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ABSTRACT

Adaptive blind source separation algorithms are convention-
ally composed of two parts. The first, using second order
statistics, is responsible for whitening the measured signals,
whereas the second, based on nonlinear statistics, imposes
independence and achieves the final separation. In this work
we show that this two-part scheme is in fact not necessary.
By proposing a general nonlinear adaptation model, we find
conditions that lead to source separation and guarantee an
overall desirable symmetric behavior of the algorithm. Fur-
thermore, using a local performance measure, we optimize
the general adaptation scheme and obtain algorithms that
have optimum convergence rate. Finally we show that the
proposed optimum schemes, except for trivial cases, cannot
be put under the two-part classical scheme of the literature,
suggesting that the latter is suboptimum.

1. INTRODUCTION

Blind source separation is the problem of recovering un-
observed signals from their observed mixtures. The basic
property one relies on to solve this problem is the assump-
tion that the original unobserved signals are mutually inde-
pendent. The term “blind” refers to the fact that there is no
training involved and the algorithms that achieve separation
use only the available measured mixtures.

The simplest blind source separation model considers a
vector S(n) = [s1(n) s2(n) --- sk(n)]* of K statistically
independent signals that are instantaneously, linearly mixed,
producing an observation vector X (n) of the same length.
The mixture is performed with the help of an unknown ma-
trix A as follows

X(n) = AS(n) ¢))

and the only assumption imposed on A is to be invertible.
In this paper we focus on blind adaptive techniques for
the solution of the problem. Therefore let us assume that we
are given sequentially measurements X (n) that satisfy the
mixture model in (1) and we are interested in estimating the
original signal vector S(n) by estimating the inverse of the
matrix A. More specifically we are interested in estimating
a matrix B such that C = BA is nonmixing, that is, C is
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a permutation like matrix with its nonzero entries being +1
instead of unity. The fact that C is not the identity matrix
expresses a possible ambiguity in sign and in the ordering
of the sources. However both drawbacks are not consid-
ered significant and in most cases in practice they can be
corrected by simple means.

Blind adaptive algorithms that estimate B, have the fol-
lowing form in the literature [2]

S(n) B(n —1)X(n) 2
B(n) = B(n-1)-uH($(n))B(n-1), 3

where S(n) denotes the estimate of the signal vector S(n)
at time n; B(n) the estimate of B at time n; I the identity
matrix and the matrix function H(Y) is of the form

H(Y) = [YY! -1 + [YGY(Y) - GY)YY. (4

where, if Y = [y; --- yk]! then, G(Y') denotes a vector
function of the form G(Y) = [g1(v1) 92(v2) -+ - 9x (yk)],
with g;(y) scalar nonlinear functions. We clearly distin-
guish the two parts in (4), the first involving only second
order statistics and responsible for whitening the mixture of
the signals and the second involving nonlinear statistics and
responsible for the final separation of the sources.

For this algorithm to work we need to impose certain
additional constraints. In particular we need to assume that
all signals have a symmetric pdf of unit variance; and that
all g;(y) are odd symmetric nonlinear functions of y. Un-
der these assumptions and if at most one signal is Gaussian,
then we have perfect reconstruction of the sources, provided
of course that the algorithm does not diverge.

2. A GENERAL ALGORITHMIC MODEL

Let us now consider the case where H(Y) is a general ma-
trix function, not necessarily of the form of (4), and examine
under what conditions the corresponding algorithm can suc-
cessfully separate sources. Clearly we are anticipating that
the general model will lead to more efficient algorithmic
structures than the classical scheme of the literature.

The algorithm we are interested in is described by (2),
(3), with H(:) being a general matrix function. As it is
frequently remarked in the literature, it is more convenient,
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from an analysis point of view, to study a normalized ver-
sion of this algorithm. Specifically by multiplying (3) with
the matrix A from the right, the algorithm can be equiva-
lently written as

S(n)
C(n) =

C(n - 1)S(n) A ®
C(n—1) — pH(S(n))C(n - 1), (6)

It

where C(n) = B(n)A. Here we need to examine the con-
vergence properties of the matrix C(n) towards one of the
possible limiting, permutation like, matrices C mentioned
in the introduction. In fact we must ensure, by a proper
choice of H(-), that these matrices become possible limits
of the corresponding adaptation. Furthermore, we need to
also to ensure a uniform overall convergence performance
of the algorithm, independently of the limit the algorithm is
converging to.

For simplicity we limit ourselves to the case of two sig-
nals, i.e. K = 2; extending our results to the general case is
straightforward. For the two-signal case the matrix function
H(-) contains four elements (functions) h;;(y1,y2), ©,5 =
1,2; the vector S(n) = [3;(n) 82(n)]?; while the signal vec-
tor S(n) = [s1(n) s2(n)]?, where we recall that s;(n), 7 =
1,2, are the two statistically independent source signals.

