm, and by extension for a
number of related approaches for blind source
separation. Our results established how optimum
quantized versions should be designed of nominally
optimum g functions, and also suggest how robust
performance can obtained by using suitably modified
versions of the optimum functions. Exact minimax
properties of the robust limiter-type functions remain
to be proved.
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