When K = 2 there are eight different C matrices that
are acceptable limits for the adaptive algorithm, namely

+1 0 0 1
C:[o il]’“[ﬂ 0]’ )
corresponding to all different combinations in signs and or-
dering. Let us now impose a structure on H(:) or equiva-

lently on its elements h;;(y1,¥2), 4,j = 1,2, in order to
ensure separation of sources.

2.1. Correct Adaptation Limit

The first step is to ensure that the algorithm can converge to
any of the eight possible C matrices defined in (7). From
stochastic approximation theory [1] we know that the adap-
tation in (5), (6) can converge, in the mean, to one of the
stable equilibrium matrices C,, that satisfy the equation

Coo = Coo — HE{H(Co05(1))}Coo,

where E{-} denotes expectation. Equivalently, if we con-
sider only nonsingular solutions, we can write

E{H(CxS(n))} =0. ®

We therefore conclude that, in order for the matrices in (7),
to become possible limits of the adaptation we need to im-
pose the constraint

E{H(CS5(n))} =0,

for all C matrices listed in (7). One can easily show that
this is equivalent to the following conditions applied to the
elements of the matrix function H(-)

E{hi;(£s1(n), £s2(n))} =
E{hi;(£s2(n), £s1(n))} =0, 4,5 =1,2.

®

2.2. Symmetry in Trajectories

Since the eight possible limits are considered equivalent, we
would like our algorithm to behave in a symmetric way re-
gardless of the limit it converges to. In other words, if there
is a trajectory leading to one limit, we would like to exist
symmetric trajectories, with the same probability of appear-
ance, leading to all other possible limits. It turns out that,
because of the symmetry of the source pdfs, one can easily
impose this symmetric behavior on the algorithm by select-
ing the following structure for the matrix function H(-)

_ [ M) a(u,we)
H(y,y2) = [ q(y;,yf) h(y]z,yi) } 0

where h(y1,y2), ¢(y1,y2) functions that satisfy

h(y1,y2) # h(ya, n1), a(v1,y2) # a(y2, 1)  (11)

and

Il

h(=y1,92) h(y1, —y2) = h(y1,92) (12)
a(=y1,92) q(y1, —y2) = —q(y1,92)- (13)

With the help of (12), (13) the corresponding conditions
in (9) of the previous subsection, become

E{h(81,32)} = E{h(32,81)} =0 (14)
E{q(s1,s2)} = E{qg(s2,51)} =0, 15)

where for simplicity we have dropped the time index n in
the signals s;(n). Condition (14) remains a requirement,
however Condition (15) is always true if g(y1, y2) satisfies
the odd symmetry property in (13). Summarizing, if the
matrix function H(-) satisfies Conditions (10)-(14) then the
algorithm can converge to one of the possible C matrices
and its convergence behavior is the same regardless of the
limit it converges to.

Let us examine the classical adaptation scheme used in
the literature and defined in (4). We realize that it is a special
case of our general model with h(y1,y2) = y? — 1 and

9(y1,92) = y1y2 + 9(¥1)y2 — 9(y2)y1, satisfying all five
conditions mentioned before.

3. AN ANALYTIC PERFORMANCE MEASURE

In an adaptive algorithm there are two quantities that are of
primal importance, namely speed of convergence and steady
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state estimation error. We will propose analytic expressions
for both of them, for the case of small step size p (which
is the case of interest in practice). Because of the small
gain assumption it will be possible to make use of powerful
results coming from stochastic approximation theory, con-
cerning performance of adaptive algorithms [1].

3.1. Speed of Convergence

The algorithm defined by (5), (6) is nonlinear and can con-
verge, in the mean, to one of the possible matrices C, under
the assumptions of the previous section. Since its behavior
is nonlinear, in order to measure its convergence speed, we
can define an asymptotic convergence rate which, with the
help of the stochastic approximation theory, can be shown
to satisfy the following equality

i JoBE(C()} - CI)

n—o0 n

= pmin{Re(X:)} + o(n),
where ); are the eigenvalues of the matrices Q;, Q2, with
Q]_ E {[ ZE:;::?; ] [slll(sl) -1 $2l2(32) - 1]}
Q = E{[ a(s1,52) ] [s1l2(s2) 5211(81)]},

4(32, 51)

Li(y) = —%, and f;(y) being the pdf of source ¢. It is

also known that for local stability of the equilibrium matri-
ces C, we need to have min;{Re();)} > 0.
3.2. Steady State Error Power

The second important quantity is the estimation error power
at steady state, that is, lim, o, E{||S(n) — S(n)(|?}. Using
the independence of the sources and the fact that all sources
are of unit variance, one can show that

E{|3(n) ~ $(n)|*} = E{||C(n) - C||*}.

Again, because the step size u is small, from stochastic ap-
proximation theory we have that

Jim E(IC(n) - OIF} = utx (P + P} +o(u)

where tr{-} denotes trace and Py, P, are matrices satisfy-
ing the following Lyapunov equations

QP:+P:Q{=R;, i=1,2,

with
R, = E{[ Zg;:i; } [h{s1,s2) h(52731)]}
E{{ a(s1, 82) } [a(s1, 52) Q(32,31)1}~

Ry = q(s2,51)

3.3. Efficacy of Adaptive Algorithms

When we compare adaptive algorithms there is no reason
to make this comparison using the same step size u in the
algorithms involved. Since 4 interferes directly in the con-
vergence rate and the asymptotic steady state behavior, it
is clear that the proper selection of v, in each algorithm, is
crucial for the comparison process.

A fair comparison method [3] consists in selecting the
step size in each algorithm so that all algorithms under com-
parison have the same steady state error power (say o2);
then examine which algorithm converges faster, that is, has
the maximum convergence rate. Indeed if we select the step
size in the way just described then, the rate of convergence
of an algorithm, takes the form o2Eff where o2 is the com-
mon steady state error power and Eff is the Efficacy of the
algorithm defined as

— mm,{Re(/\,)}
tl‘{Pl + P2} )

Clearly, when we compare algorithms fairly, then the one
with the maximum efficacy is considered as the best, since
it has the largest convergence rate (for the same steady state
erTor power).

There are several interesting points related to the effi-
cacy. Notice first that this measure is independent of the
step size p and is only a function of the algorithm we like
to analyze. Second, one can show that ratio of efficacies is
approximately equal to ratio of steps required by the corre-
sponding algorithms to converge. In other words if an algo-
rithm has an efficacy which is a% larger than the efficacy of
another algorithm, then the first algorithm requires 0% less
iterations to converge than the second.

4. ASYMPTOTICALLY OPTIMUM ALGORITHMS

Since in the previous section we defined an analytic perfor-
mance measure, we can now attempt to maximize it in order
to find optimum (fastest converging) algorithms.

Unfortunately the corresponding optimization problem
we end up with, when we consider the general case, turns
out to be complicated. There is however a special, and
extremely interesting, case where the solution is possible.
Specifically, if the sources have the same pdf, that is, if
fiy) = f2(y) = f(y) then the two functions A(y1, y2)
and q(y1, y2) that maximize the efficacy can be shown to be
equal to

hyiy2) = a(wly)-1)
q(yi,y2) = bnl(yz) + cy2l(ys)
i
where [(y) = W%)- and the constants a, b, ¢, are such that

the two matrices Q1, Q2 have all their eigenvalues A; equal
to unity. ‘
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Consider now the classical scheme with h(y1,y2) =
¥} —1and q(y1,y2) = y192-+9(y1)y2—9(y2)y:1. If we com-
pute its efficacy, it will of course depend on the selection of
the function g(y). Maximizing the efficacy over g(y), it is
clear that, optimizes the classical model. This optimization
leads to

q(y1,92) = ny2 + d(yll(yz) - yzl(yl))

(notice that h(y1,y2) is given in this case). Again, constant
d is selected so that the corresponding Q, matrix has all
eigenvalues equal to the (single multiple) eigenvalue of Q;.

Comparing the proposed optimum scheme to the clas-
sical one, we can realize that the only case where the two
schemes coincide is when [(y) = y, or equivalently when
the sources are Gaussian. However, this case is of no in-
terest since, as it is well known, Gaussian sources cannot be
separated. We therefore conclude that whitening the sources
is not necessarily the best thing to do.

5. EXAMPLES AND SIMULATIONS

Let us consider the case of generalized Gaussian sources,
with common pdf given by the following relation

1) = DR H)" k>0,

where A(k), D(k) are such that f(y) integrates to unity and
has unit variance.

We can now compute the optimum h(yy,y2), ¢(v1,y2)
functions for the proposed and the classical scheme and the
corresponding efficacies as a function of the parameter k,
Fig.1 depicts these results. We can see that the proposed
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Fig. 1. Efficacies of proposed optimum and classical

scheme, for generalized Gaussian sources.

scheme has always a larger efficacy (as it should), and that
there are cases where the performance of the proposed al-
gorithm is significantly superior to the classical one.

For example, when & = 0.6 the ratio of the two effica-
cies becomes 2.3, suggesting that the proposed scheme re-
quires 2.3 times less steps to convergence than the classical
scheme. Indeed this fact can be verified with the simula-
tions presented in Fig. 2, where we plot the estimation error

— Optimum
- _Classical |

1

-2

Number of iterations x 10

Fig. 2. Estimation error powers of proposed optimum and
classical scheme, for generalized Gaussian sources with
k= 0.6.

power of the two algorithms in db. The step sizes were se-
lected so that the steady state error power becomes -20 db in
both algorithms. The exact accordance of simulations and
theory is quite evident.

6. CONCLUSION

We have presented a general class of adaptive algorithms
that is capable of solving the source separation problem.
With the help of an asymptotic performance measure we
optimized the proposed algorithmic scheme and obtained
algorithms that have optimum convergence speed. These
algorithms, except the uninteresting Gaussian case, were
shown to be different than the popular classical scheme used
in the literature, suggesting that the latter is suboptimum.
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